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Abstract This paper deals with the relaxation of energies of media with structured deformations

introduced by Del Pier & Owen [9–10]. Structured deformations provide a multiscale geometry

that captures the contributions at the macrolevel of both smooth and non-smooth geometrical

changes (disarrangements) at submacroscopic levels. The paper examines the special case of

Choksi & Fonseca’s energetics of structured deformations [6] in which the unrelaxed energy does

not contain the bulk contribution. Thus the energy is purely interfacial, but of a general form.

New formulas for the relaxed bulk and interfacial energies are proved. The bulk relaxed energy

is shown to coincide with the subadditive envelope of the unrelaxed interfacial energy while

the relaxed interfacial energy is the restriction of the envelope to rank 1 tensors. Moreover, it is

shown that the minimizing sequence required to define the bulk energy in the relaxation scheme

of Choksi & Fonseca [6] can be realized in the more restrictive class required in the relaxation

scheme of Baía, Matias & Santos [3], thus establishing the equivalence of the two approaches for

general purely interfacial energies. The relaxations of the specific interfacial energies of Owen &

Paroni [15] and Barroso, Matias, Morandotti & Owen [4] are simple consequences of our general

results.

AMS 2010 classification 49J45 (74A60, 74G65, 15A99)

Keywords Structured deformations, relaxation, subadditive envelope, interfacial energy, bulk

energy, functions of measures

Contents

1 Introduction Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 1

2 The main result and examples Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 3

3 Notation; functions of bounded variation Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 6

4 Preliminary results Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 8

5 The function Φ Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 10

6 Completion of the proof of Theorem 2.3 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 16

7 Derivation of the examples Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 19

8 References Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 21



1. Introduction 2

1 Introduction

This paper deals with the relaxation of nonclassical continua modeled as media with
structured deformations introduced by Del Piero & Owen [9–10].¡ In their original
setting, a structured deformation is a triplet �K Ù g ÙG � of objects of the following
nature. The set K ⊂ R

3Ù the crack site, is a subset of vanishing Lebesgue measure
of the reference region Ω, the map g Ú Ω ∼ K r R

3, the deformation map, is
piecewise continuously differentiable and injective, and G is a piecewise continuous
map fromΩ∼K to the set of invertible second order tensors describing deformation
without disarrangements.

Within this context, simple deformations are triples �K Ù g Ù∇g � where g is a
piecewise smooth injective map with jump discontinuities describing partial or full
separation of pieces of the body. In view of this, in the general case of a structured
deformation �K Ù g ÙG �Ù the tensor

M ¨ ∇g − G Ù
the deformation due to disarrangements, measures the departure of �K Ù g ÙG � from
the simple deformation �K Ù g Ù∇g �.

Choksi & Fonseca [6] introduced into the theory of structured deformations
energy considerations and the ideas of relaxation. For further studies in one and
multidimensional settings see Del Piero [7–8]. It is well-known that the existing
techniques of relaxation of the calculus of variations and continuum mechanics are
unable to cope with injectivity requirements. Accordingly, Choksi & Fonseca neglect
the injectivity requirement; in addition, they assume weaker regularity. In their inter-
pretation, structured deformations are pairs �g ÙG � where g Ú Ω r R

n is a special
R

n-valued map of bounded variation from the space SBV �Ω� and G Ú Ω r Lin is
an integrable Lin-valued map from the space L1�Ω�Ø¡¡ Thus

SD�Ω� Ú¨ SBV �Ω� � L1�Ω�
is the set of all structured deformations. Structured deformations of the form �g Ù∇g �
with g X SBV �Ω� are called simple deformations in this paper.

The relaxation starts from the energy

E�g � ¨ �
Ω

W �∇g �dv + �
J�g�

ψ �DgFÙ νg�da (1.1)

of a simple deformation g X SBV �Ω�Ø Here v and a are the Lebesgue measure and
the n − 1-dimensional Hausdorff measure in R

nÙ ∇g is the absolutely continuous
part of the derivative (¨ gradient) Dg of g Ù while the singular part

D
sg Ú¨ DgF � νga õ J�g �

is a tensor-valued singular measure describing the discontinuities of g Û that part is
formed from the jump set J�g � ⊂ Ω of g Ù the jump DgF of g on J�g �Ù and the

¡ The reader is referred to the proceedings [11] and to the recent survey [2] for additional

references and for further developments.

¡¡ For brevity of notation, we omit the target spaces and write SBV �Ω� ª SBV �ΩÙRn� and

L
1�Ω� ª L

1�ΩÙ Lin�Ø See Section 3 for more notation and detailed definitions.
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normal νg to J�g �Ø The reader is referred to (3.1), below, for a detailed description of
these objects. The material is characterized by the bulk energy density W Ú Lin r R

and by the interfacial (or cohesion) energy ψ Ú Dn r RÙ where we denote

Dn ¨ R
n � S

n−1Ø
The Approximation Theorem of Del Piero & Owen [9; Theorem 5.8] says that

every structured deformation is a well-defined limit of simple deformations. In the
framework of Choksi & Fonseca [6] (see also [17]) this means that corresponding to
each structured deformation �g ÙG � X SD�Ω� there exists a sequence �gkÙ∇gk� X
SD�Ω� (i.e., with gk in SBV �Ω�) such that

gk r g in L1�Ω�,

∇gk o G in M�ΩÙLin�Ù
sup !@∇gk@L1�Ω�

Ú k ¨ 1ÙÜ) ° ðØ











































(1.2)

The relaxed energy of a structured deformation �g ÙG � X SD�Ω� is defined by

I �g ÙG � ¨ inf!lim inf
krð

E�gk� Ú gk X SBV �Ω� satisfies (1.2))Ø

Thus, a sequence approaching the above infimum realizes the most economical way
to build up the deformation �g ÙG � using approximations in SBV Ø The relaxation
theorem of Choksi & Fonseca [6; Theorems 2.6 & 2.17 and Remark 3.3] says that
under some assumptions on W and ψ (a particular case of which is Assumption 2.1,
below), the relaxed energy admits the integral representation

I �g ÙG � ¨ �
Ω

H �∇g ÙG �dv + �
J�g�

h �DgFÙ νg�da (1.3)

where H and h are some functions determined explicitly in the cited theorems
(Theorem 2.2 presents formulas for H and h for a particular case).

This paper deals with the relaxation of energy functions E for which the bulk
contribution vanishes, i.e., with energy functions of the form

E�g � ¨ �
J�g�

ψ �DgFÙ νg�da

for each g X SBV �Ω�Ø The main result, Theorem 2.3, below, gives explicit descrip-
tions of the functions H and h from (1.3) and applies them to give simplified proofs
of two particular cases Examples 2.5 and 2.6 given previously in [15] and [4].

