Liquid-solid phase transitions in a deformable
container

Pavel Krefi, Elisabetta Rocca, andikhen Sprekels

Abstract We propose a model for water freezing in an elastic container, taking
into account differences in the specific volume, specific heat and speed of sound in
the solid and liquid phases. In particular, we discuss the influence of gravity on the
equilibria of the system.

Introduction

Water is a substance with extremely peculiar physical properties. A nice survey of
the challenges in modeling water behavior can be found on the web page [22]. Be-
ing aware of the obstacles, we try to develop some mathematical models related to
freezing of water in a container. In [11] and [12], we have proposed an approach
to model the occurrence of high stresses due to the difference between the specific
volumes of the solid and of the liquid phase, assuming first that the speed of sound
and the specific heat are the same in solid and in liquid. We have proved there the
existence and uniqueness of global solutions, as well as the convergence of the so-
lutions to equilibria. In reality, the specific heat in water is about the double, while
the speed of sound in water is less than one half of the one in ice. The main goal
of this contribution is to include this dependence into the model. We discuss here
the modeling issues and investigate in detail the equilibria. For containers of reason-
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able shape and reasonable height (a few kilometers at most), filled with water in a
uniform gravity field, we obtain a unique equilibrium, which is either pure solid, or
pure liquid, or a solid layer above a liquid layer separated by a horizontal surface, in
dependence on the surrounding temperature. New mathematical and modeling chal-
lenges arise and it is not our aim here to solve the problem completely. In particular,
the proof of well-posedness of the resulting nonlinear evolution system will be the
subject of a subsequent paper.

There is an abundant classical literature on phase transition processes, see e.g.
the monographs [2], [4], [20] and the references therein. It seems, however, that
only few publications take into account different mass densities/specific volumes
of the phases. In [5], the authors proposed to interpret a phase transition process in
terms of a balance equation for macroscopic motions, and to include the possibility
of voids. Well-posedness of an initial-boundary value problem associated with the
resulting PDE system is proved there and the case of two different demnsitbesl
p2 for the two substances undergoing phase transitions has been pursued in [6].

Let us also mention the papers [16] and [17] dealing with macroscopic stresses in
phase transitions models, where the different properties of the viscous (liquid) and
elastic (solid) phases are taken into account and the coexisting viscous and elastic
properties of the system are given a distinguished role, [13] and [14], which pertains
to nonlinear thermoviscoplasticity, and [3] where another coupled system for tem-
perature, displacement, and phase parameter has been derived in order to model the
full thermomechanical behavior of shape memory alloys. First mathematical results
were published in [3], while a long list of references for further developments can
be found in the monographs [4] and [20].

The main advantage of our approach is that we deal exclusively with physically
measurable quantities. All parameters have a clear physical meaning. The derivation
is carried out under the assumption that the displacements are small. This enables
us to state the system in Lagrangian coordinates. The main difference with respect
to the Eulerian framework e.g. in [6] is that in Lagrangian coordinates, the mass
conservation law means that the mass density is constant and does not depend on
the phase, while the specific volumes of the liquid and solid phases are possibly
different. For simplicity, we still assume that viscosity and thermal expansion co-
efficient do not depend on the phase, the evolution is slow, and the shear viscosity,
shear stresses, and inertia effects are negligible.

In Section 1, we describe the model, and the balance equations (energy balance,
quasistatic momentum balance, and a phase dynamics equation) are derived in Sec-
tion 2. Questions of thermodynamic consistency are discussed in Section 3, and in
Section 4 we state and prove Theorem 1 on existence and uniqueness of equilibrium
configurations in the limit case of rigid boundary. The elastic case can be treated in
a similar way, just the computations are slightly more involved.
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1 The model

As reference state, we consider a liquid substance contained in a bounded connected
container® c R3 with boundary of clas€b!. The state variables are the absolute
temperatur@ > 0, the displacement € R3, and the phase variabjec [0,1]. The
valuey = 0 means solidy = 1 means liquidy € (0,1) is a mixture of the two.

