
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES A van der Corput-type lemma for power
bounded operators

Antonius FrederikMaria ter Elst

VladimírMüller

Preprint No. 60-2016

PRAHA 2016





A VAN DER CORPUT-TYPE LEMMA FOR POWER BOUNDED
OPERATORS

A.F.M. TER ELST AND V. MÜLLER

Abstract. We prove a van der Corput-type lemma for power bounded Hilbert space
operators. As a corollary we show that N−1

∑N
n=1 T p(n) converges in the strong operator

topology for all power bounded Hilbert space operators T and all polynomials p satisfying
p(N0) ⊂ N0. This generalizes known results for Hilbert space contractions.

Similar results are true also for bounded strongly continuous semigroups of operators.

1. Introduction

By the mean ergodic theorem, the Cesàro means of the powers of a power bounded

operator T on a reflexive Banach space converge in the strong operator topology to the

projection onto ker(I − T ) along ran (I − T ).

Frequently, the full sequence (T n) of all powers of T can be replaced by a subsequence

(T an) where (an) is a given sequence of positive integers.

It is well known [BE], [BLRT] that 1
N

∑N
n=1 T an converges in the strong operator topology

for every unitary operator T (and more generally, using the dilation theory, for every Hilbert

space contraction T ) if and only if 1
N

∑N
n=1 λan converges for every complex number λ with

|λ| = 1.

This condition, however, is in general difficult to verify. Nevertheless, it is known that
1
N

∑N
n=1 T p(n) converges in the strong operator topology for all Hilbert space contractions

and all polynomials p such that p(N0) ⊂ N0, where N0 = N ∪ {0}. However, in general

the limit operator is not a projection.

The main tools for the mean ergodic type results for subsequences are the spectral theory

for unitary operators and the van der Corput lemma, see [EW], p. 184. Both of these tools

are available only for unitary operators on Hilbert spaces. Using the dilation theory one

can generalize these results to the setting of all contractions on Hilbert spaces. However,

none of these tools is available for power bounded operators.

The aim of this paper is to prove a van der Corput-type lemma for power bounded

operators on Hilbert spaces. As a corollary we obtain that 1
N

∑N
n=1 T p(n) converges in

the strong operator topology for all power bounded Hilbert space operators T and all

polynomials p satisfying p(N0) ⊂ N0. Note that power bounded operators on Hilbert

spaces are in general very different from contractions.

1991 Mathematics Subject Classification. 47A35.
Key words and phrases. mean ergodic theorem, power bounded operator, bounded semigroup of oper-

ators, polynomial Cesàro averages.
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Similar results are proved also for bounded strongly continuous semigroups of operators

on Hilbert spaces.

The authors wish to thank to Yu. Tomilov for drawing their attention to the problem

and for fruitful discussions about it.

2. Discrete case

In this section we consider power bounded operators on Hilbert spaces and the con-

vergence of Cesàro means with respect to subsequences of N. The next result enables

to reduce a given subsequence (as)
∞
s=1 to sequences of differences (as+k − as)

∞
s=1 for fixed

k ∈ N. If (as) is a polynomial subsequence, that is, there exists a polynomial p such that

as = p(s) for all s ∈ N, then this result enables to reduce the degree of the polynomial.

Theorem 2.1. Let T be a power bounded operator acting on a Hilbert space H and let

x ∈ H. Let (an)∞n=1 be a strictly increasing convex sequence of positive integers such that

sup
{

a2n

an
: n ∈ N

}
< ∞. Suppose that

lim
N→∞

N−1

N∑
j=1

T aj+k−ajx = 0

for all k ∈ N. Then

lim
N→∞

N−1

N∑
j=1

T ajx = 0.

Proof. For all j ∈ N write dj = aj+1 − aj. Since the sequence (aj) is convex, the sequence

of differences (dj) is increasing. Without loss of generality we may assume that ‖x‖ = 1.

Let

M = sup{‖T n‖ : n ∈ N0}.

Suppose on the contrary that there exists an η > 0 such that

lim sup
N→∞

N−1
∥∥∥ N∑

j=1

T ajx
∥∥∥ > η.

Fix k ∈ N such that k > 20M4

η2 . Let c = sup{a2n

an
: n ∈ N}. Since the sequence (dn) is

increasing, we have

a2n = an + dn + dn+1 + · · ·+ d2n−1 ≥ an + ndn

and so an+ndn

an
≤ c. Thus lim supn→∞

dn

an
≤ lim supn→∞

c−1
n

= 0. Hence

lim sup
n→∞

a2n+k − a2n

an

≤ lim sup
n→∞

kd2n+k−1

a2n+k−1

· a2n+k−1

a2n

· a2n

an

= 0

and limn→∞
a2n+k−a2n

an
= 0.