2 The main result and examples

We make the following standing hypotheses about ψ Ø

Assumptions 2.1.

(i) The function ψ Ú Dn r R is continuous;
(ii) we have ψ �−a Ù −b � ¨ ψ �a Ù b � and

0 ² ψ �a Ù b � ² C
1
@a@ (2.1)
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for every �a Ù b � X Dn and some C
1
± 0Û

(iii) the function ψ �ċÙ ν � is subadditive and positively homogeneous for each ν X
S
n−1.

To ease the statements of the results, we extend any function ζ Ú Dn r �0Ù ð� to
and equally denoted function ζ Ú R

n � R
n r �0Ù ð� by homogeneity with respect

to the second variable, i.e., by assuming that the extended function satisfies

ζ �a Ù t b � ¨ tζ �a Ù b �
for any t ³ 0 and �a Ù b � X R

n � R
nØ This convention applies in particular to the

functions ψ and h Ø
We need some notation to formulate the main results. Let Q ¨ �−1/2Ù 1/2�n and

for every M X Lin let wM Ú ãQ r R
n be given by

wM�x� ¨ Mx for every x X ãQ .

Furthermore, if �a Ù b � X Dn, let Qb be any cube of unit edge, of center at 0 X R
nÙ

and of two faces normal to b Ù and let zaÙb Ú Qb r R
n be the map defined by

zaÙb�x� ¨
1

2
a� sgn�x ċ b � + 1	Ù x X QbØ

Finally, if u X SBV �Ω�Ù let us put

Ψ�Dsu � Ú¨ �
J�u�

ψ �DuFÙ νu�daØ

The following statement is a particular case W ¨ 0 of the relaxation theorem of
Choksi & Fonseca [6; Theorems 2.6 & 2.17 and Remark 3.3].

Theorem 2.2. The effective energies H and h are given by

H �A ÙB� ¨ inf "Ψ�Dsu � Ú u X SBV �Q � Ú
u ¨ wA on ãQ Ù �

Q

∇u dv ¨ B* (2.2)

for each A Ù B X LinÙ and

h �a Ù b � ¨ inf "Ψ�Dsu � Ú u X SBV �Qb�Ù
u ¨ zaÙb on ãQbÙ ∇u ¨ 0 on Qb*

(2.3)

for each �a Ù b � X DnØ
The following theorem, the main result of this paper, shows that the functions W

and h admit a much more explicit description in terms of a single function ΦØ

Theorem 2.3. The functions H and h in (1.3) are given by

H �A ÙB� ¨ Φ�A − B�Ù h �a Ù b � ¨ Φ�a � b � (2.4)

for every A Ù B X Lin and �a Ù b � X DnÙ where Φ is a subadditive and positively

homogeneous function on Lin defined by each of the following equivalent Assertions

(i)–(iv); moreover, for dyadic arguments we have an additional Assertion (v).

(i) Φ is the biggest subadditive function on Lin satisfying
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Φ�a � b � ² ψ �a Ù b � for every �a Ù b � X Dn (2.5)

i.e.,

Φ�M � ¨ sup "Θ�M � Ú Θ is subadditive on Lin and

Θ�a � b � ² ψ �a Ù b � for every �a Ù b � X Dn*Û
(2.6)

(ii) for every M X LinÙ¡

Φ�M � ¨ inf"
m

�
i¨1

ψ �aiÙ bi� Ú �aiÙ bi� X DnÙ i ¨ 1ÙÜ Ùm Ù
m

�
i¨1

ai � bi ¨ M*Û
(2.7)

(iii) for every M X LinÙ
Φ�M � ¨ inf "Ψ�Dsu � Ú u X SBV �Q �Ù

u ¨ wM on ãQ Ù ∇u ¨ 0 on Q*Û (2.8)

(iv) for every M X LinÙ
Φ�M � ¨ inf "Ψ�Dsu � Ú u X SBV �Q �Ù

u ¨ wM on ãQ Ù �
Q

∇u dv ¨ 0*Û (2.9)

(v) for arguments of the form a � b , where �a Ù b � X DnÙ we have

Φ�a � b � ¨ inf "Ψ�Dsu � Ú u X SBV �Qb�Ù
u ¨ zaÙb on ãQbÙ ∇u ¨ 0 on Qb*Ø

(2.10)

The proof of Theorem 2.3 is given in Sections 5 and 6, below.

Remarks 2.4.

(a) Since the pointwise supremum of any family of subadditive functions is
subadditive (e.g., [14; Theorem 7.2.2]), Equation (2.6) really defines a subadditive
function.

(b) Among the above characterizations of ΦÙ the closely related novel forms (i)
and (ii) must be considered as the most important. The main advantage of (i) and
(ii) is that they establish connexions to the wealth of results of the convexity theory.
These will be employed to analyze the examples to be formulated below.

(c) In one dimension, one can orient the normals to jumps to be always the vector
+1 (rather than −1) and hence the dependence of ψ on the second variable can be
suppressed, ψ ¨ ψ �a�Ù a X RØ Assumption 2.1(iii) then says that ψ is subadditive
and positively homogeneous. Thus the subadditive envelopeΦ of ψ isψ itself, and all
mentions of a subadditive envelope can be avoided. This is not the case if Assumption
2.1(iii) is relaxed. Indeed, working in one dimension, Del Piero [7–8] calculated the
relaxation of the energy (1.1) with the interfacial energyψ of a general form, avoiding
Assumption 2.1(iii). His main result contains the subadditive envelope of ψ also. In
the light of the above discussion, this envelope which plays a different, but related

¡ Throughout the paper, the letter m denotes any positive integer.
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role. The relaxation of a purely interfacial energy of a more general form than that
postulated in Assumptions 2.1 in arbitrary dimension will be treated in a future paper.

(d) The expressions in (iii)–(v) already occurred previously, albeit without not-
ing that the are mutually equivalent and equivalent to (i) and (ii), except for some
particular cases to be mentioned below. The formula for H in (2.4)

1
with Φ defined

in (iv) and the formula for h in (2.4)2 with Φ defined in (v) are direct consequences
of the Choksi & Fonseca’s expressions in (2.2) and (2.3). The formula for H with Φ

given by (iii) crops up in the relaxation schemes by Baía, Matias, and Santos [3; Eq.
(3.2)] and by Barroso, Matias, Morandotti and Owen [5; Theorem 3.2]. The relaxation
schemes in the last two papers are designed for second-order structured deformations
and hence they are not strictly comparable with that of Choksi & Fonseca described
above.