We make the following modeling hypotheses.

(A1) The displacements are small. Therefore, we state the problémgirangian
coordinatesin which mass conservation is equivalent to the condition of a con-
stant mass densijy > 0.

(A2) The substance is isotropic and compressible; the speed of sound and the spe-
cific heat may depend on the phgse

(A3) The evolution is slow, and we neglect shear viscosity and inertia effects.

(A4) We neglect shear stresses.

In agreement witt{A1), we define the straia as an element of the spa@&:3
of symmetric tensors by the formula

(Ou+(Ouw"). (1)

NI =

e=0qu:=

Letd € Ti;rﬁ denote the Kronecker tensor. B44), the elasticity matriA has the
form
Ae=A(x)(e:8)8, ®)

where “: " is the canonical scalar product Wg;n% andA(x) > 0 is the Lané con-
stant (orbulk elasticity modulys which may depend of by virtue of (A2).

We model the situation where the specific voluvhef the solid phase is larger
than the specific volumé,, of the liquid phase. In a homogeneous substance, the
speed of soundy is related to the bulk elasticity moduldsthrough the formula
Vo= +/A/po. Here, in agreement with the Lagrange description, the speeds of sound
vy In water andv; in ice are related to the corresponding elasticity moduliA;
through the formulasy, = V2,/V, A = V?/V;. For the moment, we do not specify
any particular interpolatiot () betweend; and Ay, for x € (0,1). This will only
be done in Section 4 together with a motivation for the corresponding choice.

Considering the liquid phase as the reference state, we introduce the dimension-
less phase expansion coefficiant= (V; — V) /My > 0, and we define the phase

expansion strai@g by
~ o
éx)=351-x)8. ©)

The stress tensar is decomposed into the suat + ¢© of the viscous component
¢V and elastic componet®, which are assumed in the form

6 =v(g:6)6 4)
o°=(A(x)(e:6—a(l—x))—B(6—6))3, ()
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wherev > 0 is the volume viscosity coefficient arftl is the thermal expansion
coefficient, which are both assumed constant.

Our main concern is to define the free energy properly. We proceed formally,
assuming that the absolute temperature remains positive. This will have to be proved
in a subsequent analysis. The process is governed by the following three physical
principles:

—divo = fyg (mechanical equilibrium) (6)
po& +divg = o: & (energy balance) @)
Pos +div % >0 (entropy inequality) (8)

wheref, is a given volume force density (the gravity force)

fyol = _P0953» (9)

with standard gravityg and vectords = (0,0,1), e is the specific internal energy,
sis the specific entropy, arglis the heat flux vector that we assume for simplicity
in the form

q=—x(x)06 (10)

with a heat conductivitx () > 0 depending possibly op.
We assume the specific hegt(x, 0) in the form

ov(x,0) = co(x)ci(6). (11)

This is still a rough simplification, and further generalizations are desirable. Ac-
cording to [9, Chapter VI] or [15, Section 5], the purely caloric pagg and
Scal Of the specific internal energy and specific entropy are given by the formulas

ecal(2, 0) = co(x)€1(6), scai(x, 0) = co(x)s1(6), with

el((-)):/oecl(r)dr, 51(0) = /QMdr. (12)

JO T

By virtue of (7)—(8), the specific free energy= e — 0s satisfies the conditions
0€ = pod: T, s= —dy f. With a prescribed constant latent heagtand freezing point
at standard atmospheric press@ge> 0, the specific free energfy necessarily has
the form

f=co(x)fL(0)+ 522 ((e—£(x)): 6)° (13)

where
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0(60) = @x(0)-05:(0) = [ our)(1-2) e,

and f is a arbitrary function ofy (integration “constant” with respect # ande).
We choosef so as to ensure that the valuesyofemain in the intervalo, 1], and
that the phase transition under standard pressure takes place at tempgrafiore
specifically, we set B

f(x) = Lol (%) —co(x)f1(6c).

