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Abstract. We consider a reaction-diffusion system undergoing Turing insta-
bility and augment it by an additional unilateral source term. We investi-
gate its influence on the Turing instability and on the character of resulting
patterns. The nonsmooth positively homogeneous unilateral term τv− has
favourable properties, but the standard linear stability analysis cannot be per-
formed. We illustrate the importance of the nonsmoothness by a numerical
case study, which shows that the Turing instability can considerably change if
we replace this term by its arbitrarily precise smooth approximation. However,
the nonsmooth unilateral term and all its approximations yield qualitatively
similar patterns although not necessarily developing from small disturbances of
the spatially homogeneous steady state. Further, we show that the unilateral
source breaks the approximate symmetry and regularity of the classical pat-
terns and yields asymmetric and irregular patterns. Moreover, a given system
with a unilateral source produces spatial patterns even for diffusion parameters
with ratios closer to 1 than the same system without any unilateral term.

1. Introduction

Reaction-diffusion systems are frequently used to model the initiation of ani-
mal forms and patterns. After publication of Turing’s purely theoretical paper
[38], growing number of biologists succeeded in matching empirical data with
mathematical simulations. Morphogens with Turing-like behaviour were found
in the process of hair follicles formation [31], the generation of transverse ridges
of the palate [11] or patterning the germ layers [8, 36]. The concept of reactions
and diffusion of morphogens was widened to the interactions of pigment cells. In
the case of zebrafish, the validity of this model was tested on individuals with
ablated skin [25, 26]. Turing’s mechanism is also used to model the formation of
coat patterns in mammals, see for example [30, 32].

We will introduce a unilateral term ĝ(v) to the concrete reaction-diffusion sys-
tem introduced in [4] to model skin patterns in fish and used in [30] to model coat
patterns of jaguar and leopard, see (3). This particular system will be provided
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in Section 2 and it fits into a general scheme

∂u

∂t
= d1∆u+ f(u, v) in Ω, (1)

∂v

∂t
= d2∆v + g(u, v) + ĝ(v) in Ω

with the usual homogeneous Neumann boundary conditions

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω. (2)

This system models the diffusion and nonlinear interactions of two morphogens.
The domain Ω ⊂ R2 represents the tissue, t denotes the time variable, d1 and d2
are diffusion coefficients, smooth functions f(u, v) and g(u, v) describe interac-
tions between the morphogens, and n stands for the unit outward facing normal
vector to the boundary ∂Ω. In accordance with the original publications [4, 30],
the quantities u, v denote deviations of morphogens concentrations U , V from
a positive spatially homogeneous equilibrium concentrations Ū , V̄ . Thus, neg-
ative deviations u = U − Ū and v = V − V̄ can still correspond to positive
concentrations U and V . Values of Ū and V̄ are not specified even in the origi-
nal publications [4, 30]. In fact, they can be chosen arbitrarily and substitution
u = U − Ū and v = V − V̄ into (1) yields a system for concentrations U and
V . In all numerical calculations presented in this paper the deviations u and v
lie within the range (−1.5, 1.5). Hence, if Ū > 1.5, V̄ > 1.5 then concentrations
U = u+ Ū , V = v + V̄ remain positive.

A novelty in system (1) is the additional term ĝ(v) which is unilateral in the
sense that there is a threshold value θ such that

ĝ(v) > 0 for v < θ and ĝ(v) = 0 otherwise.

This term describes an additional source active only if the concentration of the
second morphogen decreases below the threshold θ. The key point is that the
function ĝ(v) can be nonsmooth, a typical example being ĝ(v) = τ(v−θ)−, where
(v − θ)− = (|v − θ| − v + θ)/2 stands for the negative part of v − θ and τ > 0
controls the strength of this unilateral source. An alternative example is the
saturation term ĝ(v) = τ(1− exp[−(v − θ)−]) that models the limited ability of
cells to produce morphogens.

We will have f(0, 0) = g(0, 0) = 0. Thus, if ĝ(0) = 0 then (u, v) = (0, 0) will be
a constant stationary solution of (1) with (2). We will also consider cases when
ĝ(0) 6= 0 and there exist nontrivial (ū, v̄) satisfying f(ū, v̄) = g(ū, v̄) + ĝ(v̄) = 0.
Then u = ū, v = v̄ is a constant stationary solution of (1) with (2). In both
cases, we refer to this constant steady state (ū, v̄) as a ground state. We say
that system (1) with (2) undergoes the Turing diffusion driven instability if the
ground state is stable with respect to small spatially homogeneous perturbations
and unstable with respect to small spatially nonhomogeneous perturbations. Our
goal will be to investigate the influence of the unilateral term ĝ(v) on the Turing
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instability and on the formation of spatial patterns (spatially nonconstant sta-
tionary solutions). From these points of view we will compare the unilateral and
classical systems, i.e. a system with a unilateral term ĝ(v) and the corresponding
classical system with ĝ ≡ 0.

In the classical (smooth) case, we can perform the well known linear analysis to
find necessary conditions for the Turing instability to occur, see e.g. [12, 20, 32].
If these conditions are satisfied then starting from small nonhomogeneous dis-
turbances of the ground state, the solution of (1)–(2) can converge to another,
spatially nonhomogeneous steady state, provided it exists. In biology, this pro-
cess of forming nonhomogeneous steady states can serve as a model of pattern
(prepattern) formation mechanisms. Therefore, we often refer to these spatially
nonhomogeneous stationary solutions as patterns. We will have ∂f/∂u(ū, v̄) > 0
in the system under consideration and we will call u the activator. In this case,
one of the necessary conditions for the Turing instability is that the diffusion
coefficient of the activator u is sufficiently smaller than the diffusion coefficient
of v, i.e. the ratio d1/d2 is sufficiently small.