(e) The infimum (iv) could be, in principle, bigger that in (iv). Nevertheless,
the infima are generally the same. This has been established previously in [4] for
the special choices of ψ described in the following examples, which motivated the
present study.

Example 2.5 ([15; Theorem 4, particular case L ¨ I ]). If

ψ@ċ@�a Ù b � ¨ @a ċ b @ and ψ±�a Ù b � ¨  a ċ b(±
for every �a Ù b � X Dn, where  ċ(+ and  ċ(− denote the positive and negative parts

of a real number, then

Φ@ċ@�M � ¨ @trM @ and Φ±�M � ¨  tr M(± (2.11)

for every M X LinØ The effective energies H@ċ@Ù H±Ù h@ċ@Ù and h± are determined

through Φ@ċ@ and Φ± by (2.4).

As shown in [15],  tr M(+ is a volume density of disarrangements due to sub-
macroscopic separations,  tr M(− is a volume density of disarrangements due to
submacroscopic switches and interpenetrations, and @trM @ is a volume density of
all three of these non-tangential disarrangements: separations, switches, and inter-
penetrations. The evaluation in [15] of H (equivalently, of Φ) for (2.11) is rather
complicated; a recent paper by Barroso, Matias, Morandotti & Owen [4] presents
some simplification and the realization of the minimizing sequence in the narrower
class (iv) in Theorem 2.3 mentioned earlier. Our version of the derivation, which in-
cludes the minimizing sequence from (iv) via Theorem 2.3 also, is given in Section 7.

Example 2.6 ([4; Equation (5.3)]). If

ψ �a Ù b � ¨ @a ċ p@

for �a Ù b � X Dn, where p X R
n is a fixed vector, then

Φ�M � ¨ @MTp@ (2.12)

for any M X Lin.
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3 Notation; functions of bounded variation

We denote by Z the set of integers, by N the set of positive integers, by S
n−1 the unit

sphere in R
nÙ by Lin the set of all linear transformations from R

n into itself, often
identified with the set of n � n matrices with real elements. We use the symbols ‘ ċ ’
and ‘@ ċ @’ to denote the scalar product and the euclidean norm on R

n and on Lin. The
latter are defined by A ċ B Ú¨ tr�ABT� and @A @ ¨

√
A ċ A where AT X Lin is the

transpose of A and tr denotes the trace.
A real-valued function f defined on a vector space X is said to be subadditive

if f �x + y � ² f �x� + f �y � for every x Ù y X X and positively homogeneous if
f �tx� ¨ tf �x� for every t ³ 0 and x X XØ

If Ω is an open subset of R
nÙ we denote by L1�Ω� the space of Lin-valued

integrable maps on ΩØ We denote by M�ΩÙLin� the set of all (finite) Lin-valued
measures on ΩØ If µ X M�ΩÙLin�Ù we denote by µ õ B the restriction of µ to a
Borel set B ⊂ ΩØ If G Ù Gk X L1�Ω�Ù k ¨ 1Ù2ÙÜ Ù we say that Gk converges to G in
the sense of measures, and write

Gk o G in M�ΩÙ Lin�Ù
if �ΩGk ċ H dv r �ΩG ċ H dv for every continuous map H Ú R

n r Lin which
vanishes outside ΩØ

We state some basic definitions and properties of the spaceBV �Ω� ¨ BV �ΩÙRn�
of maps of bounded variation and of the space SBV �Ω� ¨ SBV �ΩÙRn� special maps
of bounded variation. For more details, see [1, 12, 18], and [13].

We define the set BV �Ω� as the set of all u X L1�Ω� ¨ L1�ΩÙRn� such that
there exists a measure Du X M�ΩÙLin� satisfying

�
Ω

u ċ div T dv ¨ − �
Ω

T ċ dDu

for each indefinitely differentiable map T Ú R
n r R

n�n which vanishes outside
some compact subset ofΩ. Here divT is an R

n-valued map onΩ given by �divT �i ¨
�n
j¨1

TijÙj where the comma followed by an index j denotes the partial derivative
with respect to j th variable. The measure Du is uniquely determined and called the
weak (or generalized) derivative of u ØWe shall need the following form of the Gauss-
Green theorem for BV : if Ω is a domain with lipschitzian boundary and u X BV �Ω�
then there exist an a integrable map u ãΩ Ú ãΩ r R

n such that

Du �Ω� ª �
Ω

dDu ¨ �
ã�Ω�

u ãΩ � νΩ da

where ν
Ω

is the outer normal to ãΩØ The map u ãΩ is determined to within a change
on a set of a measure 0 and is called the trace of u Ø

We define the set SBV �Ω� as the set of all u X BV �Ω� for which Du has the
form

Du ¨ ∇u v õ Ω + DuF � νua õ J�u � (3.1)

where ∇u Ù the absolutely continuous part of Du Ù is a map in L1�Ω� and the term

D
su Ú¨ DuF � νua õ J�u �

on the right-hand side of (3.1) is called the jump (or singular) part of Du Ø The objects
J�u � ⊂ ΩÙ DuF Ú J�u � r R

n and νu Ú J�u � r S
n−1 are called the jump set of
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u Ù the jump of u and the normal to J�u �Ù respectively. Here J�u � is the set of all
x X Ω for which there exist νu�x� X S

n−1 and u±�x� X R
n such that we have the

approximate limits
u±�x� ¨ ap lim

yrx

yXH±�xÙν u �x��

u �x�Ù

whereH±�x Ù νu�x�� ¨  y X R
n Ú ±�y − x� ċ νu�x� ± 0(Ø For a given x X ΩÙ either

the triplet �νuÙ u+Ù u−� ¨ �νu�x�Ù u+�x�Ù u−�x�� does not exist or it is uniquely
determined to within the change �νuÙ u+Ù u−� w �−νuÙ u−Ù u+�. With one of these
choices, one puts DuF ¨ u+ − u− and notes that DuF � νu is unique.

Finally, we denote by 〈 r 〉 the integral part of r X RØ Clearly,

r − 1 ² 〈 r 〉 ² r and 0 ² r − 〈 r 〉 ² 1Ø (3.2)

Writing r ¨ kt Ù where t X R and k ± 0Ù and dividing by k we obtain

0 ² t − 〈 kt 〉/k ² 1/k (3.3)

and hence
〈 kt 〉/k r t as k r ð (3.4)

uniformly in t X RØ

4 Preliminary results

We put

A�M � Ú¨ !u X SBV �Q � Ú u ¨ wM on ãQ Ù ∇u ¨ 0 on Q)Ù
B �M � Ú¨ !u X SBV �Q � Ú u ¨ wM on ãQ Ù �

Q

∇u dv ¨ 0)Ù

for any M X LinØ We start with the following preliminary results.