wherel is the indicator function of the interv¢0, 1]. Below in (38)—(40), we come
back to the principles of thermodynamics.
For specific entropg and specific internal energywe obtain

s= —dsf = co()s(0)+ Lo 5+ 20y, (14)
Po 0c
e = colx)(€1(8) — f1(60)) + ”‘2(;?@: 5 a(l-y)
+E9c£:5+Lo(X+|(x)). (15)
po

2 Balance equations

As another formal consequence of the entropy balance (8), we have the inequality
xt9, T <0 for every process. This will certainly be satisfied if we assume-thais
proportional tod, f with proportionality constant (relaxation timg) > 0. It deter-
mines how fast the system reaches an equilibrium. We thus consider the evolution
system

po& +divg=o0:¢, a7)
—Yx € Iy f, (18)

whered, is the partial Clarke subdifferential with respecttoThe scalar quantity
p:=—ve:6—A(x)(e:0—a(l—yx))+B(60—6) (29)

is thepressureand the stress has the foom= —pd. The equilibrium equation (16)
can be rewritten in the formlp = f,, hence

p(x,t) =P(t) — pog s, (20)
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whereP is a function of time only, which is to be determined. Recall that in the
reference state: § =& : § =0, y =1, and at standard pressig,nq the freezing
temperature i®.. We thus see from (19) th&\t) is in fact the deviation from the
standard pressure. We assume also the external pressure in the.foenPsiang+

po with a constant deviatiopp. The normal force acting on the boundaryist) —

PodX%s — po)Nn, wheren denotes the unit outward normal vector. We assume an elastic
response of the boundary, and a heat transfer proportional to the inner and outer
temperature difference. Qi2, we thus prescribe boundary conditions toand 6

in the form

(P(t) — pogxs — po)n = k(x)u, (21)
q-n=h(x)(6—6r) (22)

with a given symmetric positive definite matri (elasticity of the boundary), a
positive functionh (heat transfer coefficient), and a const@at> 0 (external tem-
perature). This enables us to find an explicit relation between divdP. Indeed,
onadQ we have by (21) thai-n = (P(t) — pog X — Po)k ~(x)n(x) - n(x). Assuming
thatk—1n-n belongs td_-1(9R), we set

Kilp = /ag k~1(x)n(x)-n(x)do(x), mpr = Kp./t;u(2 kl(x)n(x)-n(x)x3dc((>;)3:)

and obtain by Gauss’ Theorem that

Ua(t) = [ divu(xt)d= - (P(t) ~ pogm — po). (24)

Under the small strain hypothesis, the function ulidescribes the local relative
volume increment. Hence, Eq. (24) establishes a linear relation between the total
relative volume incremedg, (t) and the relative pressuRgt) — po. We havee : 6 =

div u, and thus the mechanical equilibrium equation (20), due to (19) and (24), reads

vdivug +A(x)(divu—o(1—x)) — B(6 — 6c) + pod(Mr —X3) = —po — KrUq (t).

(25)
As a consequence of (10), (13), and (15), the energy balance and the phase relaxation
equation in (17)—(18) have the form

Paco(x)ew(8): — div (x(x)T6) + poco(x) xt(€1(6) — f1(6))
— v(divu)? - BOdivu; + porox? *POLOG%XM (26)

A'(x)
2

—poYoxt — (divu—a(l—7))?—a(x)(dvu—a(l-y)

€ poci (1) (4(6) ~ fa(60) +polo (1 5 ) +21(0). @)

C
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Note that mathematically, the subdifferentll(y) is the same apoLodl (x). For
simplicity, we now set

c(x) :=poCo(x), Y:=povw, L:=polo. (28)

The system now reduces to the following three scalar equations — one PDE and two
“ODEs", for three unknown function8, y, andU = div u.

