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A VAN DER CORPUT-TYPE LEMMA FOR POWER BOUNDED
OPERATORS

A.F.M. TER ELST AND V. MULLER

ABSTRACT. We prove a van der Corput-type lemma for power bounded Hilbert space
operators. As a corollary we show that N ! 25:1 TP(™) converges in the strong operator
topology for all power bounded Hilbert space operators T and all polynomials p satisfying
p(INg) C INg. This generalizes known results for Hilbert space contractions.

Similar results are true also for bounded strongly continuous semigroups of operators.

1. INTRODUCTION

By the mean ergodic theorem, the Cesaro means of the powers of a power bounded
operator T on a reflexive Banach space converge in the strong operator topology to the
projection onto ker(I — T') along ran (I — T)).

Frequently, the full sequence (T") of all powers of T can be replaced by a subsequence
(T") where (a,) is a given sequence of positive integers.

It is well known [BE], [BLRT] that + Zivzl T converges in the strong operator topology
for every unitary operator 7' (and more generally, using the dilation theory, for every Hilbert
space contraction T') if and only if % 22;1 A% converges for every complex number A with
A = 1.

This condition, however, is in general difficult to verify. Nevertheless, it is known that
% ZnN:l TP converges in the strong operator topology for all Hilbert space contractions
and all polynomials p such that p(INg) C INg, where Ny = IN U {0}. However, in general
the limit operator is not a projection.

The main tools for the mean ergodic type results for subsequences are the spectral theory
for unitary operators and the van der Corput lemma, see [EW], p. 184. Both of these tools
are available only for unitary operators on Hilbert spaces. Using the dilation theory one
can generalize these results to the setting of all contractions on Hilbert spaces. However,
none of these tools is available for power bounded operators.

The aim of this paper is to prove a van der Corput-type lemma for power bounded
operators on Hilbert spaces. As a corollary we obtain that % ZnN:1 TP converges in
the strong operator topology for all power bounded Hilbert space operators T" and all
polynomials p satisfying p(INg) € INy. Note that power bounded operators on Hilbert

spaces are in general very different from contractions.
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2 A.F.M. TER ELST AND V. MULLER

Similar results are proved also for bounded strongly continuous semigroups of operators
on Hilbert spaces.

The authors wish to thank to Yu. Tomilov for drawing their attention to the problem
and for fruitful discussions about it.

2. DISCRETE CASE

In this section we consider power bounded operators on Hilbert spaces and the con-
vergence of Cesaro means with respect to subsequences of IN. The next result enables
to reduce a given subsequence (as)2; to sequences of differences (asyr — as)32, for fixed
k € N. If (a,) is a polynomial subsequence, that is, there exists a polynomial p such that
as = p(s) for all s € IN, then this result enables to reduce the degree of the polynomial.

Theorem 2.1. Let T be a power bounded operator acting on a Hilbert space H and let
x € H. Let (a,)22, be a strictly increasing convex sequence of positive integers such that
sup{% 'n € ]N} < 00. Suppose that

an
N
lim N~! T%+E=% gy = ()

N—oo -
J=1

for all k € N. Then
N

lim N7y T%z =0.
N—oo
j=1

Proof. For all j € IN write d; = aj11 — a;. Since the sequence (a;) is convex, the sequence
of differences (d;) is increasing. Without loss of generality we may assume that ||z| = 1.
Let

M = sup{||T"|| : n € Ny}.
Suppose on the contrary that there exists an n > 0 such that

N
ZT“ij > 7.

=1

limsup N !

N—oo

Fix k£ € N such that k£ > 2017]\244. Let ¢ = sup{?* : n € IN}. Since the sequence (d,) is

increasing, we have
a2n:an+dn+dn+1+"'+d2n71 Zan+ndn

and so %:d" < c. Thus limsup,,_, ., Z—: < limsup, .., <! = 0. Hence

n

. Aop+k — A2 . kdopik—1 Qontk—1 G2
lim sup —% 2 < Jim sup ——etim L 22ndkel 7
n—o00 (07%) n—oo  A2n+k—1 Aon (7%
and hmn%oo Qontk %20 _ (),

an

Let Ny € N be such that Ny > max{QkTM,élk},

4M (asn4k — a2n)

an

< k7t
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for all N > Ny and

N
(1) N_lHZ T+ 4 ‘ <kt

§=0
forall N > Ny and [ € {1,2,... k—1}.