Our paper is motivated mainly by two surprising results [27] and [23] about
systems in the form (1) with ĝ ≡ 0, where f and g satisfy assumptions under
which Turing instability occurs. In these papers, a unilateral source is not given
by the term ĝ as in (1), but by certain unilateral conditions for v formulated
by variational inequalities. The former result guarantees existence of stationary
spatially nonhomogeneous solutions even for d1/d2 arbitrarily large. The later
result concerns certain instability of the ground state for a very wide range of
values d1 and d2. There are also earlier theoretical studies, e.g. [10, 13, 14, 15, 29]
and references therein, predicting new and interesting features of systems with
various unilateral conditions or terms. Let us note that the original necessary
condition of one fast and one slow diffusion can be removed or relaxed also by
other approaches. For example, Turing instability can occur in the presence of
cross-diffusion even if the (isolated) activator diffuses faster than the (isolated)
inhibitor [16]. The presence of non-diffusing species yields patterns outside the
classical limits of the Turing model [7, 24]. Both stochastic effects and cross-
diffusive terms were shown [5] to yield stochastic self-organization for a wider
region of parameters than in the conventional Turing approach. Similarly, sto-
chastic patterns for a wider region of parameters were observed and analysed in
[3] for the stochastic Brusselator model. Alternatively, nonnormality of the lin-
ear stability matrix can amplify the noise and yield fluctuation-induced Turing
patterns that are not strongly limited by the value of diffusion coefficients [6].

Going back to unilateral regulation, the unilateral conditions described by vari-
ational inequalities considered in [23, 27] correspond to sources which do not allow
v to decrease below zero (i.e. the concentration V is not allowed to decrease be-
low the equilibrium concentration V̄ ) on a given subset of the boundary or of the
interior of the domain. These hard inequalities, however, seem to be unrealistic
from the viewpoint of biological applications, because it is difficult to imagine
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a natural mechanism which would strictly prevent the concentration of a mor-
phogen to decrease below the threshold. Therefore we consider a unilateral term
ĝ(v), which seems to be more realistic. It does not prevent v to decrease below
θ, but it works against this decrease.

Our goal is to investigate this case and to find values of the ratio d1/d2 for
which the Turing instability occurs, type of the resulting patterns, and possible
biological implications. These questions have not been addressed before. Further,
we would like to open a question if unilateral sources, which in mathematical
models improve conditions for Turing instability and change the resulting form
of patterns, may really exist in nature and whether they play a role in spatial
patterning observed in biology.

Unilateral terms of the type ĝ(v) = τv− have been introduced in the context
of systems (1) under the assumptions guaranteeing the Turing instability already
in [14]. However, the stability of the ground state has not been analysed for this
type of systems. This analysis is nontrivial, because the possible nonsmoothness
of the unilateral term precludes the use of the standard linear analysis. More-
over, in Section 2 below we compare the system with nonsmooth unilateral term
and systems, where the nonsmooth term is replaced by smooth approximations.
Analytical results and numerical computations indicate that the ground state in
the system with nonsmooth term is stable under different conditions than in sys-
tems with its smooth approximations. On the other hand, we also observe that
perturbations larger than certain minimal size do evolve to qualitatively similar
patterns under the same conditions for both the nonsmooth unilateral term and
its smooth approximations. Thus, the fact whether a small perturbation of the
ground state will evolve to a pattern or not is extremely sensitive to small changes
of the nonlinear dynamics near the ground state. A small change of the term ĝ in
a neighbourhood of zero can turn the stability of the ground state to its instability
and vice versa. However, the numerical case study presented in Subsection 2.3
indicates that if the initial perturbations of the ground state are larger than a
certain minimal size then they robustly evolve to qualitatively similar patterns
regardless small changes of the term ĝ near zero.

Theoretically, it is not clear how to analyse the evolution of perturbations of
the ground state that are larger than a certain minimal size. Such theory does
not exist. However, the nonsmoothness of the unilateral term could help. We
observe, at least in the particular examples presented in Section 2, that in cases
when smooth approximations yield patterns for larger perturbations only, the
nonsmooth term yields qualitatively similar patterns even from small perturba-
tions. Thus, the question whether larger perturbations of the ground state will
evolve to patterns in systems with (both smooth and nonsmooth) unilateral term
or not seems to correspond to the question of stability with respect to small
perturbations of the system with the nonsmooth unilateral term. Theoretical
study of the question what are diffusion parameters for which spatially nonho-
mogeneous stationary solutions exist is done in [14] for the case of nonsmooth
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terms of the type τv−, not for their smooth approximations. Further theoretical
results about various other (nonsmooth) unilateral conditions can be found in
above mentioned papers.

The rest of this paper is organized as follows. Section 2 shows the significance
of the nonsmooth unilateral term ĝ(v) = τv− and compares its influence on the
initiation and final formation of spatial patterns with the influence of its smooth
approximations. Section 3 presents numerical calculations showing spatial pat-
terns produced by system (3) with ĝ(v) = τv−, compares them with patterns
obtained by the same system without any unilateral term, and shows how these
patterns depend on the strength τ of the unilateral source and on the ratio of
diffusion constants. We observe that unilateral terms yield asymmetric patterns
with irregular spots. Concrete system (3) with the unilateral term ĝ(v) = τv−

generates patterns even for greater ratio of diffusions in comparison with the
classical system. Finally, we show that the difference between the patterns corre-
sponding to the almost zero and high strength of the unilateral source resembles
the difference between the roughly regular pattern of the common morph of the
cheetah and the irregular pattern of the king cheetah. Section 4 discusses the
results and draws the conclusions.

2. Significance of the nonsmooth unilateral term

As we have already mentioned, the unilateral term need not be smooth at the
point of the ground state and, therefore, the standard linear analysis cannot be
performed, in general. If the unilateral term is non-smooth at the ground state,
a natural idea is to approximate it by a smooth one. Such approximation can
be arbitrarily precise and therefore we would expect that the behaviour of the
approximate system will not considerably differ from the behaviour of that with
the nonsmooth unilateral term. This vague statement is roughly correct from the
perspective of the formation of the final pattern, but it is not true from the point
of view of the Turing instability. The reason is that the stability is a local effect
determined by small perturbations of the ground state, but the final pattern is
formed by nonlinear terms f , g, and ĝ evaluated at points u and v distant from
the ground state. To illustrate this phenomenon, we provide a short case study
to show how various approximations of the unilateral term may influence the
Turing instability and what are their effects on the resulting patterns. Basically,
we show that the occurrence of the Turing instability is extremely sensitive on
small changes of the nonlinear dynamics near the ground state.