c(x)ew(0) —div (x(x)08) = ¢/ (x)x(f1(0) —e1(6))
+ VU2 — BOU, + 7y — Lgxt, (29)
VU +A(x)(U —a(1—x)) —B(8 —6c) = pod(xs —mr) — po— KrUq(t), (30)

- "B U a0 - ar (U - a1 7))

0
€ (0(0) - o) +L (1- g ) 4210 ()
C
with Ug (1) = [, U (x,t) dx, and with boundary condition (22), (10). To find the vec-
tor functionu, we first define® as a solution to the Poisson equatib® = U with
the Neumann boundary conditioh® - n = (KrUg (t) + pog(mr —x3) )k~ (x)n(x) -
n(x). With this @, we find{i as a solution to the problem

divii =0 in Q x oo, (32)
d-n=0

(64 0@ — (KrUg + pog(mr —xa))k—1n) x n — o} on 92 x(0,e),  (33)
and seu = i+ 0O®. Thenu satisfies a.e. if2 the equation diw = U, together with
the boundary condition (21), that is,= (KrUgq + pog(mr — x3))k~1n on Q.

For the solution to (32)—(33), we refer to [8, Lemma 2.2] which states that
for eachg € HY2(9Q)? satisfying [,,9-ndo(x) = O there exists a function
i € HY(Q)3, unique up to an additive function from the setv of divergence-
free H1(Q) functions vanishing 0@, such that diii = 0 in 2, i = g on Q.
In terms of the system (32)—(33), it suffices toget ((OP — (KrUq + pog(mr —
x3))k~tn) x n) x n and use the identityb x n) x n = (b-n)n — b for every vector
b. Moreover, the estimate

inf |G +Viinie) < Clgluzge) = Cll Pz (34)

holds with some constan@ C. The required regularity is available here by virtue
of the assumption tha is of classC!?, providedk —* belongs toH/2(9 Q). Note
that a weaker formulation of problem (32)—(33) can be found in [1, Section 4].
Due to our hypothesg#3), (A4), we thus lose any control on possible volume
preserving turbulencesc V. This, however, has no influence on the system (29)—
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(31), which is the subject of our interest here. Inequality (34) shows thatig
small in agreement with hypothegia1), then alsos can be chosen in such a way
that hypothesigA1l), interpreted in terms dfl%, is not violated.

3 Energy and entropy

In terms of the new variable®, U, x, the energye and entropys can be written as

e = co(1)(ex(6) ~ u(66)) + 52 U - a1 1))
+Pou Lot 1), (35)
Po
_ .
s=co(x)s1(6) + ec’“ pOU (36)

The energy functional has to be supplemented with the boundary energy term

2
Er(t) = (ug(t)+p°+}fﬁg“> , (37)

as well as with the gravity potentialpogxsU. The energy and entropy balance
equations now read

& (fypotext ~gayace &) = [ noocar—o)dots. (38)
pos +div 3 = %D‘”ZJF s Yuz > 0, (@9
% /;ZpoS(x,t)dX= /a Q@(ep—e)da(x) (40)

)|06?
+/( | | GXt+9Ut)dX~

The entropy balance (39) says that the entropy production on the right hand side is
nonnegative in agreement with the second principle of thermodynamics. The system
is not closed, and the energy supply or the energy loss through the boundary is given
by the right hand side of (38).

We prescribe the initial conditions

6(x,0) = 6°(x) (41)
U(x,0) = U%x) (42)
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x(x.0) = x°(x) (43)

for x € Q, and compute from (35)—(36) the corresponding initial valesE?,
and ¥ for specific energy, boundary energy, and entropy, respectivelyEf et

Ja Po€®dx, L = [, pos’ dx denote the total initial energy and entropy, respectively.
From the energy end entropy balance equations (38), (40), we derive the following
crucial (formal for the moment) balance equation for the “extended” enmy@/—

GFS)Z

/ <C(X)(el(6) — f1(6c)) + L(z") (U —(x(l—x))2> (x,t) dx
Q
+ [ (B8 + Ly~ pogira) (xt) ¢