We need a lemma.
Lemma 2.2. There exists an N > Ny such that
2N
Nt Z T“fx) > 1.
j=N+1

Proof Fix n; such that n < n; < limsupy,_, N'*lHZ;V:ll T% g ‘ Let v € N be such that

7v < 51 There exists an Ny > 4" Np such that

217
Ny
_1HZ T‘”xH > 1.
=1

Write Ny = 2Y - Ny + z, where 0 < z < 2¥. Then N; > Ny. Suppose on the contrary that
HZJ Nt1 T“ﬂ'xH < n for all N > Ny. Then in particular,

22+1N

T%x|| <n
o IPMEAE E
L —oing 41

for all i € {0,1,..., v —1}. So

No Ny 2N,
STl < (a4 | X 7oa]+
=1 i=1 j=Ni+1
IR DS T‘”““D
Jj=2v— 1IN +1 J=2YN1+

< NEI(NlM + N1 + 20Ny + -+ 2"" Ny + 2”M>

=N, N, N, ST e =

which is a contradiction. O

Continuation of the proof of Theorem 2.1. Fix N > N; as in Lemma 2.2. Write for
short ; =Tz for all j € N. For all r € {1,...,ax} and s € {N +1,...,2N} write

Uy s = T + Trtasi1—as +eeet Trtasip—1—as:

Then

as—r _
T Up,s = Tqg + Lagyq Tt Tagip_1-
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Consider

an
aNNZ Z |u7‘s

r=1 s=N+1
We will estimate A from above and from below to obtain a contradiction.
First we consider a lower bound. Clearly

an
- M2 Z Z ||xa5 + $as+1 ’ + $as+k—1 ||2

r=1 s=N+1
1 2N
= m Z ||ajas + xas+l + Tt + xas_,_k_l ||2
s=N-+1

The Cauchy—Schwarz inequality and the triangular inequality then give

1 2N 9
A Z W(N_l Z ||Ia5 + xas+1 +- 4+ xas+k_1 ||)
s=N+1
2N 5
= M2 HN_ Z (Ta, + Tager T+ Tagyys) ‘
s=N+1
Next
2N
Z (xas T o+ F masﬂc—l)
s=N+1
N+k—1 2N+k—1
= Z (s = N)xo, + Z kx,, + Z (2N + k — s)z,,.
s=N+1 s=N+k s=2N+1
Hence

= M2N2< H Z Tas

s=N+1

since N > Ny > 22

Next we estimate A from above. Using the inner product on H we write

an 2N -
N § E z x'f’+a5+j*as7 T<‘ra9+]/ a5> = B + z : Cjaj”
r=1 s=N+1 j,5/=0 0<j<j’'<k—1
where
an
_ 2 2
B = E § E er-i-as-m all” < kM
an N
r=1 s=N+1 j=0
and

an
Ciy = aNN RGE , E xr+ae+j—asa rtagy i — )

r=1 s=N+1
Fix 7,7/ €{0,...,k — 1} with 7 < j'. Let

B = {m EN:1+ayi14j —anyy Sm < an + aanyj —azN}-



A VAN DER CORPUT-TYPE LEMMA FOR POWER BOUNDED OPERATORS 5

For all m € B let

.Am:{SG{N+1,...,2N}:thereexists anr e {l,...,an} suchthatm=r—|—as+j—as}
:{SG{N—I—L...,QN}:1§m—a5+j+a5§aN}

:{sG{N—}—l,...,QN}:1+a5+j—a5§m§aN+a5+j—as}.