Let N0 ∈ N be such that N0 ≥ max{2kM
η

, 4k},

4M(a2N+k − a2N)

aN

< k−1
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for all N ≥ N0 and

(1) N−1
∥∥∥ N∑

j=0

T aj+l−ajx
∥∥∥ < k−1

for all N ≥ N0 and l ∈ {1, 2, . . . , k − 1}.
We need a lemma.

Lemma 2.2. There exists an N ≥ N0 such that

N−1
∥∥∥ 2N∑

j=N+1

T ajx
∥∥∥ > η.

Proof. Fix η1 such that η < η1 < lim supN ′→∞ N ′−1
∥∥∥∑N ′

j=1 T ajx
∥∥∥. Let v ∈ N be such that

M
2v < η1−η

2
. There exists an N2 ≥ 4vN0 such that

N−1
2

∥∥∥ N2∑
j=1

T ajx
∥∥∥ > η1.

Write N2 = 2v ·N1 + z, where 0 ≤ z < 2v. Then N1 ≥ N0. Suppose on the contrary that

N−1
∥∥∥∑2N

j=N+1 T ajx
∥∥∥ ≤ η for all N ≥ N0. Then in particular,

1

2iN1

∥∥∥ 2i+1N1∑
j=2iN1+1

T ajx
∥∥∥ ≤ η

for all i ∈ {0, 1, . . . , v − 1}. So

N−1
2

∥∥∥ N2∑
j=1

T ajx
∥∥∥ ≤ N−1

2

(∥∥∥ N1∑
j=1

T ajx
∥∥∥ +

∥∥∥ 2N1∑
j=N1+1

T ajx
∥∥∥ + · · ·

· · ·+
∥∥∥ 2vN1∑

j=2v−1N1+1

T ajx
∥∥∥ +

∥∥∥ N2∑
j=2vN1+1

T ajx
∥∥∥)

≤ N−1
2

(
N1M + ηN1 + 2ηN1 + · · ·+ 2v−1ηN1 + 2vM

)
≤ N1M

N2

+
2vηN1

N2

+
2vM

N2

≤ η +
2M

2v
≤ η1,

which is a contradiction. �

Continuation of the proof of Theorem 2.1. Fix N ≥ N0 as in Lemma 2.2. Write for

short xj = T jx for all j ∈ N. For all r ∈ {1, . . . , aN} and s ∈ {N + 1, . . . , 2N} write

ur,s = xr + xr+as+1−as + · · ·+ xr+as+k−1−as .

Then

T as−rur,s = xas + xas+1 + · · ·+ xas+k−1
.
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Consider

A =
1

aNN

aN∑
r=1

2N∑
s=N+1

‖ur,s‖2.

We will estimate A from above and from below to obtain a contradiction.

First we consider a lower bound. Clearly

A ≥ 1

M2aNN

aN∑
r=1

2N∑
s=N+1

‖xas + xas+1 + · · ·+ xas+k−1
‖2

=
1

M2N

2N∑
s=N+1

‖xas + xas+1 + · · ·+ xas+k−1
‖2.

The Cauchy–Schwarz inequality and the triangular inequality then give

A ≥ 1

M2

(
N−1

2N∑
s=N+1

‖xas + xas+1 + · · ·+ xas+k−1
‖
)2

≥ 1

M2

∥∥∥N−1

2N∑
s=N+1

(xas + xas+1 + · · ·+ xas+k−1
)
∥∥∥2

.

Next

2N∑
s=N+1

(
xas + xas+1 + · · ·+ xas+k−1

)

=
N+k−1∑
s=N+1

(s−N)xas +
2N∑

s=N+k

kxas +
2N+k−1∑
s=2N+1

(2N + k − s)xas .

Hence

A ≥ 1

M2N2

(
k
∥∥∥ 2N∑

s=N+1

xas

∥∥∥− k2M
)2

≥ 1

M2

(
kη − k2M

N

)2

≥
( kη

2M

)2

since N ≥ N0 ≥ 2kM
η

.

Next we estimate A from above. Using the inner product on H we write

A =
1

aNN

aN∑
r=1

2N∑
s=N+1

k−1∑
j,j′=0

〈xr+as+j−as , xr+as+j′−as〉 = B +
∑

0≤j<j′≤k−1

Cj,j′ ,

where

B =
1

aNN

aN∑
r=1

2N∑
s=N+1

k−1∑
j=0

‖xr+as+j−as‖2 ≤ kM2

and

Cj,j′ =
2

aNN
Re

aN∑
r=1

2N∑
s=N+1

〈xr+as+j−as , xr+as+j′−as〉.

Fix j, j′ ∈ {0, . . . , k − 1} with j < j′. Let

B =
{
m ∈ N : 1 + aN+1+j − aN+1 ≤ m ≤ aN + a2N+j − a2N

}
.
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For all m ∈ B let

Am =
{

s ∈ {N + 1, . . . , 2N} : there exists an r ∈ {1, . . . , aN} such that m = r + as+j − as

}
=

{
s ∈ {N + 1, . . . , 2N} : 1 ≤ m− as+j + as ≤ aN

}
=

{
s ∈ {N + 1, . . . , 2N} : 1 + as+j − as ≤ m ≤ aN + as+j − as

}
.