K 2
LKr <Ug(t)+ P0+Pogﬂ‘r>
2 Kr

2
+or //( 2)106] +9xt+eut>(x,r)dxdr

+/0 /(QQT(GF—O)Z(xm)dG(x)dT

= E0+E,9—91—SO+61—/Q (c(x)sl(6)+gx+ﬁu)(x,t)dx. (44)

We assume that bott(y) andA(x) are bounded from above and from below by
positive constants. The growth sf(0) is dominated bye; (6) as a consequence of
the inequality
si(f)—si(07) _ 1
e (6) —ey(6*) ~ 0"
Hence, there exists a const&ht- 0 independent df such that for alt > 0 we have

/( (8)+U?) (xt) dx+// <|D9|2 tz Lg)(xr)dxdr (45)

// (Te —0)?(x,7)do(x)dr < C.

Ve > 6% > 0.

4 Equilibria

It follows from (22) and (29) that the only possible equilibrium temperature is
6 = Or, and the equilibrium configurations., x.. for U, y satisfy for a.ex € Q
the equations

A (% (X)) (Uen (X) = (1= x=(X))) = B(6r — 6c)
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+pog(Xs —mr) — po — Kr /Q U (X)X, (46)

L (ZZ _ 1) +¢/(2()) (f2(6c) — f2(6r))

—%?V(Jcoo(x))(Uoo(X)—Of(l—xoo(x)))2
—0A (Yo (X)) (U (X) — (1= xa(X))) € Il (Xeo(X)),  (47)

as a consequence of (30), (31). We now eliminatefrom the above equations. To
simplify the formulas, we introduce the notation

Si= [p(1—xa(X))dX, Ugq = [oUau(X)dxX,
48)
. dx’ . X (
A= Jo 15meay M= % Jo 1o X -

We see thaSis the total solid content, arld,, is the total volume increment. We
now divide (46) byA (x~ (X)) and integrate ovef2. This yields

(1+KrA)Ug = aS+A(B(6r — 6c) — po+ pog(Mmy, —mr)).
This enables us to replatk, on the right hand side of (46) and to obtain

A (e (X)) (Voo (%) = 0£(1 = Yo (X))

. ﬁ(er—ec)—po—OCKFS o

wherem* is a convex combination ofir andm,, given by

m‘ = ! mr + KrA m
- 1+KrA r 1+KrA A

(50)

Eq. (47) can thus be rewritten as

(5 - 1) € a9 (12(80) ~ (o)

A (X (%)) (ﬁ(@r—@c)—po—aKFS
242 (Y0 (X)) 11 KrA

—a ﬁ(@r — GC) — Po— OCKFS
1+KrA

2
+ pog(x3 — m*))

+poglia =) € d1(zo(). (5

Approximate values of the physical constants are listed in Table 1, see [7, 18, 19,
22].
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Specific volume of water Vi =1/po 103 m° /kg
Specific volume of ice Vi 1.09-10°2 me/kg
Speed of sound in water Vi 15.10° m/s

Speed of sound in ice Vi 3.12.1¢° m/s
Elasticity modulus of water A=V /Ny |2.25.-10° |Pa=J/m® =kg/m¢
Elasticity modulus of ice A = V2V 9-10° |Pa=J/m® =kg/m¢&
Specific heat of water Cw 42.10° | J/kgK=m?/K
Specific heat of ice G 21-16° | J/kgK=n?/s’K
Latent heat Lo 3.34.10° J/kg=n?/s?
Thermal expansion coefficient B 45.10° | J/mK = kg/m<K
Melting temperature at standard pressure 6. 273 K
Standard atmospheric pressure Po 10°  |Pa=J/m? =kg/m&
Phase expansion coefficient o= (Vi—Vw)/My| 0.09

Gravity constant g 9.8 m/&

Table 1 Physical constants for water

In order to draw some conclusions about the solutions to (51), we elimingge the
dependence and non-monotonicitie®jnon the left hand side of (51) by choosing
the following nonlinearities:

