Higher order lower bounds on eigenvalues of symmetric elliptic operators

Tomáš Vejchodský (vejchod@math.cas.cz)

Institute of Mathematics Czech Academy of Sciences

Supported by Neuron Fund for Support of Science, project no. 24/2016

Equadiff 2017, Bratislava, July 26

W

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Laplace eigenvalue problem

$$-\Delta u_i = \lambda_i u_i$$
 in Ω
 $u_i = 0$ on $\partial \Omega$

W

Laplace eigenvalue problem

$$-\Delta u_i = \lambda_i u_i$$
 in Ω
 $u_i = 0$ on $\partial \Omega$

Weak formulation

 $\lambda_i > 0, u_i \in V: \quad (\nabla u_i, \nabla v) = \lambda_i(u_i, v) \quad \forall v \in V$

Notation: $V = H_0^1(\Omega)$

W

Laplace eigenvalue problem

$$egin{array}{ll} -\Delta u_i = \lambda_i u_i & ext{in } \Omega \ u_i = 0 & ext{on } \partial \Omega \end{array}$$

Weak formulation $\lambda_i > 0, u_i \in V : \quad (\nabla u_i, \nabla v) = \lambda_i(u_i, v) \quad \forall v \in V$

 $\begin{array}{ll} \text{Finite element method} \\ \Lambda_{h,i} > 0, u_{h,i} \in V_h: \quad (\nabla u_{h,i}, \nabla v_h) = \Lambda_{h,i}(u_{h,i}, v_h) \quad \forall v_h \in V_h \end{array}$

Notation: $V = H_0^1(\Omega)$ $V_h = \{v_h \in V : v_h |_{\mathcal{K}} \in P_p(\mathcal{K}) \quad \forall \mathcal{K} \in \mathcal{T}_h\}$

W

Laplace eigenvalue problem

$$egin{array}{ll} -\Delta u_i = \lambda_i u_i & ext{in } \Omega \ u_i = 0 & ext{on } \partial \Omega \end{array}$$

Weak formulation $\lambda_i > 0, u_i \in V : \quad (\nabla u_i, \nabla v) = \lambda_i(u_i, v) \quad \forall v \in V$

 $\begin{array}{ll} \text{Finite element method} \\ \Lambda_{h,i} > 0, u_{h,i} \in V_h: \quad (\nabla u_{h,i}, \nabla v_h) = \Lambda_{h,i}(u_{h,i}, v_h) \quad \forall v_h \in V_h \end{array}$

Upper bound:

$$\lambda_i \leq \Lambda_{h,i}$$

Notation: $V = H_0^1(\Omega)$ $V_h = \{v_h \in V : v_h|_K \in P_p(K) \quad \forall K \in \mathcal{T}_h\}$

W

Laplace eigenvalue problem

$$egin{array}{ll} -\Delta u_i = \lambda_i u_i & ext{in } \Omega \ u_i = 0 & ext{on } \partial \Omega \end{array}$$

Weak formulation $\lambda_i > 0, u_i \in V : \quad (\nabla u_i, \nabla v) = \lambda_i(u_i, v) \quad \forall v \in V$

 $\begin{array}{ll} \mbox{Finite element method} \\ \Lambda_{h,i} > 0, u_{h,i} \in V_h: \quad (\nabla u_{h,i}, \nabla v_h) = \Lambda_{h,i}(u_{h,i}, v_h) \quad \forall v_h \in V_h \end{array}$

Can we compute lower bound?

$$\ell_i \leq \lambda_i \leq \Lambda_{h,i} \quad \Rightarrow \quad |\Lambda_{h,i} - \lambda_i| \leq \Lambda_{h,i} - \ell_i$$

Notation:

$$V = H_0^1(\Omega)$$

$$V_h = \{v_h \in V : v_h|_K \in P_p(K) \quad \forall K \in \mathcal{T}_h\}$$

(日) (同) (三) (三) (三) (○) (○)

Old problem:

Temple 1928, Weinstein 1937, Kato 1949, Lehmann 1949, Goerisch 1985, ...