Then

|Cj,j′| ≤
2

aNN

∣∣∣∑
m∈B

〈
xm,

∑
s∈Am

xm+as+j′−as+j

〉∣∣∣
≤ 2M

aNN

∑
m∈B

∥∥∥ ∑
s∈Am

xm+as+j′−as+j

∥∥∥
≤ 2M2

aNN

∑
m∈B

∥∥∥ ∑
s∈Am

xas+j′−as+j

∥∥∥.

Note that Am is always an interval since the sequence (as+j − as)
∞
s=1 is increasing.

Define the sets

B0 =
{
m ∈ B : N + 1, 2N ∈ Am

}
=

{
m ∈ B : Am = {N + 1, N + 2, . . . , 2N}

}
,

B1 = {m ∈ B : N + 1 /∈ Am}

and

B2 = {m ∈ B : 2N /∈ Am}.
Note that N + 1 ∈ Am if and only if

1 + aN+1+j − aN+1 ≤ m ≤ aN + aN+1+j − aN+1,

where the first inequality is satisfied automatically for all m ∈ B. So

B1 =
{
m ∈ B : aN + aN+1+j − aN+1 < m ≤ aN + a2N+j − a2N

}
and

card B1 ≤ a2N+j − a2N ≤ a2N+k − a2N .

Similarly, 2N ∈ Am if and only if

1 + a2N+j − a2N ≤ m ≤ aN + a2N+j − a2N ,

where the second inequality is satisfied automatically. So

B2 =
{
m ∈ B : 1 + aN+1+j − aN+1 ≤ m < 1 + a2N+j − a2N

}
and card B2 ≤ a2N+j − a2N ≤ a2N+k − a2N . Furthermore,

B0 =
{
m ∈ B : 1 + a2N+j − a2N ≤ m ≤ aN + aN+1+j − aN+1

}
=

{
m ∈ B : 1 + d2N + · · ·+ d2N+j−1 ≤ m ≤ aN + dN+1 + · · ·+ dN+j

}
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and card B0 ≤ aN . Hence

|Cj,j′| ≤
2M2

aNN

(∑
j∈B0

∥∥∥ 2N∑
s=N+1

xas+j′−as+j

∥∥∥ +
∑

m∈B1∪B2

∥∥∥ ∑
s∈Am

xas+j′−as+j

∥∥∥)

≤ 2M2

N

∥∥∥ 2N∑
s=N+1

xas+j′−as+j

∥∥∥ +
4M2

aNN
(a2N+k − a2N)NM.

For the first term one estimates

2N∑
s=N+1

xas+j′−as+j
=

2N+j∑
s=1

xas+j′−j−as −
N+j∑
s=1

xas+j′−j−as ,

and so by (1) one has∥∥∥ 2N∑
s=N+1

xas+j′−as+j

∥∥∥ ≤ k−1(2N + j) + k−1(N + j) ≤ 3Nk−1 + 2.

Hence

|Cj,j′| ≤ 6M2k−1 +
4M2

N
+

4M3

aN

(a2N+k − a2N) ≤ 8M2k−1

and we deduce the upper bound

A ≤ B +
∑

0≤j<j′≤k−1

|Cj,j′| ≤ kM2 +

(
k

2

)
· 8M2k−1 ≤ kM2 + 4kM2 = 5kM2.

Since

5kM2 <
( kη

2M

)2

,

we have a contradiction. �

Clearly it is sufficient to assume that the sequence (as) is increasing and convex only for

all s sufficiently large.

Corollary 2.3. Let T be a power bounded operator acting on a Hilbert space H and let

x ∈ H. Let (as)
∞
s=1 be a sequence in N0 and N0 ∈ N. Suppose that as+1 > as and

2as+1 ≤ as+2 + as for all s ≥ N0. Moreover, suppose supn>N0

a2n

an
< ∞ and

lim
N→∞

N−1

N∑
j=N0

T aj+k−ajx = 0

for all k ∈ N. Then

lim
N→∞

N−1

N∑
j=1

T ajx = 0.

Denote by σp(T ) the point spectrum of an operator T .
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Theorem 2.4. Let T be a power bounded operator acting on a Hilbert space H such that

σp(T )∩ {e2πit : t rational} = ∅. Let p be a non-constant polynomial which maps N0 to N0.

Then

lim
N→∞

N−1

N∑
j=1

T p(j) = 0

in the strong operator topology.

Proof. We prove the statement by induction on the degree of p.