Proposition 4.1. If A ÙB X Lin and u X B �A�Ùv X B �B�, then u +v X B �A +B�
and

Ψ�Dsu +D
sv� ² Ψ�Dsu � +Ψ�Dsv�Û (4.1)

if a�J�u � P J�v�� ¨ 0, then we have the equality sign in (4.1).

Proof We have
J�u + v� ¨ Ku T Kv T L (4.2)

where
L ¨ J�u � P J�v�Ù Ku ¨ J�u � ∼ K Ù Kv ¨ J�v� ∼ K Ø

Next, we observe that on L we have νu�x� ¨ ±νv�x� for a-almost every x X L;
since we have a freedom in the choice of the sign of νvÙ we assume νu�x� ¨ νv�x�
and denote µ ¨ νu on LØ Then

�u + v� � νu+v ¨







































�u � � νu on KuÙ
�v� � νv on KvÙ
��u � + �v�	 � µ on LØ

(4.3)
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By the subadditivity of ψ we have

ψ ��u � + �v�Ù µ	 ² ψ ��u �Ù µ	 + ψ ��v�Ù µ	 ¨ ψ ��u �Ù νu	 + ψ ��v�Ù νv	
and hence (4.3) provides

ψ ��u + v�Ù νu+v	







































¨ ψ ��u �Ù νu	 on KuÙ
¨ ψ ��v�Ù νv	 on KvÙ
² ψ ��u �Ù νu	 + ψ ��v�Ù νv	 on LØ

Integrating over J�u + v� and using (4.2) we obtain

Ψ�Dsu +D
sv� ¨ �

J�u+v�

ψ ��u + v�Ù νu+v	da

² �
Ku

ψ ��u �Ù νu	da + �
Kv

ψ ��v�Ù νv	da

+ �
L

ψ ��u �Ù νu	da + �
L

ψ ��v�Ù νv	da

¨ Ψ�Dsu � +Ψ�Dsv�Ù
which completes the proof of (4.1). è

Remark 4.2. If the interfacial energy density ψ has the special form

ψ �a Ù b � ¨ Λ�a � b � (4.4)

where Λ Ú Lin r �0Ù ð� is a subadditive and positively homogeneous function then
Ψ�Dsu � is given by

Ψ�Dsu � ¨ Λ�Dsu �
where D

su Ú¨ DuF � νua õ J�u � is the singular part of the derivative Du of u
and

Λ�Dsu � Ú¨ �
J�u�

Λ�DuF � νu�da

is an instance of Reshetnyak’s [16] functional µ w Λ�µ� of a measure µ X
M�Q Ù Lin�; see, e.g., [1; Equation (2.29)]. The subadditivity and positive homo-
geneity of of Φ (asserted in Proposition 4.1) is then an instance of the general result
[1; Proposition 2.37] asserting the same properties of the functional µ w Λ�µ�.
Indeed, if Mi X Lin and ui X A�Mi�Ù i ¨ 1Ù2Ù then u

1
+ u

2
X A�M

1
+M

2
� and

therefore

Φ�M
1
+M

2
� ² Λ�Ds�u

1
+ u

2
�	 ¨ Λ�Dsu

1
+D

su
2
� ² Λ�Dsu

1
� +Λ�Dsu

2
�Û

taking the infimum over all u
1
X A�M

1
�Ù u

2
X A�M

2
� gives

Φ�M
1
+M

2
� ² Φ�M

1
� +Φ�M

2
�Ø

The positive homogeneity of follows similarly. We note that the interfacial energies
in Examples 2.5 and 2.6 have the form (4.4), but this is not the case generally.

The following elementary result records some formulas to be employed below.
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Remark 4.3. Let Ω ⊂ R
n be an open bounded set with lipschitzian boundary. A

countable family ΩαÙ α X NÙ of pairwise disjoint subsets of Ω with lipschitzian
boundary is said to be a partition of Ω if one can write Ω ¨ Uð

α¨1
Ωα to within a

set of null Lebesgue measure. Let us agree to say that � X L1�ΩÙR� is piecewise
constant if there exists a partition Ωα such that � is constant on each ΩαØ If να is the
outer normal to Ωα and if aα is the value of � on Ωα, then � X BV �ΩÙR� if and
only if

�# �
ãΩαPãΩ

β

@aα − aβ@da Ú �α Ù β � X I+ ° ð (4.5)

where
I ¨ !�α Ù β � X N

2 Ú α ° β Ùa�ãΩα PãΩβ� ± 0)Ø
If this is the case, we have the formulas

J�� � ¨ U!ãΩα PãΩβ Ú �α Ù β � X I)Ù

D�Fν� ¨ �aα − aβ�νβ on ãΩα PãΩβ for any �α Ù β � X IÙ

D� ¨ D�Fν�a õ J�� � (4.6)

to within changes on sets of null a measure. The total variation (mass) M�D� � of
D� is equal to the sum in (4.5).

Proof Assume that (4.5) holds and prove that � X BV �ΩÙR� and that the three
formulas above hold. We note that if (4.5) holds then µ Ú¨ D�Fν�a õ J�� � is a
(“finite”) measure in M�ΩÙRn�Ø Let us prove that µ is the weak derivative of � Ù
which will also prove � X BV �ΩÙR�Ø Thus we have pro rove that

�
Ω

�∇f dv ¨ − �
J���

f D�Fda (4.7)

for every class infinity function f with support in ΩØ The application of the Gauss-
Green theorem to each of the sets Ωα provides

�
Ωα

�∇f dv ª aα �
Ωα

∇f dv ¨ aα �
ãΩα

f ναdaØ

Summing these equations over all α and using that να ¨ −νβ one obtains (4.7) and
hence we have � X BV �ΩÙR�, (4.6) and all the remaining assertions of the remark.
The converse implication is proved by reversing the above arguments. è

5 The function Φ

The goal of this section is to prove that the functions defined in Items (i), (ii), (iii),
and (iv) of Theorem 2.3 coincide. We denote these functions by Φ

1
ÙΦ

2
ÙΦ

3
Ù and Φ

4
Ù

respectively, and prove that they are the same by establishing the following cycle of
relations:

Φ
1
³ Φ

2
³ Φ

3
³ Φ

4
¨ Φ

1
Ø
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Proposition 5.1. Φ
1
³ Φ

2
Ø

Proof It is easy to show that Φ
2

is a subadditive function. Thus the definition of Φ
1

gives the assertion. è
The proof of the following lemma contains a construction of the central mini-

mizing sequence uk X A�M � for Theorem 2.3(iii). This sequence will be defined as
the superposition of (a slight modification of) the sequence of step deformations skÙ
k ¨ 1ÙÜ Ù defined on Q by

sk�x� ¨ k−1a 〈 k x ċ b 〉Ù
x X Q Ø Clearly, ∇sk ¨ 0 and in view of (3.4),

sk�x� r a�x ċ b � on Q

as k r ðØ Thus sk satisfies the boundary condition sk ¨ wa�b on ãQ in the
asymptotic sense; however, the definition of A�a � b � requires the exact form of
that boundary condition. For this reason, we have to slightly modify sk near the
boundary ãQ without violating the equation ∇sk ¨ 0.