Particular system. We will discuss the particular system used in [4, 30] for
the study of skin and coat patterns in fish and mammals, and supplement it by
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a unilateral source term ĝ(v). Namely, we will consider the system

du

dt
= Dδ∆u+ αu+ v − r2uv − αr3uv2 in Ω, (3)

dv

dt
= δ∆v − αu+ βv + r2uv + αr3uv

2 + ĝ(v) in Ω.

Note that this system is a special case of (1) with d1 = Dδ, d2 = δ, f(u, v) =
αu + v − r2uv − αr3uv2, and g(u, v) = −αu + βv + r2uv + αr3uv

2. If ĝ(v) = 0
then this system coincides with the original system from [4, 30] and we call it the
classical case. As in [30], we will assume the homogeneous Neumann boundary
conditions (2) and parameter values

δ = 6, α = 0.899, β = −0.91, r2 = 2, r3 = 3.5. (4)

For D = 0.45 and ĝ(v) = 0, these values yield the Turing diffusion driven insta-
bility [30], however, we will consider also different values of D.

Ground state. The ground state of system (3) is defined in the same way as
in Section 1, i.e. it consists of constants ū, v̄ such that f(ū, v̄) = g(ū, v̄)+ĝ(v̄) = 0.
In particular, it can be readily verified that it is

ū = −v̄/(α− r2v̄ − αr3v̄2), (5)

where v̄ is a root of the nonlinear equation

(1 + β)v̄ + ĝ(v̄) = 0. (6)

Clearly, if ĝ(0) = 0 then ū = v̄ = 0. This is the case for choices of ĝ we are mainly
interested in. However, certain choices of ĝ introduced below do not vanish at
zero and hence the corresponding ground state is nonzero.

Conditions for the Turing instability. In the case when the additional
unilateral term ĝ(v) in (3) is smooth at v̄, we can perform the standard linear
analysis to obtain necessary conditions for the Turing instability, see e.g. [12, 20,
32]. Namely, we can introduce the Jacobi matrix of the map f , g + ĝ at ū, v̄ as

B =

[
b11, b12
b21, b22

]
=

[
∂f/∂u, ∂f/∂v
∂g/∂u, ∂g/∂v + dĝ/dv

]
(ū, v̄). (7)

If
trB < 0 and detB > 0, (8)

then the ground state (ū, v̄) is asymptotically stable with respect to small spatially
homogeneous perturbations. If simultaneously

b11b22 < 0 and b12b21 < 0 (9)

then this ground state is stable (with respect to small spatially nonhomogeneous
perturbations) only for some values of D and unstable for the others, see e.g. [32,
sec. 2.3].

Critical ratio of diffusions. Parameter values (4) are chosen in such a way
that for ĝ ≡ 0 conditions (8) and (9) are fulfilled. In any case, if ĝ(v) is smooth
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at v̄ and if conditions (8) and (9) hold then a necessary condition for the ground
state of system (3) to be unstable with respect to spatially nonhomogeneous
perturbations is that the ratio of diffusion coefficients D is sufficiently small.
Precisely, the condition is

D < Dcrit with Dcrit =
1

b222

(
detB − b12b21 − 2

√
−b12b21 detB

)
. (10)

Note that the definition of Dcrit in (10) is just a reciprocal value of the formula
from [33, p. 562]. It can also be easily derived from the analysis of [32, p. 109].
In any case, if condition (10) is not satisfied then the Turing instability cannot
occur. It is essential that if ĝ is not smooth at the ground state value v̄ then
this linear analysis cannot be performed. Jacobian B is simply not defined and
consequently formula (10) has no sense. The critical ratio Dcrit can be only
estimated numerically.

The forthcoming Subsection 2.1 discusses the stability of the ground state
with respect to spatially homogeneous perturbations, i.e. the stability for the
system without diffusion. Subsection 2.2 defines six particular choices of ĝ(v)
and compares them with respect to the Turing instability. We emphasize that
the Turing instability is a local phenomenon determined by small perturbations
and hence only the values of ĝ(v) in a small neighbourhood of the ground state
v̄ are relevant. We will see that although the six choices of ĝ(v) differ only
slightly in the neighbourhood of the ground state, some of them yield patterns
evolving from small perturbations and some of them do not. However, further in
Subsection 2.3 we will see that if the perturbations of the ground state are larger
than a certain minimal size, then they evolve to qualitatively similar patterns in
all cases.

We note that all patterns in this paper are computed numerically by our own
Matlab based finite element solver. The convergence and stability of the finite
element method is well known [9]. Its convergence for the specific problem (3) is
analysed in [28]. The time stepping is done by the build in Matlab ODE solver,
which stops as soon as the prescribed final time is reached. We set this time to
5 · 104 for all presented calculations. This is a sufficiently high value, because the
experimentally determined times of reaching the steady state are usually around
2–3 · 103, at most 104. The high value of the final time does not increase the
total computational time considerably, because the method determines the time
step adaptively. As soon as the numerical method detects the steady state, the
time step quickly increases and the final time is reached in a few iterations. The
initial condition is always chosen as small random fluctuations around the ground
state, except of Figure 3, where the fluctuations are larger. Clearly, different
initial conditions may and often do evolve to different stationary solutions, but
qualitative features of these solutions are the same. We choose the domain to be
Ω = (−100, 100)2 and in the subsequent figures, we plot the patterns as graphs of
the solution component u, where values of u are indicated by shades of grey. We
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do not plot the component v, because it is complementary to u, cf. [32, p. 88],
and patterns based on v are almost exact inverses of patterns based on u.

2.1. Stability for systems without diffusion. In this subsection, we consider
system (3) without the diffusion terms and we analyse the stability of its ground
state. We are mainly interested in the case ĝ(v) = τv−, i.e. in the natural choice
θ = 0, and study the system

du

dt
= αu+ v − r2uv − αr3uv2, (11)

dv

dt
= −αu+ βv + r2uv + αr3uv

2 + τv−.

The ground state of this system is (ū, v̄) = (0, 0) and its stability cannot be inves-
tigated by the standard linearisation due to the nonsmoothness of the unilateral
term. Nevertheless, we can prove it using, for example, the theory of Filippov
systems [17].