If deg p = 1, write p(z) = α1z + α0 with integer coefficients α1, α0. Clearly α1 ≥ 1 and

α0 ≥ 0. Then the statement follows from the mean ergodic theorem for the operator Tα1 .

Let d ≥ 1 and suppose that the theorem is true for all polynomials of degree ≤ d. Let p

be a polynomial of degree d + 1 satisfying p(N0) ⊂ N0. Set an = p(n). Then Corollary 2.3

implies that

lim
N→∞

N−1

N∑
j=1

T p(j) = 0

in the strong operator topology. Now the theorem follows by induction. �

If we omit the condition on the spectrum of T , the Cesàro limit still exists.

Theorem 2.5. Let T be a power bounded operator acting on a Hilbert space H. Let p be

a polynomial which maps N0 to N0. Then the limit

lim
N→∞

N−1

N∑
j=1

T p(j)

exists in the strong operator topology.

Proof. By the Jacobs–Glicksberg–de Leeuw theorem, see [JL] or [Kre], p. 108–109, we

decompose H = H1 ⊕H2 as a direct sum, where both H1 and H2 are subspaces invariant

for T , σp(T |H2) ∩ {α ∈ C : |α| = 1} = ∅ and H1 =
∨

α∈C, |α|=1 ker(T − αI).

If x ∈ H2 then limN→∞ N−1
∑N

j=1 T p(j)x = 0 by Theorem 2.4. Since the sequence

(N−1
∑N

j=1 T p(j))∞N=1 is uniformly bounded, it is sufficient to show that the limit

lim
N→∞

N−1

N∑
j=1

T p(j)x

exists for all α ∈ C with |α| = 1 and x ∈ ker(T − αI).

Let α ∈ C with |α| = 1 and let x ∈ ker(T − α). Write α = e2πit with t ∈ [0, 2π). If t is

irrational, then limN→∞ N−1
∑N

j=1 T p(j)x = 0 by Theorem 2.4.

Now suppose that t is rational. Write t = a
b

with a ∈ N0 and b ∈ N. Let Tx = e2πia/bx.

Then the sequence (T p(j)x)j∈N is periodical with period b, so the limit

lim
N→∞

N−1

N∑
j=1

T p(j)x = b−1

b∑
j=1

αp(j)x

exists. �
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Remark 2.6. In general, the limit operator limN→∞
∑N

j=1 T p(j) in the strong operator

topology is not the projection onto ker(I − T ). The simplest example is the operator

T on the 1-dimensional space C defined by Tz = iz for all z ∈ C and the quadratic

polynomial given by p(n) = n2. For n even we have T n2
z = z, and for n odd, T n2

z = iz.

Hence limN→∞ N−1
∑N

j=1 T j2
z = 1+i

2
z for all z ∈ C and limN→∞ N−1

∑N
j=1 T j2

is not a

projection.

For more details, see [KNS]. In fact, limN→∞
∑N

j=1 T p(j) is a projection for all power

bounded operators T if and only if p is linear.

3. Continuous case

In this section we discuss the mean ergodic theorem for bounded strongly continuous

semigroups of operators on a Hilbert space. The situation is analogous to the discrete case.

We repeat the argument since a unification (for example using a general scheme of [BLM])

would make the proofs less transparent.

Theorem 3.1. Let (Tt)t≥0 be a bounded strongly continuous semigroup of operators on

a Hilbert space H and let x ∈ H. Let f : [0,∞) → [0,∞) be a differentiable function.

Suppose there exists a b ≥ 0 such that f ′|[b,∞) is strictly increasing and f ′(b) > 0. Suppose

that lim supt→∞
f(2t)
f(t)

< ∞. Moreover, suppose that

lim
N→∞

1

N

∫ N

b

Tf(t+∆)−f(t)x dt = 0

for all ∆ ∈ (0, 1]. Then

lim
N→∞

1

N

∫ N

0

Tf(t)x dt = 0.

Proof. Let M = sup{‖Tt‖ : t ∈ [0,∞)}. Without loss of generality we may assume that

‖x‖ = 1, f ′(t) ≥ 0 for all t ∈ [0,∞) and f ′ is strictly increasing on [0,∞).

Suppose on the contrary that

lim sup
N→∞

∥∥∥ 1

N

∫ N

0

Tf(t)x dt
∥∥∥ > 0.

Then

(2) lim sup
N→∞

1

N

∥∥∥∫ 2N

N

Tf(t)x dt
∥∥∥ > 0.

The proof of (2) is analogous to that of Lemma 2.2; we omit the details.

For all r, s ∈ [0,∞) write

ur,s =

∫ 1

0

Tr+f(s+t)−f(s)x dt.

Then

Tf(s)−rur,s =

∫ 1

0

Tf(s+t)x dt
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if r ≤ f(s). Let

A = lim sup
N→∞

1

Nf(N)

∫ f(N)

0

dr

∫ 2N

N

‖ur,s‖2 ds.

