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Abstract

Let M be a transitive model of set theory. There is a canonical inter-
pretation functor between the category of regular Hausdorff, continuous
open images of Cech-complete spaces of M and the same category in V,
preserving many concepts of topology, functional analysis, and dynamics.
The functor can be further canonically extended to the category of Borel
subspaces. This greatly simplifies and extends similar results of Fremlin.

1 Introduction

A powerful trick set theorists may employ in proving a statement ¢ with pa-
rameters is to move to a different model of set theory, prove that ¢ holds there,
and then pull back the statement to the original universe. The trick requires
knowledge about how the parameters and the formula ¢ survive the transporta-
tion between various models of set theory. While there are deep results in this
direction such as Shoenfield absoluteness [4, Theorem 25.20] or Woodin’s X2
absoluteness [5, Theorem3.2.1], the current wave of applications of logic and set
theory to complicated topological structures seems to present new challenges
here. In this paper, I will show that for transitive models M C V of set theory
with the axiom of choice, there is an intepretation functor from a broad cate-
gory of topological structures in the model M to a similar category in V. The
functor satisfies most if not all reasonable demands on canonicity, it commutes
with most natural topological operations, and happily interacts with many fun-
damental theorems of various areas of mathematics. As a result, a rich theory is
obtained that supports and clarifies various absoluteness tricks popular among
set theorists, and extends them to a much larger category of spaces than the
usual Polish spaces.

The definition of interpretation of a topological space is natural, but nec-
essarily a little verbose. It is reminiscent of the construction of Cech-Stone
compactification. Just to be explicit, a topological space is a pair (X, 7) where
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X is a set and 7 is a collection of its “open” subsets which is closed under arbi-
trary unions and finite intersections. I will always require the topological spaces
in this paper to be Ty.

Definition 1.1. Suppose that M is a transitive model of set theory, M |=
(X, 7) is a topological space. A topological preinterpretation of X (over M) is
a topological space (X 7) together with a map 7: X — X and 7: 7 — 7 such
that

1. for every point € X and every set O € 7, € O if and only if 7(z) €
m(0);

2. w commutes with finite intersections and arbitrary unions of open sets
in the model M: if M = O = |J;c; O;i where O,0; € 7, then 7(0) =
UiGI m(05);

3. 7”1 generates the topology 7.

It is easy to observe that the two parts of the map 7 can be reconstructed from
each other if (1-3) hold, which justifies using the same letter for the map on
points and on open sets in the model M. There are many preinterpretations of
a given topological space and it is necessary to organize them.

Definition 1.2. Suppose that M | (X, 7) is a topological space. Suppose
that mo: X — X and m1: X — X1 are two preinterpretations of X. Say that
mo < mq if there is a reduction h: XO — Xl, this is a map such that 7 = homg
and h=17;(O) = my(O) for every open set O € 7. Say that 7o, 71 are equivalent
if there is a reduction h which is at the same time a bijection of Xo and Xl.

It is not difficult to show that 7wy and 7, are bireducible if and only if they are
equivalent. I will not distinguish between two equivalent preinterpretations. The
stage is now set for the definition of an interpretation as the most complicated
preinterpretation of a given space.

Definition 1.3. Suppose that M = (X, 7) is a topological space. An interpre-
tation of X is the <-largest preinterpretation, if it exists.

Definition 1.4. Suppose that M = X,Y are topological spaces and f: X —
Y is a continuous function. Suppose that 7: X — X and x:Y — Y are
interpretations. An interpretation f of f is a continuous function from XtoY

such that f(m(z)) = x(y) whenever f(z) = y.

The obvious question regarding the existence and uniqueness of interpreta-
tions is answered in the affirmative in the very wide case of regular Hausdorff
spaces. However, one also has to consider the general expectation that the no-
tion of interpretation will commute with the most usual topological operations.
To satisfy expectations of this kind, it appears to be necessary to restrict atten-
tion to the category of interpretable spaces: the regular Hausdorff continuous
open images of Cech-complete spaces. In this category, I develop a completely



harmonious theory of interpretations, starting with continuous functions, inter-
pretations of Borel sets, subspaces, product etc. all the way to interpretations
of structures such as duals of Banach spaces etc. I supply a long list of natural
operations which commute with the interpretation functor, and a long list of
properties which are inherited by the interpretations from their original spaces
and structures.