Lemma 5.2. If M X Lin and �aiÙ bi� X DnÙ i ¨ 1ÙÜ Ùm Ù satisfy

M ¨
m

�
i¨1

ai � bi

then there exists a sequence uk X A�M �Ù k ¨ 1ÙÜ Ù such that

lim sup
krð

Ψ�Dsuk� ²
m

�
i¨1

ψ �aiÙ bi�Ø (5.1)

We refer to Remark 5.3 for a mild condition on the sequence �aiÙ bi� that guarantees
that the lim sup in (5.1) strengthens to lim and the inequality sign to the equality
sign.

Proof We shall first construct the sequence uk for the particular case whenM ¨ a�b

is a dyad and then superimpose the sequences corresponding to the dyads ai � biÙ
i ¨ 1ÙÜ Ùm Ù to obtain the general case. Thus let �a Ù b � X Dn and construct a
sequence uk X A�a � b �, k ¨ 1ÙÜ Ù such that

lim
krð

Ψ�Dsuk� ¨ ψ �a Ù b �Ø (5.2)

Introduce the sets

Ck ¨ �1 − k−2�Q Ù Ll ¨ �1 − �l + 1�−2�Q ∼ �1 − l−2�Q Ù
k Ù l X N and observe that

Q ¨ Ck T
ð

U
l¨k

Ll (5.3)

with mutually disjoint summands for any k X NØ Here the multiple tS of a set
S ⊂ R

n by a real number t is defined by tS ¨  t x Ú x X S(Ø Equation (5.3) presents
a decomposition of Q into the main set Ck which is a large subset of Q for large k Ù
while LkÙ Lk+1

Ù Ü present infinitely many rectangular layers filling the gap Q ∼Ck

and refining more and more towards the boundary of Q Ø
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We use these sets CkÙ LkÙ Lk+1
Ù Ü Ù to define a sequence of scalar functions

�k Ú Q r R, k ¨ 2ÙÜ Ù by

�k�x� ¨






















�k − 1�−2〈 �k − 1�2x ċ b 〉 if x X CkÙ
l−2〈 l 2x ċ b 〉 if x X Ll for some l ³ k Ø

(5.4)

Let us use Remark 4.3 to prove that �k X BV �Q ÙR�Ø Clearly, �k is a piecewise
constant function in the sense of that remark. Using (3.2)

1
, one finds that x ċ b − 1 ²

�k�x� ² x ċ b Û hence @�k@ is bounded on Q and thus �k X L1�Q ÙR�Ø It remains to
verify (4.5). Let us show that in the present case (4.5) reads

�
J��

k
�

∣

∣D�kF
∣

∣da ° ðÙ (5.5)

where

J��k� ¨ C�
k T

ð

U
l¨k

�L�
l T Lã

l � (5.6)

is the jump set, with

C�
k ¨ !x X Ck Ú k 2x ċ b X Z)Ù

L�
l ¨ !x X Ll Ú l 2x ċ b X Z)Ù Lã

l ¨ �1 − l−2�ãQ Ù
and on J��k�,

D�kFν�k
¨















































�k − 1�−2b on C�
k Ù

l−2b on L�
l where l ³ k Ù

ηlνk on Lã
l where l ³ k Ù

(5.7)

is the jump and normal to the jump set, with

ηl�x� ¨ l−2〈 l 2x ċ b 〉 − �l − 1�−2〈 �l − 1�2x ċ b 〉
and with νk denoting the outer normal to the scaled cube �1 − k−2�Q . The formulas
(5.6) and (5.7) follow from the identifications given in Remark 4.3. One has to
enumerate the regions of constancy of �k in an arbitrary way to obtain the system of
sets ΩαÙ α ¨ 1ÙÜ Ù and use the formulas of that remark. The details are left to the
reader. This establishes the equivalence of the inequalities (4.5) and (5.5). To prove
that (5.5) really holds, one finds from (5.7) that

�
J�u

k
�

∣

∣D�kF
∣

∣da ¨ �k − 1�−2
a�C�

k � +
ð

�
l¨k

l−2
a�L�

l � +
ð

�
l¨k

�
Lã
l

@ηl@daØ (5.8)

We estimate the terms a�C�
k �Ùa�L�

l � and �Lã
l
@ηl�x�@da as follows. First, prove

that
∣

∣

a�C�
k � − �k − 1�2v�Ck�

∣

∣ ² 2n Ù
∣

∣

a�L�
l � − l 2v�Ll�

∣

∣ ² 4n (5.9)

and hence

a�C�
k � ² 2n + �k − 1�2v�Ck�Ù a�L�

l � ² 4n + l 2v�Ll�Ø (5.10)

Let us prove (5.9)
2

; the proof of (5.9)
1

is similar. Let ω Ú Ll r R be defined by
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ω�x� ¨ l 2x ċ b − 〈 l 2x ċ b 〉Ù x X LlØ
Then ω X BV �LlÙR�, Dω ¨ l 2b − ba õ L�

l and hence the Gauss-Green theorem
yields

Dω�Ll� ¨ l 2v�Ll�b − ba�L�
l � ¨ �

ãL
l

ωνLl
daÙ

from which
@mv�Ll� −a�L�

l �@ ² �
ãL

l

@ω @daØ

We now observe that @ω @ ² 1 on ãLl and ãLl ¨ Lã
l+1

T Lã
l

. Thus

�
ãL

l

@ω @da ² a�Lã
l+1

� +a�Lã
l � ² 4n

since, elementarily, a�Lã
l+1

� ² 2n Ù a�Lã
l � ² 2n . Thus we have (5.9)

2
. Next prove

that
@ηl�x�@ ² 2�l − 1�−2 on Lã

l Ø
Indeed, writing

@ηl�x�@ ¨ @�l−2〈 l 2x ċ b 〉 − x ċ b 	 − ��l − 1�−2〈 �l − 1�2x ċ b 〉 − x ċ b 	@Ù
using the triangle inequality and the inequality (3.3) twice, with t ¨ x ċ b and k ¨ l 2

and k ¨ �l − 1�2, one obtains

@ηl�x�@ ² l−2 + �l − 1�−2 ² 2�l − 1�−2Ø
and hence

�
Lã
l

@ηl@da ² 2�l − 1�−2
a�Lã

l � ² 4n�l − 1�−2Ø (5.11)