Then
2
Gl < | Do (e 3 Fmvagacs, )|
N meB SEAm
2M
.
N meB s€Am
2M?
< 2SS |
meB s€Am

Note that A,, is always an interval since the sequence (as;; — a,)2, is increasing.
Define the sets

Bo={meB:N+12N € A,}
:{meB:_Am:{N+1,N+2,---,2N}}:

and
By={meB:2N ¢ A,}.
Note that N + 1 € A,, if and only if
I+ansi4j —avy1 <m < any +antiyj — any,
where the first inequality is satisfied automatically for all m € B. So
B = {m eB:ay+ AN+14+j — AN+1 <N <any+ AoN+j — (ZQN}

and

card By < asn4j — aan < Ganik — Gon.

Similarly, 2N € A,, if and only if
1+ asnyj —aany <m < ay + asnyj — aon,
where the second inequality is satisfied automatically. So
By = {mEB: 1+ anti+; —ang1 <m < 1+a2N+j—a2N}
and card By < agnyi; — aon < agnyr — aon. Furthermore,

By = {m6511+a2N+j—a2N §m§0N+aN+1+j—aN+1}

={meB:1+dyy+ - +doysj1 <m<ay+dyp+ - +dyyj )
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and card By < ay. Hence

2N
c < 2M?
| jyj/’ = avN Z xas_w-/*asJﬁj + Z Z m“s-&-]”*aerj
NV ReBy s=N+1 meBiUBs sEAm
2N
2M? AM?
S N E xas+j/fas+j + a/NN<a2N+k - QQN)NM
s=N+
For the first term one estimates
2N 2N+j N+j
E xas+j/fas+j = E xas_*_j/_]-fas - E :Eas_w-/_jfasa
s=N+1 s=1 s=1

and so by (1) one has

2N
H 3" Tay o, | S TN 4 5) RN 4 ) < 3NET 2.
s=N-+1
Hence
AM?  4AM3
‘CJ'J/‘ < 6M7k + — + (CL2N+k — a2N) < SM?E1

N an

and we deduce the upper bound

k
A<SB+ ) |l <kM?+ (2) SMPET! < RM? 4 AkM? = 5kM?.

0<j<j'<k—1

Since
kn \ 2
SEM? < (—) ,
2M
we have a contradiction. O

Clearly it is sufficient to assume that the sequence (ay) is increasing and convex only for
all s sufficiently large.

Corollary 2.3. Let T' be a power bounded operator acting on a Hilbert space H and let
x € H. Let (as5)2, be a sequence in Ny and Ny € N. Suppose that asiy > as and
20541 < sy +as for all s > Ny. Moreover, suppose sup,,- y, % < 00 and

N

lim N7! T+~ % ¢ = ()
N—o0 -
j=No

for all k € N. Then
N
lim N 7! Tz = 0.

N—o00 -
J=1

Denote by 0,(T") the point spectrum of an operator 7.
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Theorem 2.4. Let T' be a power bounded operator acting on a Hilbert space H such that
o,(T) N {e*™ : t rational} = 0. Let p be a non-constant polynomial which maps Ny to Ny.

Then
N

lim N~1Y 71P0) =0
N—o0 —
J:

in the strong operator topology.

Proof. We prove the statement by induction on the degree of p.
If degp = 1, write p(z) = a1z + o with integer coefficients ay, ag. Clearly oy > 1 and
g > 0. Then the statement follows from the mean ergodic theorem for the operator T“!.
Let d > 1 and suppose that the theorem is true for all polynomials of degree < d. Let p
be a polynomial of degree d + 1 satisfying p(INg) C INg. Set a,, = p(n). Then Corollary 2.3
implies that

N
lim N7'Y 7*0) =0
N—oo
j=1
in the strong operator topology. Now the theorem follows by induction. 0

If we omit the condition on the spectrum of T', the Cesaro limit still exists.

Theorem 2.5. Let T be a power bounded operator acting on a Hilbert space H. Let p be
a polynomaual which maps Ng to Ng. Then the limit

N
lim N1 770
N—oo

j=1

exists in the strong operator topology.

Proof. By the Jacobs-Glicksberg-de Leeuw theorem, see [JL] or [Kre], p. 108-109, we
decompose H = H; @ Hs as a direct sum, where both H; and H, are subspaces invariant
for T, 0,(T|H2) N{a € C:|a] =1} =10 apd Hi =V ee, o1 ker(T — al).