Then

A ≥ lim sup
N→∞

1

M2Nf(N)

∫ f(N)

0

dr

∫ 2N

N

ds
∥∥∥∫ 1

0

Tf(s+t)x dt
∥∥∥2

= lim sup
N→∞

1

M2N

∫ 2N

N

ds
∥∥∥∫ 1

0

Tf(s+t)x dt
∥∥∥2

.

By the Cauchy–Schwarz inequality and the triangular inequality we have

A ≥ lim sup
N→∞

1

M2

(∫ 2N

N

ds
1

N

∥∥∥∫ 1

0

Tf(s+t)x dt
∥∥∥)2

≥ lim sup
N→∞

1

M2N2

∥∥∥∫ 2N

N

ds

∫ 1

0

Tf(s+t)x dt
∥∥∥2

.

Since∫ 2N

N

ds

∫ 1

0

Tf(s+t)x dt =

∫ N+1

N

(s−N)Tf(s)x ds+

∫ 2N

N+1

Tf(s)x ds+

∫ 2N+1

2N

(2N+1−s)Tf(s)x ds

one estimates ∥∥∥∫ 2N

N

ds

∫ 1

0

Tf(s+t)x dt
∥∥∥ ≥ ∥∥∥∫ 2N

N

Tf(s)x ds
∥∥∥−M.

Thus

A ≥ lim sup
N→∞

1

M2

( 1

N

∥∥∥∫ 2N

N

Tf(s)x ds
∥∥∥− M

N

)2

=
1

M2
lim sup

N→∞

( 1

N

∥∥∥∫ 2N

N

Tf(s)x ds
∥∥∥)2

> 0

by (2).

On the other hand,

A = lim sup
N→∞

1

Nf(N)

∫ f(N)

0

dr

∫ 2N

N

ds

∫ 1

0

dj

∫ 1

0

〈
Tr+f(s+j)−f(s)x, Tr+f(s+j′)−f(s)x

〉
dj′

= lim sup
N→∞

2 Re

Nf(N)

∫ 1

0

dj

∫ 1

j

dj′
∫ f(N)

0

dr

∫ 2N

N

〈
Tr+f(s+j)−f(s)x, Tr+f(s+j′)−f(s)x

〉
ds.

Setting m = r + f(s + j)− f(s) we have

A ≤ lim sup
N→∞

2

Nf(N)

∣∣∣∫ 1

0

dj

∫ 1

j

dj′
∫
Bj

dm

∫
Aj,m

〈
Tmx, Tm+f(s+j′)−f(s+j)x

〉
ds

∣∣∣,
where

Bj =
[
f(N + j)− f(N), f(N) + f(2N + j)− f(2N)

]
for all j ∈ [0, 1] and

Aj,m =
{

s ∈ [N, 2N ] : 0 ≤ m− f(s + j) + f(s) ≤ f(N)
}

=
{

s ∈ [N, 2N ] : f(s + j)− f(s) ≤ m ≤ f(N) + f(s + j)− f(s)
}
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for all m ∈ Bj. Let

B′j =
{
m ∈ Bj : Aj,m = [N, 2N ]

}
.

Clearly B′j = {m ∈ Bj : N, 2N ∈ Aj,m} since Aj,m is always an interval. By the definition

of the set Aj,m we have

N ∈ Aj,m ⇐⇒ f(N + j)− f(N) ≤ m ≤ f(N + j)

and

2N ∈ Aj,m ⇐⇒ f(2N + j)− f(2N) ≤ m ≤ f(N) + f(2N + j)− f(2N).

So

B′j =
[
f(2N + j)− f(2N), f(N + j)

]
and µ(Bj \B′j) ≤ 2

(
f(2N + j)− f(2N)

)
≤ 2

(
f(2N +1)− f(2N)

)
, where µ is the Lebesgue

measure. Then

A ≤ lim sup
N→∞

2

Nf(N)

∣∣∣∫ 1

0

dj

∫ 1

j

dj′
∫
B′j

dm

∫ 2N

N

〈
Tmx, Tm+f(s+j′)−f(s+j)x

〉
ds

∣∣∣
+ lim sup

N→∞

2

f(N)
2M2

(
f(2N + 1)− f(2N)

)
.

We first consider the second term. Let c = lim supt→∞
f(2t)
f(t)

. For all N ∈ R large enough

we have

c + 1 ≥ f(2N)

f(N)
=

f(N) +
∫ 2N

N
f ′(t) dt

f(N)
≥ 1 +

Nf ′(N)

f(N)

and hence lim supN→∞
f ′(N)
f(N)

≤ lim supN→∞
c
N

= 0. So

lim sup
N→∞

f(2N + 1)− f(2N)

f(N)
≤ lim sup

N→∞

f ′(2N + 1)

f(2N + 1)
· f(2N + 1)

f(2N)
· f(2N)

f(N)
= 0

and

(3) lim
N→∞

f(2N + 1)− f(2N)

f(N)
= 0.