Lemma 1. If α, β are given by (4) and τ ∈ (0, 0.09) then the trivial solution
(ū, v̄) = (0, 0) of system (11) is asymptotically stable.

Proof. Let us start with the system without higher order terms, i.e.

du

dt
= αu+ v,

dv

dt
= −αu+ βv + τv−. (12)

Let U(t) = (u(t), v(t)) be its arbitrary solution. If α, β are given by (4) and t0 is
such that v(t0) = 0 and u(t0) > 0, then it follows from (12) that du

dt
(t0) > 0 and

dv
dt

(t0) < 0. Similarly, if v(t0) = 0 and u(t0) < 0 then du
dt

(t0) < 0 and dv
dt

(t0) > 0.
Thus, the solution intersects the axis v = 0 transversally and the whole time
interval (0,+∞) consists of open intervals where v > 0, open intervals where
v < 0, and isolated points. In time intervals where v(t) > 0, the solution U(t)
coincides with a solution of the linear system obtained by the choice τ = 0, and
in time intervals where v(t) < 0, it coincides with a solution of the linear system

du

dt
= αu+ v,

dv

dt
= −αu+ βv − τv. (13)

For α, β given by (4), the matrix B0 of system (12) with τ = 0 satisfies (8).
The trace of the matrix Bτ of system (13) is negative for all τ > −0.011 and
its determinant is positive for τ < 0.09. It follows that for τ ∈ (0, 0.09), the
eigenvalues of both matrices B0 and Bτ have negative real parts, that means the
trivial solution of both linear systems is asymptotically stable. Due to the form
of solutions of linear systems with constant coefficients, there exists C > 0 such
that if U(t) is any solution of (12) with τ = 0 or (13) then

‖U(t)‖ ≤ C‖U(0)‖ exp(Λt),

where Λ is the maximum over real parts of all eigenvalues of both matrices B0

and Bτ . Using considerations above we see that also the trivial solution of (12) is
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asymptotically stable. Further, it follows from known results concerning systems
with nonsmooth right hand sides that then the trivial solution of the full system
(11) with higher order terms is also asymptotically stable, see e.g. [17, p. 169,
Theorem 7]. �

We note that in fact the trivial solution of (11) is stable for a larger interval of
τ because its stability for both linear problems mentioned is only sufficient, not
necessary condition. Further we note that in all situations discussed below we
will have τ < 0.09 and therefore the trivial solution of our problem without any
diffusion will be always stable.

As we already mentioned, we will also investigate the effect of smoothing of
the nonsmooth unilateral term τv−. We will consider several approximations in
the form ĝ(v) = τnε(v), where the parameter ε > 0 controls the accuracy of the
approximation. Functions nε(v) are smooth in a neighbourhood of the ground
state and approximate v− in the sense that nε(v) converge to v− as ε→ 0+. This
setting enables to analyse the stability of the ground state for all approximations
of this type at once.

Thus, we consider the ODE system

du

dt
= αu+ v − r2uv − αr3uv2, (14)

dv

dt
= −αu+ βv + r2uv + αr3uv

2 + τnε(v),

where the parameter values are given in (4) and τ ≥ 0, ε > 0 are free parameters.
We assume that (6) with ĝ(v) = τnε(v) has a unique solution v̄ε for any ε > 0.
This v̄ε together with ūε given by (5) forms the ground state of (14).

Lemma 2. Let (ūε, v̄ε) be the ground state of system (14). For any ε > 0, let the
function nε be smooth in a neighbourhood of v̄ε and let n′ε(v) denote the derivative
of nε(v). If nε(v) converges uniformly in R to v− as ε→ 0+ and if

ñ := lim
ε→0+

n′ε(v̄ε) exists, ñ ≤ 0, and 0 ≤ τ < (1 + β) min{1,−1/ñ}, (15)

then the ground state (ūε, v̄ε) of system (14) is asymptotically stable for all suffi-
ciently small ε > 0.

Proof. First, we notice that the ground state tends to zero as ε → 0+. This
clearly follows from (5) and the convergence v̄ε → 0 which can be proved by
contradiction. Indeed, if v̄ε did not converge to 0 then there would be a sequence
εk → 0 such that v̄εk → v0 with v0 6= 0. Due to (6), we would have the identity

0 = (1 + β)v̄εk + τnεk(v̄εk). (16)

If v0 were finite then using the uniform convergence nε(v) → v− we would get
(1 + β)v0 + τv−0 = 0. However, this equation has only the zero solution because
τ < 1 + β. This would contradict the assumption v0 6= 0. It is not hard to see,
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again by using the uniform convergence and the assumption τ < 1 + β, that if v0
were not finite then (16) could not hold for large k.

Second, we show the asymptotic stability. We linearise system (14) around
(ūε, v̄ε). The matrix Bε of this linearisation is given by (7) with f(u, v) = αu +
v − r2uv − αr3uv2, g(u, v) = −αu + βv + r2uv + αr3uv

2 + ĝ(v), ĝ(v) = τnε(v),
and (ū, v̄) = (ūε, v̄ε). Due to convergences (ūε, v̄ε) → (0, 0) and n′ε(v̄ε) → ñ, we
have

lim
ε→0+

Bε =

[
α, 1
−α, β + τ ñ

]
.

Under the assumption 0 ≤ τ < −(1 + β)/ñ, we can easily verify that this matrix
satisfies conditions (8). Thus, the continuity argument implies that even the
matrix Bε satisfies conditions (8) for sufficiently small ε > 0 and, consequently,
the stationary solution (ūε, v̄ε) is asymptotically stable. �

2.2. Turing instability for various choices of ĝ(v). Now, we will consider
several particular choices of ĝ(v) and compare their influence on the Turing insta-
bility, i.e. on the evolution of small spatially nonhomogeneous perturbations of
the ground state. The idea is to consider the unilateral source term ĝ(v) = τv−

as the reference choice and the other cases are seen as its approximations. As
a criterion for the comparison we choose the critical ratio Dcrit, see (10) and
the discussion below (10). We will see that Dcrit varies considerably for different
choices of ĝ(v) and that this variation is essential even in the case of very accurate
approximations. Note that the strength of the unilateral source is

τ = 0.075 (17)

for all cases throughout this section. Now, we list the choices of ĝ(v) we make.