Many results: M.G. Armentano, G. Barrenechea, H. Behnke, C. Carstensen, R.G. Duran, D. Galistl, J. Gedicke, L. Grubišić, Jun Hu, J.R. Kuttler, Y.A. Kuznetsov, Fubiao Lin, Qun Lin, Xuefeng Liu, M. Plum, S.I. Repin, V.G. Sigillito, M. Vohralík, Hehu Xie, Yidu Yang, Zhimin Zhang, ... many others

FEM approaches

Nonconforming:

 $\frac{\lambda_{h,i}^{\text{CR}}}{1 + 0.1893^2 h^2 \lambda_{h,i}^{\text{CR}}} \le \lambda_i \quad \text{(Crouzeix-Raviart, triangles)}$

- no a priori information on spectrum needed
- first order only

[Carstensen, Gallistl 2013], [Carstensen, Gedicke 2014] [Xuefeng Liu 2015]

Conforming:

- a priori information on spectrum needed
- higher order versions

[Behnke, Mertins, Plum, Wieners 2000]

[Cancès, Dusson, Maday, Stamm, Vohralík 2017], [Vejchodský, Šebestová 2017]

Flux reconstruction in $H(div, \Omega)$

$$\sigma_{h,i} \approx \nabla u_i, \quad i=1,2,\ldots,n$$

(a) Global problem:

 $\sigma_{h,i} \in \mathbf{W}_h$ minimizes $\|\nabla u_{h,i} - \sigma_{h,i}\|_{L^2(\Omega)}^2$ under constraint: $-\operatorname{div} \sigma_{h,i} = \Lambda_{h,i} u_{h,i}$

Spaces: $\mathbf{W}_{h} = \{ \boldsymbol{\sigma}_{h} \in \mathbf{H}(\operatorname{div}, \Omega) : \boldsymbol{\sigma}_{h} |_{\mathcal{K}} \in \mathbf{RT}_{p}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_{h} \}$

Flux reconstruction in $H(div, \Omega)$

$$\sigma_{h,i} \approx \nabla u_i, \quad i=1,2,\ldots,n$$

(a) Global problem:

 $\sigma_{h,i} \in \mathbf{W}_h$ minimizes $\|\nabla u_{h,i} - \sigma_{h,i}\|^2_{L^2(\Omega)}$ under constraint: $-\operatorname{div} \sigma_{h,i} = \Lambda_{h,i} u_{h,i}$

Spaces:

$$\begin{split} \mathbf{W}_{h} &= \{ \boldsymbol{\sigma}_{h} \in \mathbf{H}(\operatorname{div}, \Omega) : \boldsymbol{\sigma}_{h} |_{\mathcal{K}} \in \mathbf{RT}_{p}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_{h} \} \\ \mathbf{W}_{z} &= \{ \boldsymbol{\sigma}_{z} \in \mathbf{H}(\operatorname{div}, \omega_{z}) : \boldsymbol{\sigma}_{z} |_{\mathcal{K}} \in \mathbf{RT}_{p}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_{z} \\ & \text{and} \ \boldsymbol{\sigma}_{z} \cdot \mathbf{n}_{z} = 0 \text{ on } \Gamma_{z}^{\mathrm{E}} \} \end{split}$$

・ロト・日本・日本・日本・日本・日本

Weinstein and Kato bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Set
$$\eta_i = \|\nabla u_{h,i} - \boldsymbol{\sigma}_{h,i}\|_{L^2(\Omega)}$$
 $i = 1, 2, \dots, n$

Weinstein bound:
$$\ell^{\mathrm{W}}_i = rac{1}{4} \left(-\eta_i + \sqrt{\eta^2_i + 4\Lambda_{h,i}}
ight)^2$$

Kato bound:
$$\ell_i^{\mathrm{K}} = \Lambda_{h,i} \left(1 + \nu \Lambda_{h,i} \sum_{j=i}^n \frac{\eta_j^2}{\Lambda_{h,j}^2(\nu - \Lambda_{h,j})} \right)^{-1}$$

where $\Lambda_{h,n} < \nu$

Theorem 1.
If
$$\sqrt{\lambda_{i-1}\lambda_i} \leq \Lambda_{h,i} \leq \sqrt{\lambda_i\lambda_{i+1}}$$
 then $\ell_i^{W} \leq \lambda_i$.

Theorem 2. If $\nu \leq \lambda_{n+1}$ then $\ell_i^{\mathrm{K}} \leq \lambda_i$ for all i = 1, 2, ..., n. [Vejchodský, Šebestová 2017]