If + € Hy then limy_ o N7* Ejvzl TPW g = 0 by Theorem 2.4. Since the sequence
(N! Zjvzl TPU))2_, is uniformly bounded, it is sufficient to show that the limit

N
lim N~! TP g
N—o00
=1
exists for all & € C with |a| =1 and = € ker(T — ol).
Let o € C with || =1 and let = € ker(T — «). Write a = €™ with ¢ € [0,2m). If ¢ is
irrational, then limy_,o N~} Zjvzl TPW g = 0 by Theorem 2.4.
Now suppose that t is rational. Write ¢ = ¢ with a € Ny and b € N. Let Tz = *™/bz.

Then the sequence (Tp(j)x)je]N is periodical with period b, so the limit

N b
; -1 p(J) . — 1 p(5)
]}1_I>nooN ZIT z=1"0 Zla T
j= j=

exists. Ll
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Remark 2.6. In general, the limit operator limy_. Zjvzl TPU) in the strong operator
topology is not the projection onto ker(/ — T'). The simplest example is the operator
T on the 1-dimensional space C defined by Tz = iz for all z € C and the quadratic
polynomial given by p(n) = n?. For n even we have Tz = z, and for n odd, T’z = iz.
Hence limpy_oo N7t Zjvzl Tz = iz for all z € C and limy_oo N7* Z;\le 77 is not a
projection.

For more details, see [KNS]. In fact, limy_ Zjvzl TP is a projection for all power
bounded operators T if and only if p is linear.

3. CONTINUOUS CASE

In this section we discuss the mean ergodic theorem for bounded strongly continuous
semigroups of operators on a Hilbert space. The situation is analogous to the discrete case.
We repeat the argument since a unification (for example using a general scheme of [BLM])

would make the proofs less transparent.

Theorem 3.1. Let (1})i>0 be a bounded strongly continuous semigroup of operators on
a Hilbert space H and let © € H. Let f:[0,00) — [0,00) be a differentiable function.

Suppose there exists a b > 0 such that f'|p0) is strictly increasing and f'(b) > 0. Suppose
f(2t)

that lim sup,_, ., Fay < 00 Moreover, suppose that
1 [N
lim — T _rpxdt =0
N N/b F+A)=f(t)

for all A € (0,1]. Then

1 N
lim N / Tf(t)l‘ dt = 0.
0

N—oo

Proof. Let M = sup{||Ty|| : t € [0,00)}. Without loss of generality we may assume that
|lz|| =1, f'(t) > 0 for all t € [0,00) and f’ is strictly increasing on [0, 00).
Suppose on the contrary that

1 [N
thUPHN/ Tf(t)xdtH > 0.
0

N—oo0
Then
1 2N
(2) 111151 sup NH/ Tryx dtH > 0.
—00 N

The proof of (2) is analogous to that of Lemma 2.2; we omit the details.
For all r, s € [0, 00) write

1
Up,s = / Tr—i-f(s—i-t)—f(s)mdt‘
0
Then

1
Tf(s)—rur,s:/ Tf(s-i—t)xdt
0
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i/ e [ e
i dr/ Uy ||* ds.
N—oo NF(N) Jo N 7

A = limsup
' 1 F(N) 2N 1 9
A> hjr\?jolip Wf(]\/’)/o dr/N dsH/O T dtH

1 2N 1 9
:hmsup—/ dsH/ Trs :rdtH :
N—oo MQN N 0 f( +t)

By the Cauchy—-Schwarz inequality and the triangular inequality we have

if r < f(s). Let

Then

A>hmsup— ds—H/
N

N—oo

Zlimsup—H/ ds/
N—oo M2N2 N 0
Since

2N 1 N+1 2N 2N+1
/ ds/ Tf(s+t)x dt = / (S—N)Tf(s)l‘ dS—l—/ Tf(s)a: dS—l—/ (2N—|—1—S)Tf(s)$ ds
N 0 N+1

N 2N

one estimates

2N 1 2N
H/ ds/ Tf(Sth)ZL‘dt‘ Z H/ Tf(s)deH - M
N 0 N
Thus
L1y ™ M2
A > limsu —(—‘/ T sxdsH ——)
= Ve MEAN L, Y N
1 1 2N 2
=2 hzrvnjolip<N’/N Tf(s)a:dsH> >0
by (2).