Thus

A ≤ lim sup
N→∞

2

Nf(N)

∣∣∣∫ 1

0

dj

∫ 1

j

dj′
∫
B′j

dm

∫ 2N

N

〈
Tmx, Tm+f(s+j′)−f(s+j)x

〉
ds

∣∣∣.
Let C =

(
B′j \ [0, f(N)]

)
∪

(
[0, f(N)]\B′j

)
be the symmetrical difference of B′j and [0, f(N)].

Then

µ(C) ≤ f(2N + j)− f(2N) + f(N + j)− f(N) ≤ 2
(
f(2N + 1)− f(2N)

)
.
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Hence using again (3) one deduces that

A ≤ lim sup
N→∞

2

Nf(N)

∣∣∣∫ 1

0

dj

∫ 1

j

dj′
∫ f(N)

0

dm

∫ 2N

N

〈
Tmx, Tm+f(s+j′)−f(s+j)x

〉
ds

∣∣∣
+ 2

(
f(2N + 1)− f(2N)

)
N

2M2

Nf(N)

= lim sup
N→∞

2

Nf(N)

∣∣∣∫ f(N)

0

dm
〈
Tmx,

∫ 1

0

dj

∫ 1

j

dj′
∫ 2N

N

Tm+f(s+j′)−f(s+j)x ds
〉∣∣∣

≤ lim sup
N→∞

2M2

N

∥∥∥∫ 1

0

dj

∫ 1

j

dj′
∫ 2N

N

Tf(s+j′)−f(s+j)x ds
∥∥∥

≤ lim sup
N→∞

2M2

∫ 1

0

dj

∫ 1

j

dj′
1

N

∥∥∥∫ 2N

N

Tf(s+j′)−f(s+j)x ds
∥∥∥.

Let j, j′ ∈ [0, 1] with j < j′. Then∥∥∥∫ 2N

N

Tf(s+j′)−f(s+j)xds
∥∥∥ =

∥∥∥∫ 2N+j

N+j

Tf(s+j′−j)−f(s)x ds
∥∥∥

≤
∥∥∥∫ 2N

N

Tf(s+j′−j)−f(s)x ds
∥∥∥

+
∥∥∥∫ N+j

N

Tf(s+j′−j)−f(s)x ds
∥∥∥ +

∥∥∥∫ 2N+j

2N

Tf(s+j′−j)−f(s)x ds
∥∥∥

≤
∥∥∥∫ 2N

N

Tf(s+j′−j)−f(s)x ds
∥∥∥ + 2M.

Setting ∆ = j′ − j we have

A ≤ lim sup
N→∞

2M2

∫ 1

0

dj

∫ 1

j

dj′
1

N

∥∥∥∫ 2N

N

Tf(s+∆)−f(s)x ds
∥∥∥

≤ lim sup
N→∞

2M2

∫ 1

0

d∆ (1−∆)
1

N

∥∥∥∫ 2N

N

Tf(s+∆)−f(s)x ds
∥∥∥

= lim sup
N→∞

2M2

∫ 1

0

d∆ gN(∆),

where gN(∆) = 1−∆
N

∥∥∥∫ 2N

N
Tf(s+∆)−f(s)x ds

∥∥∥ for all ∆ ∈ (0, 1] and N ∈ (0,∞). For each

∆ ∈ (0, 1] we have

|gN(∆)| ≤ 1

N

∥∥∥∫ 2N

0

Tf(s+∆)−f(s)x ds−
∫ N

0

Tf(s+∆)−f(s)x ds
∥∥∥

≤ 2

2N

∥∥∥∫ 2N

0

Tf(s+∆)−f(s)x ds
∥∥∥ +

1

N

∥∥∥∫ N

0

Tf(s+∆)−f(s)x ds
∥∥∥



12 A.F.M. TER ELST AND V. MÜLLER

for all N ∈ (0,∞). So limN→∞ gN(∆) = 0 by assumption. Clearly |gN(∆)| ≤ M for all

N ∈ (0,∞) and ∆ ∈ (0, 1]. By the Lebesgue dominated convergence theorem, we deduce

that A = 0, a contradiction. �

Lemma 3.2. Let α ∈ (0, 1], c > 0 and let g : [0,∞) → R be a differentiable function such

that limt→∞
g(t)
tα

= 0 and limt→∞
g′(t)
tα−1 = 0. Define f : [0,∞) → R by

f(t) = ctα + g(t).

Suppose that f(t) ≥ 0 for all t ∈ [0,∞). Let (T (t))t≥0 be a bounded strongly continuous

semigroup of operators on a Hilbert space H. Then

lim
N→∞

1

N

∫ N

0

Tf(t)(I − Tε)y dt = 0

for all ε > 0 and y ∈ H.