To deal with the very large class of spaces which are not interpretable, I
develop the notion of an interpretable Borel space: this is a topological space
with a Borel structure which is a Borel subspace of an interpretable space. An
interpretation of a Borel interpretable space is required to commute not only
with finite intersections and arbitrary unions of open sets, but also with com-
plements and countable unions and intersections of Borel sets. Many expected
commutativity properties do hold for the interpretation functor on the class of
Borel interpretable spaces.

The overlap with earlier work of Fremlin [2] needs elaboration. Fremlin
computes essentially the same functor in the special case that V is a generic
extension of M. The presentation here has the advantage that it is free of the
forcing relation, except for the treatment of several examples. As a result, the
theory is much easier to develop and understand. This way, it was possible to
get much farther in the study of interpretations of structures. A great number
of theorems in this paper has no counterpart in Fremlin’s work.

The terminology of the paper follows the set theoretic standard of [4]. One
piece of parlance is used constantly. Suppose that M is a model of set theory
and M E (X,7) is a topological space. Suppose that (X,%) is a topological
space. If m: X — X is a map, I say that m extends to an interpretation if
there is a way of defining m for all open sets such that the resulting map is
a topological interpretation of (X, 7) to <X ,7). The extension is unique as
described in Definition 5.12.

2 Breakdown of results

The paper is quite long and contains many results. To simplify navigation for the
reader, I include the list of main results in an instructive order in this section.
The starting point is the proof of existence of interpretations of topological
spaces and of continuous functions between them.

Theorem 2.1. (Theorem 4.1 simplified) Interpretations of reqular Hausdorff
spaces exist, they are unique, and they are regular Hausdorff again. (The-
orem 4.7 simplified) Interpretations of continuous functions between regular
Hausdorff spaces exist and they are unique.

It should be stressed that for the general category of regular Hausdorff
spaces, the interpretation functor is fairly poorly behaved: injective functions
may cease to be injective, interpretations may fail to commute with product and
so on. Many examples of pathologies are provided throughout the paper. It is
natural to immediately restrict to various subcategories of interpretable spaces.



It turns out that if a space has a certain completeness feature then the feature
typically survives the interpretation process.

Theorem 2.2. The following spaces are interpreted as spaces in the same cat-
egory:

1. (Corollary 5.3 simplified) compact Hausdorff spaces;
2. (Corollary 5.5 simplified) completely metrizable spaces;

3. (Corollary 5.8) complete uniform spaces as long as the uniformity consists
of countably many covers;

4. (Corollary 5.10) Cech complete spaces;
5.

(Corollary 5.11) interpretable spaces.

The method of proof also provides for a testable criterion (Proposition 5.13 as
to whether a given map into a “complete” space extends to an interpretation or
not. Next, I spend a great deal of effort to show that the interpretation functor
commutes with natural operations on topological spaces.

Theorem 2.3. In the category of interpretable spaces, the interpretation functor
commutes with the following operations:

1. (Corollary 6.10 simplified) taking a closed or G5 subspace;
Theorem 7.2 simplified) product of compact Hausdorff spaces of any size;
Theorem 7.4 simplified) product of countably many spaces;

Corollary 9.2 simplified) quotients modulo an open equivalence relation;

Corollary 9.6 simplified) quotients modulo a perfect equivalence relation;
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Theorem 11.1 simplified) the C(X,Y) operation where X is compact
Hausdorff, Y is completely metrizable, and the topology is the compact-
open one;

7. (Theorem 10.1 simplified) the hyperspace operation on interpretable spaces.
Here, the hyperspace is understood to consist of nonempty compact sets
and the topology is Vietoris.

As soon as one steps out of the interpretable category, the commutativity
features begin failing. Thus, the commutation with product may fail for Baire
space times the space of wellfounded trees or the product of Sorgenfrey line with
itself. The commutation with uncountable product will fail for w®“?.

It is interesting to see how the interpretation functor acts on various topo-
logical structures. One common circumstance is that various predicates on such
structures are Borel, and a theorem to the effect that they are interpreted faith-
fully is needed:



Theorem 2.4. (Theorem 6.1) Let M be a transitive model of set theory and
M E=(X,7) is an_interpretable space, and B is the o-algebra of Borel subsets of
X. Let m: X — X be an interpretation, and let B be the o- algebra of Borel sub-
sets ofX. There is a unique extension mw: B — B commuting with complements
and countable unions and intersections in the model M.