The estimates (5.10) and (5.11) and the formula (5.8) provide

�
J�u

k
�

∣

∣D�kF
∣

∣da ² 2n�k − 1�−2 + v�Ck�

+
ð

�
l¨k

�4nl−2 + v�Ll�� +
ð

�
l¨k

4n�l − 1�−2

² 1 + 2n�k − 1�−2 + 8n
ð

�
l¨k

�l − 1�−2 ° ð

where we have used

v�Ck� +
ð

�
l¨k

v�Ll� ¨ v�Q � ¨ 1Ø

Thus we have (5.5); hence �k X BV �ΩÙR� for every k and

D�k ¨ D�kFν�k
a õ J��k�

and
∇�k ¨ 0Ø (5.12)

Finally, note that the boundary trace � ã
k of �k on ãQ satisfies

� ã
k�x� ¨ x ċ b for every x X ãQ Ø (5.13)
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While a rigorous proof of this can be given by using the essential limit of �k at x X Q Ù
we here only note that the definition of �k yields that

lim
jrð

�k�xj� ¨ x ċ b (5.14)

for any x X ãQ and any sequence xj X Q converging to x Ø For this it suffices to note
that in view of (5.3) one finds that xj must belong to some Ll for some l ¨ l �j � ³ k Ø
The limit xj r x then implies that l �k � r ð and then the definition (5.4) and the
formula (3.4) provide (5.14).

We define the sequence uk Ú Q r R
nÙ k ¨ 2ÙÜ Ù by

uk�x� ¨ a�k�x�
for every x X Q Ø By �k X SBV �Q ÙR� and by (5.12) and (5.13) we have uk X
A�a � b �Ø Further, DukF ¨ D�kFa � ν�k

Û consequently, by (5.7),

ψ �DukFÙ νuk
	 ¨















































�k − 1�−2ψ �a Ù b � on C�
k Ù

l−2ψ �a Ù b � on L�
l for any l ³ k Ù

ψ �ηla Ù νl	 on Lã
l for any l ³ k

and hence

Ψ�Dsuk� ¨ �
J�u

k
�

ψ �DukFÙ νuk
	 da ¨ �k − 1�−2ψ �a Ù b �a�C�

k � + ρk (5.15)

where

ρk ¨
ð

�
l¨k

l−2ψ �a Ù b �a�L�
l � +

ð

�
l¨k

�
Lã
l

ψ �ηla Ù νl	daØ

Dividing (5.9)
1

by �k − 1�2Ù we obtain

�k − 1�−2
a�C�

k � r 1 (5.16)

sincev�Ck� r 1Ø Using (2.1), we obtain that the nonnegative number ρk is bounded
by a (constant multiple of) the quantity

dk ¨
ð

�
l¨k

l−2
a�L�

l � +
ð

�
l¨k

�
Lã
l

@ηl@da

²
ð

�
l¨k

v�Ll� + 2n�k − 1�−2 + 4n
ð

�
l¨k

�l − 1�−2

² k−2 + 2n�k − 1�−2 + 4n
ð

�
l¨k

�l − 1�−2

and hence ρk r 0Ø Equations (5.15) and (5.16) then yield (5.2).
We now complete the proof in the general case. By the preceding part of the proof,

for each i X  1ÙÜ Ùm( there exists a sequence u i
k X A�ai � biÙ0�, k ¨ 1ÙÜ Ù such

that
Ψ�Dsu i

k� r ψ �aiÙ bi� (5.17)

as k r ð. Define uk Ú¨ �m
i¨1

u i
k for every k Ø By (4.1) we have

Ψ�Dsuk� ²
m

�
i¨1

Ψ�Dsu i
k�Ø (5.18)
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Hence

lim sup
krð

Ψ�Dsuk� ² lim
krð

m

�
i¨1

Ψ�Dsu i
k� ¨

m

�
i¨1

ψ �aiÙ bi�

by (5.17). è
Remark 5.3. If the sequence �aiÙ bi� satisfies the condition

bi © bj and bi © −bj whenever 1 ² i ° j ² m Ù (5.19)

then the sequence uk can be chosen as to satisfy, instead of the inequality (5.1), the
equality

lim
krð

Ψ�Dsuk� ¨
m

�
i¨1

ψ �aiÙ bi�Ø

Indeed, the inspection of the proof of Lemma 5.2 shows that the source of the
inequality (5.1) is the subadditivity in (5.18) which cannot be replaced by the equality
unless the discontinuity sets J�ui� pairwise intersect on a set of nulla-measure (see
Proposition 4.1). Condition (5.19) guarantees that. However, Inequality (5.1) suffices
for our purposes.

Proposition 5.4. Φ
2
³ Φ

3
³ Φ

4
Ø

Proof To prove Φ
2
³ Φ

3
Ù we take any sequence �aiÙ bi� X Dn, i ¨ 1ÙÜ Ùm Ù

such that �m
i¨1

ai � bi ¨ M and consider the infimum as in the definition of Φ
2

in
(2.7). Hence, for the given sequence �aiÙ bi� X Dn, we construct a sequence of maps
uk X A�M �Ù k ¨ 1ÙÜ Ù as in Lemma 5.2. Then

Φ
3
�M � ² Ψ�Dsuk�

by the definition of Φ
3
Ø Letting k r ð and using (5.1), we obtain

Φ
3
�M � ²

m

�
i¨1

ψ �aiÙ bi�Ø

Taking the infimum over all sequences aiÙ bi, one obtains from the definition of Φ
2

the inequality Φ
3
�M � ² Φ

2
�M �Ø The inequality Φ

3
³ Φ

4
is immediate. è

Proposition 5.5. Φ
4
¨ Φ

1
Ø

Proof We seek to prove that Φ
4

is the biggest subadditive function satisfying
Φ

4
�a � b � ² ψ �a Ù b � for any �a Ù b � X Dn. To prove the subadditivity of Φ

4
Ù let

A Ù B X Lin and u X B �A�Ù v X B �B�Ø Proposition 4.1 and (2.8) yield u + v X
B �A + B� and

Φ
4
�A + B� ² Ψ�Dsu +D

sv� ² Ψ�Dsu � +Ψ�Dsv�Ø
Taking the infimum over all u Ù and v then gives the subadditivity

Φ
4
�A + B� ² Φ

4
�A� +Φ

4
�B�Ø

Next we note that the biggest subadditive function Θ such that

Θ�a � b � ² ψ �a Ù b � (5.20)

for any �a Ù b � X Dn is automatically positively homogeneous; thus it suffices to prove
the maximality of Φ