On the other hand,

1 f(N) 2N 1 1
A =1lim sup W / dT’/ ds/ dj / <Tr+f(s+j)—f(s)$7 Tr+f(5+j/)_f(s)x> d]/
f 0 N 0 0

N—o0o
‘ F(N)
:h]r\?sup / d]/ dj’ / dr/ <Tr+f (545)—F () T> Lyg f(s57)— (s):n>d
Setting m = r + f(s +j) — f(s) we have
AL limsup ‘/ d]/ dj’ / dm/ <me Lot f (545" f(s+) x> ds|,
N—o00

where
B = [f(N+3j) = f(N), f(N) + f2N + j) — f(2N)]
for all j € [0,1] and

A= {5 € [N2N]:0 S — (s + ) + () < F(N) }

= {s € [N,2N]: f(s+7) = f(s) Sm < f(N) + f(s +J) — f(s)}
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for all m € B;. Let
B, ={meB;:Aj,=[N,2N]}.

Clearly B = {m € B; : N,2N € A;,,} since A;,, is always an interval. By the definition
of the set A;,, we have

N € Ajp = f(N +j) = f(N) <m < f(N +)
and
ON € Ay = [N + ) — f2N) <m < f(N) + 2N + j) — f2N).
So
B = [f(2N + ) — f(2N), f(N + j)]

and p(B;\ B;) < 2(f(2N +7) —f(2N)) < 2(f(2N+ 1) —f(2N)), where p is the Lebesgue
measure. Then

A <lim sup d] dj dm s Dot p(s45)— S+])x> ds
N—oo /
+ lim sup 2M?*(f(2N +1) — f(2N)).
N—oo f( )
We first consider the second term. Let ¢ = limsup,_, % For all N € R large enough
we have
2N N)+ [N Nf'(N
s 1N S+ NP

F(N) f(N) f(N)

and hence limsupy_, ., J;/((N)) <limsupy_, % = 0. So

F2N +1) — f(2N) F2N+1) f@N+1) f(2N)

sup =5 V) SIS soN Ty ey Ay
and
_ J@N+1) - f@N)
®) e [
Thus

9 1 1 2N
Aglimsup—‘/ dj/ dj// dm Tty Tont (st — s+ L) AS].
Nf(N) 0 ; ; N < +f(s+3")—f(s+7) >

N—oo

Let C' = (B;\[0, f(N)]) U ([0, f(N)]\B}) be the symmetrical difference of B} and [0, f(NV)].
Then

1(C) < F2N +j) = f(2N) + f(N +7) — f(N) < 2(f(2N + 1) — f(2N)).
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Hence using again (3) one deduces that

A< Timsup } / dj / dj / dm <Tma: Dot Fs ) f o) x>ds)
N—o0
20>
+2(f2N+1) - f(2N))N N
_ ) f(N)
= lim sup mx/ dj/ d]/ Lot f(s+57) f(s+])xds>
N—oo (N) 1o
1 1 2N
dj [ di" [ Tyseg-sis+n® dSH
N—oo N