Now, define an interpretable structure to be a tuple X =(X;: i € I,R;: j €
J, fr: k € K) such that X; are interpretable spaces, R; are Borel relations
between the various spaces X; for various finite arities, and f; are continuous
functions between the various spaces, with closed or G5 domains and various
finite arities. Interpretable structures can be naturally interpreted between tran-
sitive models of set theory and its extensions via the previous theorems. The
main result in this direction is

Theorem 2.5. (Analytic absoluteness, Theorem 8.3) Suppose that M is a
transitive model of set theory and M = X is an interpretable structure. Let
m: X — X be an interpretation. Then 7 is a Xq-elementary embedding.

In particular, structures such as topological groups and semigroups,their con-
tinuous actions, Banach spaces, C* algebras are interpreted faithully as struc-
tures of the same class, as long as their functions are continuous and their
relations are Borel, the axiomatization of their class consists of ¥; and II; sen-
tences, and their domains are interpretable. I also prove a version of Shoenfield
absoluteness, Theorem 8.6, which shows that in many cases, if a II; formula
defines a closed set C' in a structure X, then it defines the interpretation of the
closed set C' in the interpreted structure X.

The main source of topological structures is functional analysis. There, 1
prove for example

Theorem 2.6. (Theorem 12.5 simplified) The interpretation of the unit ball in
the dual space of a normed Banach space X with weak* topology is the unit ball
with the weak™ topology of the dual space of the interpretation of X.

Theorem 2.7. (Theorem 12.2 simplified) The interpretation of the normed dual
of a uniformly convexr Banach space X is the normed dual of the interpretation
of X.

Question 2.8. Is an interpretation of a reflexive space always reflexive? Is the
normed dual of a reflexive space always interpreted as the normed dual of the
interpretation?

Question 2.9. (Ilijas Farah) Is the interpretation of a simplex again a simplex?

An important feature of interpretations is that they behave in a predictable
way if more models of set theory are present:

Theorem 2.10. Suppose that My C My are transitive models of set theory,
My E (Xo,70) is an interpretable space, My = m: (Xo,70) — (X1,71) is an
interpretation over My, and w1 : (X1,71) — (Xa2,72) is an interpretation over
M. Then 71 omg: (Xo,70) — (Ma, T2) is an interpretation over M.



The conclusion of this theorem may fail for such spaces as w** or RE.

Theorem 2.11. Suppose that X is an interpretable space, and M is an ele-
mentary submodel of some large structure containing X as an element and some
basis of X as an element and a subset. Then the identity map from X N M to
X can be extended to an interpretation of XM to X.

The conclusion fails for every non-Polish second countable space X and count-
able model M.

As a final note, I list the regularity properties of topological spaces which
are preserved under interpretations.

Theorem 2.12. (Corollary 14.8) The following properties of interpretable spaces
are preserved under interpretations:

1. local Lindeldfness;
2. local connectedness;
3. local paracompactness;

4. local metacompactness.

In the last section of the paper, I show how the interpretation functor can
be canonically extended to topological spaces which are not interpretable, such
as Cp(R). Instead of viewing them as pure topological spaces, equip them with
a Borel structure and then ask for the interpretations to respect the countable
union and intersection operations on Borel sets. The basic features of the theory
of interpretations of Borel spaces are parallel to pure topological spaces. 1
also show that in the class of proper bounding forcing extensions, this notion
essentially coincides with interpretations of pure topological spaces.

Theorem 2.13. (Theorem 15.7 simplified) Suppose that V is a proper bounding
extension of V.. Suppose M |= (X, 1, B) is a reqular Hausdor{f space with a Borel
o-algebra. If m: (X, 7) — (Xﬁ') is a interpretation of the topological space then
7w extends to an interpretation of the Borel space.

3 The category of interpretable spaces

The basic stepping stone for the interpretation theory developed in this paper
is the category of Cech complete spaces:

Definition 3.1. A topological space X is Cech complete if it is a G subspace
of a compact Hausdorff space.

Thus, every compact Hausdorff space is Cech complete. So is every locally
compact space (as its Alexandroff compactification is a Hausdorff space) and
every completely metrizable space 777 A classical internal characterization of
the class of Cech complete spaces will be useful:



Definition 3.2. Let X be a topological space. Acomplete sequence of covers
for X is a sequence (C,,: n € w) of open covers such that for every collection F'
of closed subsets of X which has the finite intersection property and for every
n € w contains a subset of cl(0,,) for some O,, € C,, the intersection [ F is
nonempty.

Fact 3.3. A regular Hausdorff space is Cech complete if and only if it has a
complete sequence of covers.