4
among all subadditive and positively homogeneous functions
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satisfying (5.20). Thus let Θ be such function and let M X Lin and u X B �M �Ø
Then by (5.20) and by Jensen’s inequality for positively homogeneous subadditive
functions

Ψ�Dsu � Ú¨ �
J�u�

ψ �DuFÙ νu�da

³ �
J�u�

Θ�DuF � νu�da

³ Θ� �
J�u�

DuF � νuda�Ø

(5.21)

We now combine the boundary condition u ¨ wM onãQ and the relation �Q∇u dv ¨
0 with the Gauss-Green theorem to obtain

�
J�u�

DuF � νu da ¨ �
J�u�

DuF � νu da + �
Q

∇u dv

¨ �
Q

1dDu

¨ �
ãQ

Mx � νQ da ¨ M Ø

Thus (5.21) yields
Ψ�Dsu � ³ Θ�H �Ø

Taking the infimum over all u X B �M �Ù we obtain Φ
4
�M � ³ Θ�M �Ø è

This proves Φ
1
¨ Φ

2
¨ Φ

3
¨ Φ

4
. We define the function Φ by Φ ¨ Φ

1
Ø

6 Completion of the proof of Theorem 2.3

For this section, we put, for every �a Ù b � X DnÙ
C�a Ù b � Ú¨ !u X SBV �Qb� Ú u ¨ zaÙb on ãQbÙ ∇u ¨ 0 on Qb)

and denote by Φ
5
�a Ù b � the infimum in (2.10). We then extend Φ

5
to R

n � R
n by

homogeneity in the second variable.

Proposition 6.1. We have W �A ÙB� ¨ Φ�A − B� for every A Ù B X Lin.

Proof We employ Theorem 2.2 and the definition of Φ in (2.9). Invoking (2.2), we
take any u X SBV �Q � satisfying u ¨ wA on ãQ Ù and �

Q

∇u dv ¨ B Ø Then vÙ given

byv�x� ¨ u �x�−Bx , x X Q Ù satisfies v X B �A −B� andΨ�Dsu � ¨ Ψ�Dsv�Ø è
Lemma 6.2. We have Φ

5
�a Ù b � ² Φ�a � b � for every �a Ù b � X DnØ

Proof Let �a Ù b � X Dn and let �aiÙ bi� X DnÙ i ¨ 1ÙÜ Ùm Ù be a sequence satisfying

a � b ¨
m

�
i¨1

ai � biØ (6.1)

Our goal is to construct a sequence uk X C�a Ù b �Ù k ¨ 1ÙÜ Ù such that

lim sup
krð

�
J�uk �

ψ �DukFÙ νuk
�da ²

m

�
i¨1

ψ �aiÙ bi�Ø (6.2)
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To define ukÙ let

P ¨ !x X R
n Ú x ċ b ¨ 0)

be the plane through the origin perpendicular to b Ù let Π be the projection from R
n

onto P Ù let

F ¨ P P Qb

and put

Bk ¨ !x X R
n Ú Π�x� X �1 − k−1�F Ù 0 ² x ċ b ° k−1)

for any k X NØ Define uk Ú Qb r R
n by

uk�x� ¨


















vk�x� if x X BkÙ
zaÙb�x� else,

x X QbÙ where

vk�x� ¨
m

�
i¨1

k−1ai〈 k 2x ċ bi〉 for any x X R
n and k X NØ

Employing Remark 4.2, we see that uk X SBV �Qb�Û furthermore, clearly, uk ¨ zaÙb
on ãQb and ∇uk ¨ 0 on Qb; hence uk X C�a Ù b �Ø

We proceed to prove (6.2). We have

J�uk� ¨ Nk TMk T Lk T Sk (6.3)

where

Nk ¨ F ∼ �1 − k−1�F Ù
Mk ¨ !x X ãB Ú 0 ° x ċ b ° k−1)Ù
Sk ¨ !x X R

n Ú Π�x� X �1 − k−1�F Ù x ċ b ¨ k−1)Ù
Lk ¨

m

U
i¨1

Li
k where Li

k ¨ !x X Bk Ú k 2x ċ bi X Z)Ø

(6.4)

The jump of uk and the normal to the jump set are

DukF�x�νuk
�x� ¨











































































k−1
m

�
i¨1

ai � bi 1Li
k
�x� if x X LkÙ

a � b if x X NkÙ
�a − vk�x�� � νk if x X MkÙ
�a − vk�x�� � b if x X SkÙ

x X J�uk�Ù where νk is the outer normal to Bk and 1
Li
k

is the characteristic function

of the set Li
kØ Hence the subadditivity of ψ in the first variable yields

�
Lk

ψ �DukFÙ νuk
�da ² k−1

m

�
i¨1

ψ �aiÙ bi�a�Li
k�Û

consequently
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�
J�uk �

ψ �DukFÙ νuk
�da ² k−1

m

�
i¨1

ψ �aiÙ bi�a�Li
k�

+ ψ �a Ù b �a�Nk�

+ �
M

k

ψ �a − vk�x��Ù νk�da

+ �
S
k

ψ �a − vk�x��Ù b �da Ø

(6.5)

Let us now analyze the terms on the right-hand side of (6.5). Using the considerations
as in the proof of Lemma 5.2 (see (5.9) and (5.10)) one finds that

k−1
a�Li

k� r 1

as k r ð for every i ¨ 1ÙÜ Ùm Ø Thus

k−1
m

�
i¨1

ψ �aiÙ bi�a�Li
k� r

m

�
i¨1

ψ �aiÙ bi�Ø (6.6)

Further,
ψ �a Ù b �a�Nk� r 0 (6.7)

since, obviously,
a�Nk� r 0Ø

Next, note that by (6.1) and (3.3),

@k a�x ċ b � − vk�x�@ ¨ @k a�x ċ b � −
m

�
i¨1

k−1ai〈 k 2x ċ bi〉@

¨
∣

∣k
m

�
i¨1

�ai�x ċ bi� − k−2ai〈 k 2x ċ bi〉	
∣

∣

² k
m

�
i¨1

@ai@@�x ċ bi� − k−2〈 k 2x ċ bi〉@
∣

∣

² k−1
m

�
i¨1

@ai@Ø

Then if x X MkÙ
@a −vk�x�@ ² @a − k a�x ċ b �@ + @k a�x ċ b � − vk�x�@

² @a@ + k @a@@x ċ b @ + k−1
m

�
i¨1

@ai@

² @a@ + @a@ + k−1
m

�
i¨1

@ai@

since k @x ċ b @ ² 1 on MkØ Thus @a − vk�x�@ ² c ° ð for any x X Mk and any
k ¨ 1ÙÜ A combination with (2.1) and

a�Mk� r 0

then provides

�
M

k

ψ �a − vk�x��Ù νk�da r 0Ø (6.8)
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Similarly, if x X Sk then k x ċ b ¨ 1 and hence