Proof. Let M = sup{‖T (t)‖ : 0 ≤ t < ∞}. Without loss of generality we may assume that

‖y‖ = 1.

Let δ > 0. Choose 0 < δ′ < min{2−1/αδ, c
2
, cα

21+1/α}. There exists an N0 ∈ (0,∞) such

that f(N0) > ε + 1, |g(t)| < δ′tα and |g′(t)| < δ′tα−1 for all t ≥ N0. Then

|f ′(t)− cαtα−1| = |g′(t)| ≤ δ′tα−1 < δtα−1

for all t ≥ N0. Set β = α−1
α

. Clearly β ≤ 0. For all t ≥ N0 there exists a ξ between f(t)

and ctα such that∣∣f(t)β − (ctα)β
∣∣ = |f(t)− ctα| · |βξβ−1| = |g(t)| · |βξβ−1|.

Hence∣∣αc1/αf(t)β − cαtα−1
∣∣ = αc1/α

∣∣f(t)β − (ctα)β
∣∣

≤ αc1/α|g(t)| · |β|(c− δ′)β−1(tα)β−1 ≤ (1− α)c1/αδ′tα(c/2)β−1t−1

≤ 21/αδ′tα−1 < δtα−1.

Therefore ∣∣αc1/αf(t)
α−1

α − f ′(t)
∣∣ ≤ 2δtα−1,∣∣αc1/αf(t)

α−1
α

∣∣ ≥ cαtα−1 − 21/αδ′tα−1 ≥ 1
2
cαtα−1

and ∣∣∣1− f ′(t)

αc1/αf(t)
α−1

α

∣∣∣ =
∣∣∣αc1/αf(t)

α−1
α − f ′(t)

αc1/αf(t)
α−1

α

∣∣∣ ≤ 2δtα−1

1
2
cαtα−1

<
4δ

cα
.

Define

A = lim sup
N→∞

1

N

∥∥∥∫ N

0

Tf(t)(I − Tε)y dt
∥∥∥.

Then

A = lim sup
N→∞

1

N

∥∥∥∫ N

N0

Tf(t)(I − Tε)y dt
∥∥∥ ≤ B + C,
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where

B = lim sup
N→∞

1

N

∥∥∥∫ N

N0

f ′(t)

αc1/αf(t)
α−1

α

Tf(t)(I − Tε)y dt
∥∥∥

and

C = lim sup
N→∞

1

N

∥∥∥∫ N

N0

(
1− f ′(t)

αc1/αf(t)
α−1

α

)
Tf(t)(I − Tε)y dt

∥∥∥.

Obviously

C ≤ 4δ

cα
· 2M =

8Mδ

cα
.

To estimate B, substitute s = f(t) and ds = f ′(t) dt. Then

B = lim sup
N→∞

1

N

∥∥∥∫ f(N)

f(N0)

α−1c−1/αs
1−α

α Ts(I − Tε)y ds
∥∥∥

≤ lim sup
N→∞

1

N

∥∥∥∫ f(N0)+ε

f(N0)

α−1c−1/αs
1−α

α Tsy ds
∥∥∥

+ lim sup
N→∞

1

N

∥∥∥∫ f(N)

f(N0)+ε

α−1c−1/α
(
s

1−α
α − (s− ε)

1−α
α

)
Tsy ds

∥∥∥
+ lim sup

N→∞

1

N

∥∥∥∫ f(N)+ε

f(N)

α−1c−1/α(s− ε)
1−α

α Tsy ds
∥∥∥

= lim sup
N→∞

1

N

∥∥∥∫ f(N)

f(N0)+ε

α−1c−1/α
(
s

1−α
α − (s− ε)

1−α
α

)
Tsy ds

∥∥∥,

since
1

N

∥∥∥∫ f(N0)+ε

f(N0)

α−1c−1/αs
1−α

α Tsy ds
∥∥∥ ≤ Mε

Nαc1/α
(f(N0) + ε)

1−α
α → 0

and

1

N

∥∥∥∫ f(N)+ε

f(N)

α−1c−1/α(s− ε)
1−α

α Tsy ds
∥∥∥ ≤ Mε

Nαc1/α
f(N)

1−α
α

≤ Mε

Nαc1/α
·
( c

2
Nα

) 1−α
α ≤ 2

α−1
α Mε

αc
·N−α → 0

as N →∞.

If α = 1 then B = 0. If α < 1 and s ∈ (ε,∞), then there exists a ξ ∈ (s− ε, s) such that∣∣s 1−α
α − (s− ε)

1−α
α

∣∣ = ε
1− α

α
ξ

1−2α
α .

So

B ≤ lim sup
N→∞

1

N
f(N)Mc−1/αε

1− α

α2
max{1, (f(N))

1−2α
α }

≤ lim sup
N→∞

Mε

Nα2c1/α
max{f(N), f(N)

1−α
α }

≤ lim sup
N→∞

Mε

Nα2c1/α
max{(2cNα, (2c)

1−α
α N1−α} = 0.
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Hence

A ≤ 8Mδ

cα
.