The category in which the interpretation functor is at its most natural is a slight
extension of the category of Cech complete spaces:

Definition 3.4. A topological space X is interpretable if it is regular Hausdorff
and an open continuous image of a Cech complete space.

Thus, every Cech complete space is interpretable. The class of interpretable
spaces was investigated under various names (sieve complete, \p) in early 70’s
[1, 8, 9] and a useful internal characterization was provided:

Definition 3.5. Let X be a topological space. A sieve is a tuple (S,0(s): s €
S) where S is a tree with a largest node 0, O(0) = X, and for every s € S,
O(s) C X is an open set and O(s) = J{O(¢t): t € S is an immediate successor
of s}. A sieve S is complete if for every infinite path b C S and every collection
F of closed subsets of X which has the finite intersection property and for every
n € w contains a subset of cl(O(b [ n)) for some O,, € C,,, the intersection [ F
is nonempty.

Fact 3.6. [8] A regular Hausdorff space X is interpretable if and only if it has
a complete sieve.

The verification of completeness of sieves is facilitated by the following propo-
sition. If (S,0(s): s € S} is a sieve and T' C S is a finitely branching tree, write
K(T,S) = N,,{cl(O(t)): t € T is on m-th level}; thus, K(T,5) is a closed
subset of the underlying space.

Proposition 3.7. Suppose that X is a space and (S,0(s): s € S) is a sieve.
The following are equivalent:

1. the sieve is complete;

2. whenever T C S be an infinite finitely branching tree then the set K(T,S)
is monempty and compact.

Proof. For (1)—(2), suppose that the sieve is complete. For every node t € T
write T [ ¢ for the subtree of T consisting of all nodes comparable with T
and consider the sets K(t) = K(T | t,S). Clearly K = K(0) and K(t) =
U{K(s): s € T is an immediate successor of T'}.

Suppose for contradiction that P; for i € I is an open cover of K without
a finite subcover. Let U be the set of all nodes ¢t € T such that the set K(t)



cannot be covered by finitely many elements of the cover {P;: i € I}. The
tree U is nonempty since 0 € U and it contains no terminal nodes by the
definitions. Thus, there must be an infinite branch b through U. The collection
F={X\PF:iecItu{cl(O(n)): n e w} has a finite intersection property,
and by the completess of the sieve S, [ F # 0. However, every element of [ F'
is also an element of K which belongs to no open set in the cover {P;: i € I}.
A contradiction.

For (2)—(1), assume that (2) holds, b C S is an infinite branch and P C X
is an open set covering the intersection (), cl(O(b(n)); it will be enough to show
that there is n € w such that P covers cl(O(b(n))). Suppose that this fails and
for each n > 0 pick a point x, € cl(O(b(n))) \ P. Pick also a branch b, C S
which agrees with b up to n — 1 and such that the x,, belongs to all sets on the
branch b,. The tree T' = |J,, b, C S is finitely branching and b is its branch.
By (2), the set K is compact, it contains {z,: n € w} as a subset and so this
set must have an accumulation point z. For every number n € w, the point
x must belong to cl(O(b(n))) \ P, since this is a closed set containing all but
finitely many points z,, for m € w. Thus, « is a point in (), cl(O(b(n))) \ P,
contradicting the initial assumptions. O

The extent of the class of interpretable spaces is best appreciated from the
perspective of the following easy theorem.

Theorem 3.8. The class of interpretable spaces is closed under the following
operations:

1. a closed subset;

2. a Gs subset;

3. countable product;

4. hyperspace of compact sets with the Vietoris topology;
5

. perfect and open continuous images as long as they are reqular Hausdorff.

A space is locally interpretable if and only if it is locally interpretable.

Proof. For the first two items, let X be a compact Hausdorff space, Y C X
its G5 subset, and f: Y — Z be an open continuous surjection onto a regular
Hausdorff space. If C C Z is closed, then D = f~'C C X is a relatively closed
set, f | D: D — C'is open, and D is a GG5 subset of its closure in the space X;
thus, C' is interpretable. The case of G5 set C C Z is identical.

For (3), suppose that X,, for n € w are interpretable spaces, with a complete
sieve (Sp,0p(s): s € Sp,) on each. Consider the product sieve (T, P(t): t € T')
on the space Y = [],, X, defined as follows. A node of the tree T" is a tuple
t = (sp:n € m) for some m € w such that each s, is an element of m-th
level of the tree S,. The ordering on the tree T is defined coordinatewise.
t=(sp:nem)eT define P(t) ={y € Y:V¥n e my(n) € O,(s,)}. I will use
Proposition 3.7 to verify that this sieve is complete.