@a − vk�x�@ ² @k a�x ċ b � − vk�x�@ ² k−1
m

�
i¨1

@ai@ r 0Ø

Thus (2.1) yields

�
S
k

ψ �a − vk�x��Ù b �da r 0 (6.9)

since a�Sk� ² 1 for all k Ø Consequently, a combination of (6.5) with (6.6)–(6.9)
provides (6.2) and hence the definition of Φ

5
gives

Φ
5
�a Ù b � ²

m

�
i¨1

ψ �aiÙ bi�

for any sequence �aiÙ bi� satisfying (6.1). Taking the infimum of the right-hand side
over all such sequences and using the definition of Φ

2
ª Φ we obtain the assertion.

è

Lemma 6.3. We have Φ
5
�a Ù b � ³ Φ�a � b � for every �a Ù b � X DnØ

Proof Let u X C�a Ù b �Ø Then, by Jensen’s inequality,

�
J�u�

ψ �DuFÙ νu�da ³ �
J�u�

Φ�DuF � νu�da

³ Φ� �
J�u�

DuF � νuda


¨ Φ�a � b �
since the boundary condition u ¨ zaÙb on ãQb implies

�
J�u�

DuF � νuda ¨ a � b Ø

That is, we have
�

J�u�

ψ �DuFÙ νu�da ³ Φ�a � b �

for every u X C�a Ù b �Ø Taking the infimum, we obtain Φ
5
�a Ù b � ³ Φ�a � b �Ø è

Proposition 6.4. We have h �a Ù b � ¨ Φ�a � b � for every �a Ù b � X DnØ
Proof This follows immediately from (2.3) and (2.10). è

This completes the proof of Theorem 2.3.

7 Derivation of the examples

Example 2.5. Equation (2.11): We consider ψ@ċ@�a Ù b � ¨ @a ċ b @ first, and prove
(2.11)

1
Ø Clearly, the function Θ�M � ¨ @trM @ is a subadditive function satisfying

(2.5) with ψ ¨ ψ@ċ@ and hence (2.7) gives Φ@ċ@�M � ³ @trM @ for any M X Lin. To
prove the opposite inequality, we note that the definition (2.6) of Φ@ċ@ gives

ψ@ċ@�a Ù b � ¨ Θ�a � b � ² Φ@ċ@�a � b � ² ψ@ċ@�a Ù b �



7. Derivation of the examples 20

for every �a Ù b � X Dn and hence

Φ@ċ@�a � b � ¨ @a ċ b @ and in particular Φ@ċ@�a � b � ¨ 0 if a ċ b ¨ 0

which determines Φ@ċ@ on tensor products a � b Ø As a consequence, if N X Lin can
be written as

N ¨
m

�
i¨1

ai � bi (7.1)

where �aiÙ bi� X R
n � R

n, i ¨ 1ÙÜ Ùm Ù where

ai ċ bi ¨ 0 for all i ¨ 1ÙÜ Ùm Ù (7.2)

then Φ@ċ@�N � ¨ 0 since

0 ² Φ@ċ@�N � ²
m

�
i¨1

Φ@ċ@�ai � bi� ²
m

�
i¨1

ψ �aiÙ bi� ¨
m

�
i¨1

@ai ċ bi@ ¨ 0Ø

To determine Φ@ċ@ on a general M X LinÙ we write M ¨ A + W where A and W

are the symmetric and skew parts of M . Let e
1
ÙÜ Ù en be an orthonormal basis of

eigenvectors of A with the eigenvalues λi; hence A ¨ �n
i¨1

λiei � eiØ Then

M ¨ B + N

where
B ¨ �tr M �e

1
� e

1
Ù

N ¨ W +
n

�
i¨2

λi�ei � e
1
− e

1
� ei − �e1 + ei� � �e

1
− ei�	Ø

Since W is a linear combination of the dyads ei� ejÙ 1 ² i © j ² n Ù one sees that N
is of the form (7.1), (7.2) and hence Φ@ċ@�N � ¨ 0Û consequently

Φ@ċ@�M � ² Φ@ċ@�B� +Φ@ċ@�N � ¨ Φ@ċ@�B� ¨ ψ ��tr M �e
1
Ù e

1
	 ¨ @trM @Ø

Equations (2.4) complete the proof of (2.11)1Ø
To prove the two equations in (2.11)

2
, we employ (2.11)

1
and (2.11)

2
as follows.

One has ψ±�a Ù b � ¨ 1

2
�@a ċ b @ ± a ċ b 	 and hence if �aiÙ bi� X Dn and M X Lin

satisfy �m
i¨1 ai � bi ¨ M then

m

�
i¨1

ψ±�aiÙ bi� ¨
1

2
�

m

�
i¨1

ψ@ċ@�aiÙ bi� ± trM
Ø

Taking the infimum as in (2.7) and using the above evaluation of Φ@ċ@ gives

Φ±�M � ¨ 1

2
�Φ@ċ@�M � ± tr M	 ¨ 1

2
�@trM @ ± trM	 ¨  tr M(±

which is (2.11)
2

. è
Example 2.6. Equation (2.12): The function Θ�M � ¨ @MTp@ is a subadditive
function satisfying (2.5) and we obtain in the same way as in the proof of Example
2.5 that Φ�M � ³ @MTp@ for any M X Lin and

Φ�a � b � ¨ @a ċ p@Ù and in particular Φ�a � b � ¨ 0 if a ċ p ¨ 0Ø (7.3)

To prove Φ�M � ² @MTp@Ù we assume without loss in generality that @p@ ¨ 1 and let
 p Ù e

2
ÙÜ en( be any orthonormal basis. In view of I ¨ p � p + �n

i¨2
ei � ei we

have
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M ¨ IM ¨ p � MTp +
n

�
i¨2

ei � MTeiÛ

normalizing the second members of the dyads, we obtain

M ¨ @MTp@p � sgn�MTp� +
n

�
i¨2

@MTei@ei � sgn�MTei�Ø

The subadditivity of Φ provides

Φ�M � ² Φ�@MTp@p� sgn�MTp�	+
n

�
i¨2

@Φ�MTei@ei� sgn�MTei�	 ¨ @MTp@

by (7.3). Thus Φ�M � ² @MTp@ and the proof of (2.12) is complete. è
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