Lehmann-Goerisch method

Let
$$\gamma > 0$$
, $\nu \leq \lambda_{n+1}$, and $\tilde{\sigma}_{h,i} = (\Lambda_{h,i} + \gamma)^{-1} \sigma_{h,i}$
For $m = n, n - 1, ..., 2, 1$ do
 $\triangleright \rho = \nu + \gamma$
 $\triangleright \mathbf{M}_{ij} = (\nabla u_{h,i}, \nabla u_{h,j}) + (\gamma - \rho)(u_{h,i}, u_{h,j}) + \rho^2(\tilde{\sigma}_{h,i}, \tilde{\sigma}_{h,j})$
 $+ (\rho^2/\gamma)(u_{h,i} + \operatorname{div} \tilde{\sigma}_{h,i}, u_{h,j} + \operatorname{div} \tilde{\sigma}_{h,j})$
 $+ (\rho^2/\gamma)(u_{h,i} + \operatorname{div} \tilde{\sigma}_{h,i}, u_{h,j} + \operatorname{div} \tilde{\sigma}_{h,j})$
 $\vdash \mu_1 \leq \cdots \leq \mu_m$: $\mathbf{M}\mathbf{y}_i = \mu_i \mathbf{N}\mathbf{y}_i, \quad i = 1, 2, \dots, m$
 $\triangleright \text{ If } \mathbf{N} \text{ is s.p.d. and if } \mu_{m+1-j} < 0 \text{ then}$
 $\ell_{j,m}^* = \rho - \gamma - \rho/(1 - \mu_{m+1-j}) \leq \lambda_j, \quad j = 1, 2, \dots, m$
 $\triangleright \ell_m^{\mathrm{LG}} = \max\{\ell_{m,i}^*, i = m, m+1, \dots, n\} \leq \lambda_m$
 $\triangleright \nu = \ell_m^{\mathrm{LG}}$
end for

Theorem

If $\nu \leq \lambda_{n+1}$ then $\ell_i^{\text{LG}} \leq \lambda_i$ for all i = 1, 2, ..., n. [Behnke, Mertins, Plum, Wieners 2000] Adaptive mesh refinement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Residual

$$w_i \in V: \quad (\nabla w_i, \nabla v) = (\nabla u_{h,i}, \nabla v) - \Lambda_{h,i}(u_{h,i}, v) \quad \forall v \in V$$

Theorem

$$\|\nabla w_i\|_{L^2(\Omega)} \leq \eta_i$$
, where $\eta_i = \|\nabla u_{h,i} - \sigma_{h,i}\|_{L^2(\Omega)}$.

Local error indicators for mesh refinement

$$\eta_{i,K} = \|\nabla u_{h,i} - \boldsymbol{\sigma}_{h,i}\|_{L^2(K)} \quad \forall K \in \mathcal{T}_h$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

★ ∃ > _ ∃

Image: A matrix and a matrix

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{W} \le \lambda_{11} \approx 10.0017$

★ ∃ > ∃

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} pprox 10.0017$

< 注→ 注

Image: A matrix and a matrix

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} pprox 10.0017$

(B)

Image: A matrix and a matrix

relative enclosure size: (Λ_{h,i} − ℓ_i)/ℓ_i
 γ = 10⁻⁶, ν := ℓ₁₁^W ≤ λ₁₁ ≈ 10.0017

Image: A matrix and a matrix

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} pprox 10.0017$

elative enclosure size 0.99 Weinstein Weinstein 10⁻¹² 10⁻¹² Kato Kato _ehmann-Goerisch Leh-Goe 10⁻¹⁴ 10⁻¹⁴ 10^{2} 10³ 10^{6} 10^{2} 10^{3} 10⁶ 10^{4} 10^{5} 10^{4} 10⁵ 10^{1} 10¹ degrees of freedom degrees of freedom

- relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{W} \le \lambda_{11} \approx 10.0017$

э

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} \approx 10.0017$

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} \approx 10.0017$

ロト 《聞 》 《臣 》 《臣 》 三臣 … のへで

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} \approx 10.0017$

ロトメロトメミトメミト ヨーのへで

э

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} \approx 10.0017$

< ∃ →

- ► relative enclosure size: $(\Lambda_{h,i} \ell_i)/\ell_i$
- $\gamma = 10^{-6}$, $\nu := \ell_{11}^{\mathrm{W}} \le \lambda_{11} \approx 10.0017$

$$-\Delta u_i = \lambda_i u_i$$
 in Ω
 $u_i = 0$ on $\partial \Omega$

Tight pairs of eigenvalues:

$$\begin{split} &4.9968370972489 \leq \lambda_5 \leq 4.9968370972490 \\ &4.9968509041015 \leq \lambda_6 \leq 4.9968509041016 \end{split}$$

 $\begin{aligned} & 7.9869672921028 \leq \lambda_7 \leq 7.9869672921038 \\ & 7.9870343068216 \leq \lambda_8 \leq 7.9870343068227 \end{aligned}$

Conclusions

- Kato and Lehmann–Goerisch methods provide lower bounds with optimal rates of convergence even for higher-order approximations
- The same flux reconstruction can be used in all methods and it can be used for adaptive mesh refinement
- Weinstein bound has suboptimal convergence rate, but it is usefull for a priori lower bounds

Thank you for your attention

Tomáš Vejchodský (vejchod@math.cas.cz)

Institute of Mathematics Czech Academy of Sciences

Supported by Neuron Fund for Support of Science, project no. 24/2016

Equadiff 2017, Bratislava, July 26