1 1 1 -1

Ax) = (ﬂvi—i_(ﬁw_li) X) ; (52)
_G (G
e =g+ (Gi-g ) (59
3

a(0)= (5 ) (54

with a constanf > 0. The functionf; is, consequently,

1 61+§

f1(0) = ——c—5. 55
1( ) 5(1_’_&) 905 ( )

This is again a very rough approximation. In reality, for temperatures near zero
Kelvin, the exponenf should be 3 according to the Einstein-Debye law, while for
large temperatures, it should vanish. Our choice is motivated by the effort to keep
the number of parameters as low as possible.

Assuming (52)—(54), we write (51) in explicit form

(&) e @D ()"
1( 1 1) (ﬁ(ep—ec)—po—aKrS

+§ M A 1+ KrA

2
+ pog (X3 — m*))
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—a [3(91— — 90) — po—OCKrS
1+KrA

+pog<Xsm*>) € AN(xa(x). (56)

with L L1
A=—|Q|-|—-—]S 57
w2 () &0
To estimate an appropriate value &flet us neglect the gravity forces (which are
indeed very small as we shall see) and assume the rigidHimit> . We have

€ [0,1]. (58)

Eq. (56) then reads in dimensionless form

() o (39 (@))

1/ A
+2(M 1>R2+Re A (Y (X)) (59)
For 6r > 6., the left hand side of (59) is nonnegative, hence necessarily
X~ (X) = 1 for (almost) allx € 2 andS= R= 0. Because of the pressure increase
due to solidification, the liquid phase persists also for temperatures t#glowe

only obtain pure icer, = 0 if the left hand side of (59) witlR = 1 is nonpositive,
that is, if - < y6;, wherey € (0,1) is the solution (if it exists) to the equation

_ C 5 _
Cly- Dt gy - DHG = 0, (60)

with dimensionless constants

o L _ Oc Cwv G _l Ai
Cl—az)qv CZ—Otzli (Vw_Vi>’ C3—2<M—1>+1~

For the values of the constants in Table 1, we obtain

C1~458, C,~85, Cy~25, (61)

hence the solutiog = y(&) to (60) exists for alE > 0, and we easily compute the
limits limg_o, (&) =1, limg_, ., y(&) = 1—-C3/C;. Assume that we know the full
solidification temperaturés, and that

Then we identify the value df from the equatioly(§) = 65/ 6, that is,
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0(6):=Co (g;)”i(c3+c1(g;_1))e<l+g> ~1 (63

The functiong is convex in(0,»), ¢(0) < 1, ¢(+00) = 4. Eq. (63) thus deter-
mines the desired value &funiquely.

Still in the rigid limit K- — oo, consider now the gravity effects in Eq. (56). Then,
by (48) and (50), we have* = m, € (a,b), and the counterpart of Eq. (59) reads

(Cs—1)(R=1(x3—m))*+ (R=n(xs—mM)) ~Ca(r) € Al (xeo(X)) (64)

con=a(1- ) gz (- (%)),

C1,C,,C3 are as above, and

where

n = gif ~ 121075 [m Y. (65)
1

The left hand side of (64) is a function & only. Let the interval(a,b) be the
projection ofQ2 onto thexs-axis, that is,
x3 € (a,b) < I(x1,x2) € R?: (X1,X2,X3) € Q2.
We prove the following result.
Theorem 1.Let the height b- a of the container satisfy the inequality
2n(b—a)(C3—1) < 1. (66)

Then Eq. (64) admits a solutign, € L*(2). Moreover, there exist temperatures
B > 6. > 6; > 0such thatye = 1if 6 > 64, X =0if O < 6;, and for6 € (6;, 6)
there exists & (a,b) such thaty.(x) = 1for x3 < z, %« (X) = 0 for x3 > z.