Since δ > 0 was arbitrary, we proved that

lim
N→∞

1

N

∫ N

0

Tf(t)(Tε − I)y dt = 0.

�

Proposition 3.3. Let n ∈ N0, c > 0 and α ∈ (n, n + 1]. Let g : [0,∞) → R be an

(n+1)−times differentiable function such that limt→∞
g(j)(t)
tα−j = 0 for all j ∈ {0, 1, . . . , n+1}.

Define f : [0,∞) → R by

f(t) = ctα + g(t).

Suppose that f(t) ≥ 0 for all t ∈ [0,∞). Let (Tt)t≥0 be a bounded strongly continuous

semigroup of operators on a Hilbert space H. Let ε > 0 and y ∈ H. Then

lim
N→∞

1

N

∫ N

0

Tf(t)(I − Tε)y dt = 0.

Proof. We prove the statement by induction on n. For n = 0 this was proved in Lemma 3.2.

Let n ∈ N and suppose that the statement is true for n− 1. We prove it for n.

Let f, g, Tt etc. satisfy all the required conditions. Then there exists an N0 ∈ N such

that f ′|[N0,∞) is strictly increasing and positive. By Theorem 3.1, it is sufficient to show

that

lim
N→∞

1

N

∫ N

N0

Tf(t+∆)−f(t)(I − Tε)y dt = 0

for all ∆ ∈ (0, 1].

Fix ∆ ∈ (0, 1]. Define F : [0,∞) → R by

F (t) = f(t + ∆)− f(t).

For all t > 1 the Taylor expansion gives

(t + ∆)α − tα = tα
(
1 +

∆

t

)α

− tα = tα
∞∑
i=0

(
α

i

)
∆i

ti
− tα = ∆αtα−1 + h(t),

where
(

α
i

)
= α(α−1)···(α−i+1)

i!
and

h(t) = tα−2

∞∑
i=2

(
α

i

)
∆i

t2−i
.

So we can write F (t) = ∆αtα−1 + G(t), where G(t) = h(t) +
(
g(t + ∆) − g(t)

)
for all

t ∈ (1,∞).

Let j ∈ {0, . . . , n}. Clearly

lim
t→∞

h(j)

tα−1−j
= 0.

Furthermore, for all t > 1 there exists a ξ ∈ (t, t + ∆) such that

g(j)(t + ∆)− g(j)(t) = ∆g(j+1)(ξ).
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Therefore

lim
t→∞

g(j)(t + ∆)− g(j)(t)

tα−1−j
= 0.

By the induction assumption we deduce that

lim
N→∞

1

N

∫ N

N0

Tf(t+∆)−f(t)(I − Tε)y dt = lim
N→∞

1

N

∫ N

N0

TF (t)(I − Tε)y dt = 0.

Now the proposition follows by induction. �

Corollary 3.4. Let n ∈ N and for all i ∈ {0, . . . , n} let ci ∈ R and αi ∈ [0,∞). Suppose

that c0 > 0 and α0 > max{α1, . . . , αn}. Define f : [0,∞) → R by

f(t) =
n∑

i=0

cit
αi .

Suppose that f(t) ≥ 0 for all t ∈ [0,∞). Let (T (t))t≥0 be a bounded strongly continuous

semigroup of operators on a Hilbert space H. Then the limit

lim
N→∞

1

N

∫ N

0

Tf(t) dt

exists in the strong operator topology and is equal to the projection P onto the kernel of

the generator of (T (t)) with ker P =
⋃

ε>0(Tε − I)H.

Proof. Let A be the generator of the semigroup (T (t)). If x ∈ ker A, then T (t)x = x for

all t ≥ 0 and limN→∞
1
N

∫ N

0
Tf(t)x dt = x.

Let ε > 0, y ∈ H and set x = (Tε − I)y. Then limN→∞
1
N

∫ N

0
Tf(t)x dt = 0 by Propo-

sition 3.3. Since the operators 1
N

∫ N

0
Tf(t) dt are uniformly bounded, it is easy to see that

limN→∞
1
N

∫ N

0
Tf(t)x dt = 0 for all x ∈

⋃
ε>0(Tε − I)H.

Now the corollary follows from [EN], Lemma 4.4. �

Corollary 3.5. Let (Tt)t≥0 be a bounded strongly continuous semigroup of operators acting

on a Hilbert space H, let A be its generator and P the projection onto ker A with ker P =⋃
ε>0(Tε − I)H. Then

lim
N→∞

1

N

∫ N

0

Ttα dt = P

in the strong operator topology for all α > 0.
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RVO: 67985840.



16 A.F.M. TER ELST AND V. MÜLLER
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