1 1 1 2N
< 1imsup2M2/ dj/ dj'—H/ Tf(sﬂl),f(ﬁj)xds”.
N—oo 0 j N N

Let j,j' € [0,1] with j < j”. Then

2N+]
| st = [ e
N+j
2N
S H / Ty(s+i-i)-1(5)® dSH

N

N+j 2N+j
+ H / T(sts=i)-15)% dSH + H / Tr(s+i=i)-% dSH

N 2N

2N
S H/ Tf(s—i—j’—j)—f(s)'r ds|| + 2M.
N

Setting A = j' — j we have

1 1 1 2N
Aghmsup2M2/ dj/ dj’—H/ Tor)- 2 ds|
N—o0 0 j N N

1 2N
1
< lim sup 2M2/ dA (1 — A)NH/ Tp(s4n)—f(s)T dsH
0 N

N—oo

1

= limsup2M?* | dAgn(A),
N—oo 0

for all A € (0,1] and N € (0,00). For each

where gy(A) = %HK;N Ti(s+a)-f(s)z ds
A € (0,1] we have

1 2N N
lgn(A)] < NH /0 Ti(s+a)-s(s)rds — /0 Tys+a)-1() dSH

2 2N 1 N
= ﬁH/O Tf(5+A)—f<S>xd5H + NH/O Ti(s4)-1(s)7 dSH
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for all N € (0,00). So limy_c gn(A) = 0 by assumption. Clearly |gn(A)] < M for all
N € (0,00) and A € (0,1]. By the Lebesgue dominated convergence theorem, we deduce
that A = 0, a contradiction. O

Lemma 3.2. Let a € (0,1], ¢ > 0 and let g: [0,00) — R be a differentiable function such

gt(a) =0 and limy_o, £4 = 0. Define f: [0,00) — R by

ft) = ct® + g(2).

Suppose that f(t) > 0 for all t € [0,00). Let (T(t))i>0 be a bounded strongly continuous

semigroup of operators on a Hilbert space H. Then

that lim;_, o

N—oo

1 [N
lim N/ Tf(t)(] - Te)y dt =0
0
foralle >0 andy € H.

Proof. Let M = sup{||T'(t)|| : 0 <t < oco}. Without loss of generality we may assume that

lyll = 1.
Let 6 > 0. Choose 0 < ¢’ < min{271/«§, ¢ }. There exists an Ny € (0,00) such

R 21+1/a

that f(No) > e+ 1, |g(t)| < §t™ and |¢'(t)| < 8't*! for all t > Ny. Then
| f’(t) —cat™ | =g/ (1) < It < st

for all t > Ny. Set § = . Clearly 5 < 0. For all t > N, there exists a £ between f(t)
and ct® such that

()7 = (ct)?| = [f(t) — ct®| - [B" | = |g(t)] - 1671,
Hence
}acl/“f(t)ﬁ — cat“_l| = &cl/a’f(t)ﬁ — (cto‘)ﬁ|
< ac’*[g(t)] - 181(c — )P4 < (1 - @) e/

S 21/045/.[;04—1 < 6ta_1.

Therefore

lac e f(1)55 — f(1)] < 261777,

!acl/”f(t)%l’ > cat®™! — 2§t > Leare!
and
PR LI D70 et (YO ULl

acl/ef(t) s acllef(t) s ~ leatel T ca

Define
—hmsup—H/ Trpyd —1T¢) ydtH
N—oo

Then

A—hmsup—H/ Ty — TydtH<B—I—C

N—oo
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where
)
B = limsu H/ —————Tp»(I = Ty) dtH
mswp [ /a e 7o) ( )y

and

— i H/ J() )T (I T dtH

= lmsup — — T — 1)y .

N—oo acl/af(t) )

Obviously
o< gy = M0
co co
To estimate B, substitute s = f(¢) and ds = f’(¢) dt. Then
(N) -«
= hmsup—H/ fos STy (1 —Tg)ydsH
N—o0

f(NO l—a
< limsup — H/ oflcfl/asTTsy dsH
JF(N

N—oo

—i—hmsup—”/ a e Ua( (3—5)%)Tsyds
J(No)+

N—o0

—i—llmsup—H/ ate 1/0‘(5—5) & Tyyds
F(N)

N—oo

1) . i
—hmsup—H/ a ! _I/O‘<ST (s—z—:) o )Tyds”

N—o0

since

Me 1—a
NH/ a~leege® TydsH<—1/a(f(N0)—|—e) o —0

and

Ly [f®re I Me I
— “ele(s — aTdH<—Na
NH/f(N) e e Ty s < e/ (V)

Me ¢onize 2% Me
S Naem GV " ST N0
as N — oo.