Condition (66) is not too restrictive. With the values in (61) and (65), the maximal
admissible height is almost 30 km. The solution may not be unique if the shape of
is very irregular. IfQ is a straight vertical cylindef2 = Q,p x (a,b), for example,
whereQop C R? s fixed, the proof below shows that the solution is unique.

The interval( 6, 6,) of “overheated ice temperatures” is very narrow, of the size
of n(b—a), and corresponds to the low pressure ice layer on the top of the container.

Proof. The left hand side of (64) is always nonnegativeGh49r-)(C3 — 1) + 1 <0,
that is, if O is above a certain temperature slightly bigger titanin this case,
X»(X) =1 for allx € Q independently of the heiglit— a. Assume now

4C4(9F)(C3— 1) +1>0.

Then the left hand side of (64) is positive if and only if
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n0G—m) <R+ 1-V4Cy(6r)(Co—1+1)  (67)

56 ) (

or

n(xa—my) >R+ (1+VaC(or)G-1)+1).  (68)

1
2(C3—1)
Condition (68) is in contradiction with the assumption (66), hence the exists at most
one

1

z— m,1+% <R+2(C3_1) (1— \/404(9p)(03—1)+1)) e (a,b)

such that the left hand side of (64) is positive fgr< z and negative foxz > z

By definition of the subdifferential of the indicator function on the right hand side
of (64), we then have.(x) = 1 for X3 < z, x»(x) = 0 for X3 > z, as expected. It
remains to determine Assume first that such aexists. Then botiR = R(z) and

my, = my (2) are functions of. We denote

Q(2) = {x=(x1,%) € R?: (x,%2,2) € Q}.

The set2(z) is empty forz> b and forz< a. Let w(z) be the 2D Lebesgue measure
of Q(z). Then, by (58), we have

17 o(s)ds

£ [fo(s)ds+ £ 7 o(s)ds’

R(z) =

and by (48),
£ [Zso(s)ds+ £ [;so(s)ds

L [fo(s)ds+ £ 7 o(s)ds

The dependence afon 6r is given by the equation

m(2) =

1 1 1
—mM(2)— =R(2) = = [ =—=———(1—+/4C4(6r)(C3—1)+1) |. 69
2-my ()~ 1RO = g (- VA G- D5 D). (69)
The left hand side of (69) is a continuous functiorzpivhich is negative foz = a

and positive foz = b, and the statement of Theorem 1 easily follows. For a straight
cylinderQ = Qp x (a,b), whereQyp C R? is fixed, the left hand side of (69) is an
increasing function of, hence the solution is uniqued

Remark 1We can interpret Eqs. (46)—(47) in another way. On the interfgdee-
tween water and ice, the left hand side of (47) vanishes, and (46) has the form

A (% (X)) (Ueo (X) — (1 = xo(X))) = B(6Or — 6c) — Poo, (70)

whereP, = pp+ KrUg + pog(mr — x3) is the equilibrium pressure in agreement
with (19). Hence, (47) can be reformulated in term&pfs
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This would be the Clausius-Clapeyron relation in the sense of [21, Equation (288)]
if cw/Mw = Gi/Vi andA; = Ay, namely

Py _ LB
QF*QC ec(vw*vi) ’

wherelLg = Lo — (a86c)/po is the modified latent heat. In our case, the modified
latent heat contains additional terms related to the differences in elasticity moduli
and in specific heat capacities.

Remark 2Note that in the fully solidified rigid limit case, the equilibrium pressure
is very high, namely (up to negligible contributions due to gravity and thermal ex-
pansion)P, ~ al; ~ 0.81GPa

Conclusion A model is proposed for describing the dynamics of freezing/melt-
ing of water in an elastic container, taking into account the differences in specific
volume, specific heat, and speed of sound in water and in ice. The process is de-
scribed by one parabolic PDE, one integrodifferential ODE, and one differential
inclusion for three unknown functions — the absolute temperature, relative volume
increment, and liquid fraction. A study of the equilibria in the rigid limit is carried
out in detalil.
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