(a) Nonsmooth unilateral source, ĝ(v) = τv−, see Figure 1(a).: This
is the reference case. The ground state of system (3) with this choice of
ĝ(v) is (ū, v̄) = (0, 0). Its asymptotic stability with respect to small spa-
tially homogeneous perturbations, i.e. as a stationary solution of ODE
system (11), follows from Lemma 1. The instability of this ground state as
a solution of (3) cannot be investigated by the linear analysis, but numer-
ical calculations indicate that spatially nonhomogeneous perturbations as
small as we can afford numerically, evolve to nonhomogeneous stationary

solutions for the ratio of diffusions below D
(a)
crit = 0.71. Note that this

value is greater than the critical ratio of diffusion for the classical case
(ĝ ≡ 0), which is Dcrit = 0.53. See Section 3 for more details.

(b) Smooth quadratic approximation.: The nonsmooth function from
the previous case can be smoothed for example as

ĝ(v) =

{
τ(v − ε)2/(4ε) for |v| < ε,

τv− for |v| ≥ ε,
(18)
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Figure 1. Graphs of different choices of the unilateral term ĝ(v)
in (3): (a) ĝ(v) = τv−, (b) ĝ(v) given by (18), (c) ĝ(v) given by (19),
(d) ĝ(v) given by (20), (e) ĝ(v) = τ(v + ε)−, (f) ĝ(v) = τ(v − ε)−.
Thin lines show the graph of τv− for comparison.

where ε > 0 is a small parameter, see Figure 1(b). System (3) with (2)
and this choice of ĝ(v) has the ground state with ūε given by (5) and

v̄ε = 2
ε

τ

(
−1− β +

τ

2
+
√

(1 + β)(1 + β − τ)
)
.

For the chosen parameters, assumptions (15) in Lemma 2 are satisfied,
because, in particular, ñ ≈ −0.71. Thus, the asymptotic stability of
(ūε, v̄ε) of (14) follows for sufficiently small ε > 0. Moreover, numerically
we can easily find that it is asymptotically stable for ε < 0.038. The
corresponding critical ratio of diffusions can be expressed from (10) for
any 0 < ε < 0.038 and we plot its values in Figure 2. In the limit ε→ 0+

we have D
(b)
crit ≈ 0.63.

(c) Smooth cubic approximation.: Another option how to smooth the
function from the case (a) is

ĝ(v) =

{
τv2(v + 2ε)/ε2 for − ε < v < 0,

τv− for v ≤ −ε and v ≥ 0,
(19)

where ε > 0 is again a small parameter, see Figure 1(c). The ground state
in this case is (ū, v̄) = (0, 0) independently of ε and since the derivative
of ĝ at zero vanishes, the critical ratio of diffusions is the same as in the

classical system (ĝ ≡ 0). Using (10) we obtain D
(c)
crit = Dcrit ≈ 0.53.

(d) Linear cut.: The choice (a) can be approximated by a continuous
piecewise linear function such that it is smooth at the ground state. A
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straightforward choice is

ĝ(v) =

{
τ(ε− v)/2 for |v| < ε,

τv− for |v| ≥ ε,
(20)

see Figure 1(d). The ground state is shifted away from zero. Its compo-
nent ūε is given by (5) and

v̄ε =
τε

τ − 2− 2β
.

Using Lemma 2 for parameter values (4) and (17), we obtain the as-
ymptotic stability of the ground state (ūε, v̄ε) of (14) for sufficiently small
ε > 0, because ñ = −1/2 and assumptions (15) are satisfied. Numerically,
we verify that it is asymptotically stable for ε ≤ 0.016. The critical ratio
of diffusions is computed from (10) and its dependence on ε is illustrated

in Figure 2. The limit value for ε→ 0+ is D
(d)
crit ≈ 0.60.

(e) Shift of the threshold to the left, ĝ(v) = τ(v + ε)−, see Figure 1(e).:
The corresponding ground state is (ū, v̄) = (0, 0) for all ε > 0. This ĝ(v)
is smooth at zero and both its value and derivative at zero vanish. There-
fore, conditions for the Turing instability are the same as in the classical
case ĝ ≡ 0 and formula (10) provides the same critical ratio of diffusions

as in the case (c), i.e. D
(e)
crit = D

(c)
crit = Dcrit ≈ 0.53.

(f) Shift of the threshold to the right, ĝ(v) = τ(v − ε)−, see Figure 1(f).:
This choice yields a nonzero ground state ūε given by (5) and

v̄ε =
τε

τ − 1− β
.

Using Lemma 2 for parameters (4) and (17), we obtain the asymptotic
stability of the ground state (ūε, v̄ε) of (14) for sufficiently small ε > 0,
because ñ = −1 and assumptions (15) are satisfied. Numerically, we
verify that it is asymptotically stable for ε < 0.0044. The critical ratio of
diffusions can be obtained from (10). Its values are provided in Figure 2

and its limit for ε→ 0+ is D
(f)
crit ≈ 0.71.

To compare choices (a)–(f), we summarize the dependence of the critical ratio
of diffusions on ε in Figure 2. Note that the accuracy of approximations (b)–(f) of
the reference choice (a) is controlled by ε. Smaller ε corresponds to more accurate
approximations. We clearly observe that different choices of ĝ(v) yield consid-
erably different critical ratios of diffusions and, hence, various approximations
of the nonsmooth unilateral term τv− exhibit the Turing instability for different
values of the ratio D. For example, if ε = 0.005 and D = 0.65 (see the grey
diamond in Figure 2), then choice (a) is the only case which exhibits the Turing
instability. Indeed, in cases (b)–(e) the ground state is stable with respect to all
small perturbations, because the ratio of diffusion D = 0.65 is above the critical
value. In the case (f) the Turing instability cannot occur, because trB is positive
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(b) quadratic

(c) cubic
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Figure 2. Dependence of the critical ratio of diffusions Dcrit on ε
for choices (a)–(f). The value for choice (a) is estimated numerically
and the other values are computed by (10). Notice that cases (c)
and (e) coincide. In case (f), the critical ratio is not defined for ε
above approximately 0.0044, because then the trace of B is positive,
see (8). The grey diamond indicates the case of parameter values
ε = 0.005 and D = 0.65 for which Turing patterns appear in the
case (a) only.

for ε > 0.0044 and therefore the ground state is unstable even with respect to
spatially homogeneous perturbations. Similarly, if we decrease ε to 0.001 and
keep D = 0.65, then the choices (a) and (f) exhibit the Turing instability, but
choices (b)–(e) do not.