Ifa =1then B=0. Ifa <1and s € (g,00), then there exists a £ € (s —¢, s) such that

1—a 1—a — X  1—2a
|so —(s—e)= | = £
So
] 1 “1/a 1— 1—2a
B <limsup — f(N)Mc /% (f(N) =}
N—oo N
ME: l—«

< limsup e max{ F(V), F(V) %)

< limsup ————

n NoZclla max{ (2cN, (20) SNITe) =
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Hence 116
A< )
co

Since 0 > 0 was arbitrary, we proved that

1 N
lim N/ Tf(t) (T€ — [)y dt = 0.
0

N—oo

OJ

Proposition 3.3. Let n € No, ¢ > 0 and a € (n,n + 1]. Let g: [0,00) — R be an
(n+1)—times differentiable function such that lim;_, gt(i)_(f) =0 forallj € {0,1,...,n+1}.
Define f:[0,00) — R by

ft) = ct*+ g(t).
Suppose that f(t) > 0 for all t € [0,00). Let (T3)i>0 be a bounded strongly continuous
semigroup of operators on a Hilbert space H. Let ¢ > 0 and y € H. Then

1 /N
lim N/o Ty (I =T, )y dt = 0.

N—o0

Proof. We prove the statement by induction on n. For n = 0 this was proved in Lemma 3.2.
Let n € IN and suppose that the statement is true for n — 1. We prove it for n.
Let f,qg,T; etc. satisfy all the required conditions. Then there exists an Ny € IN such
that f'|[ny,00) is strictly increasing and positive. By Theorem 3.1, it is sufficient to show
that

N—oo

. 1 N
fim N/ Tf(tJFA)*f(t)(I - Ta)y dt =0
No

for all A € (0, 1].
Fix A € (0, 1]. Define F': [0,00) — R by

F(t) = f(t+A) = f(D).
For all t > 1 the Taylor expansion gives

(t+ A)* — ¢ = t“(l + %)a — =1 <j‘>?— — 1% = Aat® ' + h(t),
=0

where (C;) = w and

h(t) = o2 i <j‘> tQA_ii.

i=2
So we can write F(t) = Aat® ! + G(t), where G(t) = h(t) + (g9(t + A) — g(t)) for all
t e (1,00).
Let j € {0,...,n}. Clearly
h)
lim .
t—oo ta—1-J

Furthermore, for all ¢ > 1 there exists a £ € (¢,t + A) such that
gVt +A) = gV (1) = AgUtD(€).
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Therefore
Dt + A) — g (¢t
g+ A) = ()

t—o00 taflfj

=0.

By the induction assumption we deduce that

IR IR
lim —/ Tf(t-‘,—A)—f(t)(] - Ta)y dt = lim N/ Tp(t)(] - Ts)y dt = 0.
No

N—oo N—oo No
Now the proposition follows by induction. U

Corollary 3.4. Let n € N and for alli € {0,...,n} let ¢; € R and «; € [0,00). Suppose
that co > 0 and ap > max{aq,...,an}. Define f:]0,00) — R by

Ft)y=> et
=0

Suppose that f(t) > 0 for allt € [0,00). Let (T'(t))i>0 be a bounded strongly continuous

semigroup of operators on a Hilbert space H. Then the limit

1 N

N—oo

exists in the strong operator topology and is equal to the projection P onto the kernel of

the generator of (T(t)) with ker P = J_.,(T: — I)H.

e>0

Proof. Let A be the generator of the semigroup (7'(¢)). If = € ker A, then T'(t)x = z for
all t > 0 and limy o % [ Ty dt = .

Let e > 0, y € H and set « = (T — I)y. Then limy_o ~ fON Tywxdt = 0 by Propo-
sition 3.3. Since the operators % fON Ty dt are uniformly bounded, it is easy to see that
limy o0 % fON Tipadt =0for all x € |J,..o(T: — 1) H.

Now the corollary follows from [EN], Lemma 4.4. O

Corollary 3.5. Let (T;)i>0 be a bounded strongly continuous semigroup of operators acting
on a Hilbert space H, let A be its generator and P the projection onto ker A with ker P =
U.so(Te = I)H. Then

1 N
hm N/O Eadtzp

N—oo

in the strong operator topology for all o > 0.
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