Note that our statement that the choice (a) exhibits the Turing instability is
based on numerical calculations, where we observe that small perturbations of
the ground state evolve to patterns. For more details and numerical results, see
Figure 5 below, the panels for τ = 0.075.

Figure 2 clearly shows the size of variations in Dcrit for different approximations
of the nonsmooth unilateral source term. Even if we arbitrarily increase the
accuracy of these approximations, i.e. in the limit ε → 0, the corresponding
values of Dcrit differ considerably. Hence, each approximation yields the Turing
instability for different ranges of diffusion coefficients. Consequently, the idea to
approximate the nonsmooth term by a smooth one and analyse it by standard
means fails. Simple smooth approximations of the nonsmooth unilateral term
with accuracy controlled by ε can yield misleading results in the limit ε→ 0.

From the biological perspective, all choices (a)–(f) seem to be plausible. Al-
though some of these choices have the threshold value shifted from the ground
state, the difference is not large.

Of course, we could also discuss other approximations of the nonsmooth uni-
lateral term. However, results of the next subsection indicate that these ap-
proximations result to the same (or very similar) patterns as the unilateral term
ĝ(v) = τv−, provided the other parameters of the problem are the same. At the
same time, it is important to mention that not all of these approximations yield
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(a) (b) (c)

(d) (e) (f)

Figure 3. Patterns produced from larger perturbations of the
ground state in cases (a)–(f) with D = 0.65, ε = 0.005, τ = 0.075,
and parameter values (4). The initial condition is the same in all
cases and consists of random disturbances of the ground state with
maximal amplitude 20ε = 0.1. Note that initial conditions with
maximal amplitude of size ε or smaller evolve to patterns in case
(a) only.

patterns developing from small perturbations. Sometimes, the perturbations have
to be sufficiently distant from the ground state, as we describe below.

2.3. Patterns for various choices of ĝ(v). Above, we introduced an example
of parameter values for system (3) such that small perturbations of the ground
state do not evolve to any patterns in cases (b)–(f), but they do in the case (a),
see the grey diamond in Figure 2. Now, we will see that perturbations larger
than a certain minimal size (depending on ε) do evolve to patterns in all these
cases. We also show that all these patterns are qualitatively the same. Moreover,
if they evolve from the same initial condition, they are all also quantitatively very
similar and some of them are even exactly identical, see Figure 3.

Similarity of these patterns is not surprising, because the differences among all
choices of ĝ(v) in cases (a)–(f) are insignificant on scales considerably larger than
ε. Since the magnitude of the final pattern (i.e. the stationary solution to (3))
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is of order one and the size of ε is of order one thousands, we can expect similar
patterns in all these cases.

As we have mentioned, small perturbations of the ground state do not evolve to
any patterns in cases (b)–(f) for the chosen values D = 0.65 and ε = 0.005. This
fact follows from the linear analysis and we observe it numerically as well. How-
ever, Figure 3 shows that perturbations that are larger than a certain minimal
size, do evolve to patterns in all these cases. Moreover, we observe identical pat-
terns for choices (a)–(c) and a very similar pattern for the choice (d). Choices (e)
and (f) yield slightly more distinct patterns, but they share the same qualitative
features as the other cases.

We also computed the patterns starting from an initial condition twice as large
as was used in Figure 3 and we obtained identical patterns for all cases (a)–
(d). (These results are not presented.) Patterns (e) and (f) were different in a
similar manner as in Figure 3. This is understandable, because choices (a)–(d)
of ĝ(v) are identical for |v| ≥ ε and thus if the size of the initial condition is
sufficiently large, the influence of ĝ(v) for |v| ≥ ε overweights the influence of
ĝ(v) for |v| < ε and identical patterns emerge. On the contrary, in cases (e)
and (f) the values ĝ(v) slightly differ even for |v| ≥ ε and therefore the resulting
patterns differ as well. Hence, for the particular system (3) it seems that if two
nonlinear kinetics differ on a small neighbourhood of the (unique) ground state
only then there exists (almost) the same pattern for both kinetics and sufficiently
large initial perturbations of the ground state will evolve to this pattern for both
kinetics. If this statement is true then practically relevant is the evolution of
perturbations greater than a certain minimal size rather than the evolution of
small perturbations. The reason is the robustness of the evolution of the larger
perturbations to patterns observed in numerical tests described in this section
and the fact that the stability with respect to the small perturbations is highly
sensitive to small changes of ĝ(v) in the neighbourhood of the ground state.

Importantly, the nonsmooth unilateral term (a) yields patterns that evolve
from small spatial perturbations for a large range of values of D, as far as we
can conclude from numerous numerical calculations we performed. This is the
essential motivation to investigate the nonsmooth unilateral case (a). It pro-
vides predictions about a whole class of approximations of the nonsmooth term
ĝ(v) = τv−. The tested choices (b)–(f) are just examples of members of this
class. All approximations from this class produce the desired patterns and all
these patterns are similar, however, for certain approximations the patterns do
not evolve from small perturbations. There is no known theory so far that would
explain the evolution of initial perturbations that are not small. However, the
approaches presented in [14, 23, 27] provide certain ideas how to treat theoret-
ically the positive homogeneous nonsmooth case ĝ(v) = τv−. And, as we have
already mentioned, the stability and instability of the ground state in systems
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with this term seem to correspond to the question whether the larger perturba-
tions of the ground state do evolve to patterns or not for systems where this term
is approximated.

3. Existence of patterns and their dependence on parameters

In this section we further investigate system (3) with the nonsmooth unilateral
term ĝ(v) = τv− to show when the Turing instability occurs, what is the effect of
this term on the resulting patterns, and how they depend on the strength τ and
on the ratio of diffusions D. In addition, we numerically compare behaviour of the
system with this nonsmooth unilateral term with cases ĝ ≡ 0 and ĝ(v) = −τv.
Comparing to these linear choices of ĝ(v), we show that the unilateral term
produces irregular patterns. Further, we present numerical results indicating that
system (3) with the nonsmooth term ĝ(v) = τv− yields patterns for considerably
higher ratio of diffusion constants comparing to the classical system with ĝ ≡ 0.
In addition, the choice ĝ(v) = −τv seems to be informative about the Turing
instability of the nonsmooth unilateral term. For system (3), we present results
of numerical calculations supporting the hypothesis that the Turing instability
occurs in the nonsmooth unilateral case ĝ(v) = τv− for the same ratio of diffusion
coefficients as for the choice ĝ(v) = −τv. Finally, in the last part of this section,
we compare the patterns obtained with the nonsmooth unilateral term with the
coat pattern of king cheetah and suggest a mechanism generating this pattern.

3.1. Unilateral term yields irregular patterns. First, we compare the pat-
terns produced by the nonsmooth unilateral term and by the linear terms ĝ ≡ 0
and ĝ(v) = −τv. To this end we consider system (3) with boundary conditions
(2), and parameter values (4). Figure 4 compares patterns for choices ĝ(v) = τv−,
ĝ ≡ 0, and ĝ(v) = −τv, respectively, for τ = 0.08 and D = 0.45. Comparing these
patterns we immediately observe the qualitative difference. The linear choices of
ĝ(v) produce approximately circular spots which are, to some extent, symmetri-
cally placed. In contrast, the pattern produced by the unilateral system shows
irregular spots of larger size. Several of the largest spots seem to be created by
fusions of smaller spots. Moreover, the pattern does not exhibit any symmetry
even approximately. Interestingly, similar irregular patterns are obtained in [39]
by varying the parameter h in the dimensionless version of model (3) without
any unilateral source.

3.2. Critical ratio of diffusions. Another interesting phenomenon resulting
from the addition of the nonlinear unilateral source terms to the classical system
(i.e. (3) with ĝ ≡ 0) is the growth of small nonhomogeneous perturbations of
the ground state to patterns even if the ratio of diffusions exceeds the critical
value (10) of the classical system (i.e. ĝ ≡ 0). Indeed, the critical ratio of
diffusions (10) for the classical system with parameter values (4) is Dcrit ≈ 0.53.
However, using the nonsmooth unilateral source ĝ(v) = τv−, we numerically
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Figure 4. Typical patterns obtained by system (3) with the
nonsmooth unilateral term ĝ(v) = τv− (left panel), the classical
case ĝ ≡ 0 (middle panel), and ĝ(v) = −τv (right panel) with
τ = 0.08, D = 0.45, and parameter values (4). The initial condition
was specified as a small random noise around the ground state. The
grey scale shows the values of u.

obtain patterns forming from very small spatial perturbations of the ground state
even for considerably higher ratios of diffusions. This phenomenon was predicted
by a series of theoretical results, mainly [23, 27].

In order to illustrate the dependence of the arising patterns on the strength
of the unilateral source τ and on the ratio of diffusion constants D, we present
Figure 5. The top-left box in Figure 5 corresponds to the classical system (ĝ ≡ 0)
with standard parameter values (4) and D = 0.45. We observe the typical regular
spotted pattern. As τ increases, the spots are growing bigger and starting from
certain value they seem to merge and irregular patterns emerge. Similarly, we
can observe that higher values of τ enable to produce patterns for higher ratios
of diffusions D. In particular, columns 3–5 show that if D exceeds the critical
ratio of diffusions Dcrit ≈ 0.53 of the classical system, then the spatial patterns
arise only if τ is sufficiently large. The larger is D, the larger τ is necessary for
patterns to arise. For completeness, we mention that numerically no patterns
emerge for τ ≥ 0.089.

3.3. Linear term ĝ = −τv. It is interesting to compare the above results with
the case ĝ(v) = −τv. Note that this choice can actually be seen as the classical
system with ĝ ≡ 0 and coefficient β modified to β − τ . Figure 6 shows the
resulting patterns for various values of D and τ . This system is smooth and
therefore we can analyse the Turing instability including the critical ratios of
diffusion coefficients (10). Table 1 presents these values for parameters (4) and
various τ . Figure 6 confirms that this system produces patterns only if the ratio of
diffusion coefficients is below the critical value. Interestingly, we observe patterns
for the same values of the ratio of diffusions as for the system with ĝ(v) = τv−

presented in Figure 5. This leads us to a hypothesis that the Turing instability
in the unilateral system (3) with ĝ(v) = τv− occurs under the same conditions
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Figure 5. Dependence of patterns on the ratio of diffusions
D and the strength of the unilateral source τ for the nonsmooth
unilateral term ĝ(v) = τv−. Each box corresponds to the indicated
values of D and τ and to parameter values (4).

as in the case of system (3) with ĝ(v) = −τv. Although, we do not present the
results, we solved system (3) with the nonsmooth unilateral term many times for
values D close to the critical one and all these results confirmed this hypothesis.

On the other hand, comparison of Figures 5 and 6 clearly reveals the difference
of the resulting patterns. The difference is even qualitative. While the patterns
produced by the unilateral term are irregular with large irregular spots, patterns
produced by the linear term are approximately symmetric with smaller circular
spots. This qualitative difference can be explained by the substantial difference
of the corresponding nonlinear dynamics especially for values of v distant from
the ground state.

Another difference can be visible if we observe how the patterns change as τ is
increased. In both cases the spots grow bigger, but differently. For the unilateral
term the spots grow, fill gaps among them, and finally merge. On the other
hand, for the linear term the distances of spots grow proportionally and spots
do not merge. This behaviour is similar as if we scaled the system by the size of
the domain Ω or by parameter δ. We note that in the dimensionless system [1]
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Figure 6. Dependence of patterns on D and τ for the choice
ĝ(v) = −τv. Each box corresponds to the indicated values of D
and τ and to parameter values (4).

(where no unilateral term is considered) a parameter η scales the system in the
same manner.

3.4. Unilateral source as a model of a receptor-based morphogen reg-
ulation. It is usually considered in reaction-diffusion models of pre-pattern for-
mation in mammalian skin that morphogens are proteins (ligands) secreted to
the extracellular space [19]. These proteins do not react directly with each other
but they bind to cell membrane receptors and the production of morphogens is
subsequently regulated by signaling pathways. The mechanism of cell response
to morphogen gradients is a subject of intensive debates [35, 2]. It is assumed
here that the number of receptors engaged with ligands influences the rate of

τ 0 0.025 0.05 0.075 0.08 0.085
Dcrit 0.53 0.57 0.62 0.71 0.74 0.78

Table 1. Critical ratios (10) of diffusion coefficients for the linear
source term (i.e. system (3) with ĝ(v) = −τv) and various values
of τ . Rounded to two significant digits.
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morphogen production [18] and that this influence is in inverse proportion. The
introduction of a unilateral term to our model reflects a limited number of recep-
tors in a membrane: if the concentration of a morphogen exceeds the threshold
value θ, all receptors are occupied independently on the amount how much the
threshold is exceeded. The system is saturated and does not produce the cor-
responding morphogen. In the case of the morphogen v, this process is well
described by the term ĝ(v) = τ(v − θ)−. Indeed, in points (x, y) ∈ Ω and times
t, where v(x, y, t) < θ, the term τ(v(x, y, t) − θ)− is positive and works as a
source term in (1). On the other hand, in points (x, y) ∈ Ω and times t, where
v(x, y, t) ≥ θ, the term τ(v(x, y, t)− θ)− vanishes and has no effect.

3.5. Case study: Coat patterns of cheetahs. It has been shown that Taqpep
gene is responsible for the regularity of pre-pattern in the case of domestic cats
and cheetahs [22], see Figure 7 (left). King cheetahs have a mutation in this
gene and their specific coat pattern is characterized by irregular, large spots,
see Figure 7 (right). Taqpep encodes a type II membrane-spanning protein of the
M1 aminopeptidase family whose metalloprotease-containing ectodomain (further
denoted as MCE) can diffuse outside the cell.

It has been proposed that a reaction-diffusion model is suitable to elucidate a
role of MCE for the constitution of pre-patterns [21]. Mathematical model (3)
and considerations from Section 3.4 serves this purpose, presuming that variable
v is the deviation of the MCE concentration in the extracellular space from its
equilibrium concentration V̄ .

According to the model, the unilateral regulation is weak in the common morph
of cheetah (τ close to zero), resulting in the usual spotted pattern, whereas the
mutation in Taqpep gene yields stronger unilateral regulation in the case of the
king cheetah (τ around 0.08). The simulated patterns relate to real skin patterns,
which applies both for the common morph of cheetah, see Figures 4 (middle) and
7 (left), and the king cheetah, see Figures 4 (left) and 7 (right).

4. Discussion and conclusions

In this contribution we investigated a reaction-diffusion system with a non-
smooth unilateral source term ĝ(v) = τv− and its approximations. We provided
a case study for a particular system and analysed numerically the influence of
such source term on the Turing instability and on the resulting patterns. We
explained a possible biological meaning of this term and obtained the following
conslusions.

Sensitivity of the Turing instability. The linear analysis of systems with
smooth approximations of the term ĝ(v) = τv− is not informative about the
Turing instability of the system with the nonsmooth term. Small perturbations
of the ground state can evolve to patterns for one approximation of the nonsmooth
term, but not for the other even though they are arbitrarily accurate. This shows
that the Turing instability is sensitive to small changes of the nonlinear dynamics.
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Figure 7. Typical coat patterns of the common morph of the
cheetah (left) and king cheetah (right).

Robustness of Turing patterns. We also showed that initial perturbations
of the ground state larger than a certain minimal size do robustly evolve to
patterns for both the nonsmooth term and its approximations. In addition, these
patterns are almost identical regardless the particular form of the unilateral term
in the small neighbourhood of the ground state.

Irregularity of patterns. We have found that unilateral sources break the
approximate regularity and symmetry of the usual patterns. System (3) with
the unilateral term ĝ(v) = τv− produces spots with irregular shapes and vari-
able distances between them. This contrasts to the classical smooth systems
corresponding to choices ĝ ≡ 0 and ĝ(v) = −τv in (3), where we observe close-
to-regular disc-shaped spots approximately symmetrically placed, see Figure 4.
Thus, the unilateral sources prescribed for the inhibitor v break the regularity
of patterns for all values of diffusion constants yielding patterns, provided the
strength of the unilateral source is not negligible.

Patterns for higher ratio of diffusion parameters. Interestingly, system
(3) with the unilateral term ĝ(v) = τv− produces patterns even for those values
of diffusion constants which prevent any pattern formation in the original system
(i.e. ĝ ≡ 0). Further, we observe that the critical ratio of diffusions for the system
with ĝ(v) = τv− seems to be identical to the critical ratio of the system with
ĝ(v) = −τv. However, the resulting patterns differ considerably as we mentioned
in the previous paragraph.

We verified these conclusions numerically for the particular system (3), but we
believe that they are valid for other kinetics as well. We verified this conclusion
in [34] for a unilateral term added to the Thomas model [37]. This indicates
that our findings about the effects of the unilateral term are not limited to a
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single kinetics. The generality of these results is also supported by earlier results
[10, 23, 27], which guarantee the existence of bifurcations of spatial patterns
and certain instability of the ground state for large d1/d2 for a unilateral source
described by variational inequalities, but they are valid for a very large class of
kinetics.

Reaction-diffusion systems with nonsmooth nonlinear unilateral terms are in-
teresting from both the theoretical and practical points of view. In contrasts to
the classical smooth case, where the small perturbations initially evolve according
to a linear dynamics, the evolution of small perturbations of the ground state for
the nonsmooth unilateral term is inherently governed by a nonlinear dynamics.
This nonlinear dynamics may yield completely new phenomena in the pattern
formation mechanisms. In this contribution, we have made an attempt towards
the understanding of the unilateral terms in models of biological patterns for-
mation. However, further research is necessary for the investigation of feasible
biological applications.
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