Suppose that U C T is an infinite finitely branching tree. For every n € w
let U, C S, be a tree generated by the nodes in S,, which are mentioned in the
nodes of U. It is easy to verify that each U, is an infinite finitely branching tree.
Let K,, = K(U,,S,) C X,,. By Proposition 3.7, each set K,, C X,, is compact
and so is L = [[,, K,. The set K(U,S) is easily checked to be a nonempty
closed subset of L and therefore compact. nother use of Proposition 3.7 then
secures the completeness of the sieve (T, P(t): t € T') and completes the proof
of (3).

For (4), if X is a topological space, write K(X) of the hyperspace of its
nonempty compact subsets with Vietoris topology. Suppose that X is inter-
pretable, with a complete sieve (S, O(s): s € S) on it. I will use Proposition 3.7
that the sieve (S, P(s): s € S) on K(X), where P(s) = {K € K(X): K C
O(s)}, is complete on K (X). Note that cl(P(s)) = {K € K(X): K C cl(O(s))}.
Suppose that U C S is an infinite, finitely branching tree. The set ¥ =
K(T,S,0(s): s € S) C X is compact by Proposition 3.7 applied to the complete
sieve on X. The set K(T,S,P(s): s € §) C K(X) is a closed subset of K(Y).
It is well-known that the compactness of a space Y implies the compactness of
K(Y), and so K(T, S, P(s): s € S) is compact. Proposition 3.7 now implies the
completeness of the sieve (S, P(s): s € S) on the space K(X).

For (5), the case of open images follows straight from the definitions. For
the perfect case, note that if f: X — Y is a perfect surjection then the set
C={K € K(X): f | K is constant} is closed. Chase diagrams to show that
the map ¢g: C — Y defined by g(K) =the unique element of f”K is continuous
and open. Then, use (1, 3, 4) to conclude that Y is an interpretable space.

For the last sentence, suppose that a space X is locally interpretable. For
every point © € X find an open set O, C X and a continuous open surjection
fo: Yy — O, from a Cech complete space Y, onto O,. Let Y be the topological
sum of the spaces Y, and f: Y — X be the sum of the mappings f, for z € X.
It is not difficult to check that Y is Cech complete and the function f is a
continuous open surjection from Y to X, confirming that X is interpretable. [

On the other hand, there are many interesting spaces which are not inter-
pretable.

Example 3.9. The following spaces are not interpretable:

1. Borel non-Gg-subsets of Polish spaces;

2. Cp(R), the space of continuous functions from R to R with the pointwise
convergence topology;

3. RE with the pointwise convergence topology:;

4. the Sorgenfrey line.

There are important distinctions in the above examples. The first two cases
are naturally viewed as Borel subspaces of interpretable spaces, and for such
cases I will find a convenient way of interpreting them as Borel topological



structures. The last two cases exhibit important pathologies which most likely
prevent any attempt at incorporating them in a general interpretation theory.
The third case may behave well if a certain common class of models is considered;
the fourth case is probably hopeless in all but the most trivial circumstances.

4 The existence theorem

The first order of business is to show that topological and Borel-topological
interpretations exist for a large class of spaces.

Theorem 4.1. Suppose that M is a model of set theory and M = (X, 7,B) is a
Borel space with underlying reqular Hausdorff topology. Then the interpretation
of (X, T) exists, it is unique up to interpretation equivalence, and it is regular
Hausdorff.

Proof. First note that some preinterpretations indeed exist—the identity map on
X is one of them. Note also that the target spaces of topological preinterpreta-
tions of X must be regular Hausdorff, since the property is expressible in terms
of unions and intersections of open sets: for every O € 7, O = J,; O; such
that for every ¢ € I ¢l(O;) C O holds, and the last statement can be expressed
asdP, et O;NP,=0and OUP, = X.

Consider the set Y of all sets A C 7 such that A contains no finite subcover
and A is maximal with respect to inclusion. Let x: X — Y be the map defined
by x(z) = {O € 7: © ¢ O}. Equip the space Y with the topology generated
by sets x(O) ={A €Y:0 ¢ A} for O € 7. The map x is most likely not a
preinterpretation, but it is nevertheless universal in the following sense:

Claim 4.2. Suppose that w: (X,7) — (X, 7) is a topological preinterpretation.
Then there is a unique map hy: X — Y such that x = hon and for every
O €1, hx(0) =7(0) holds.

Proof. Define a function hy = h: X — Y by h(z) = {O € 7: 2 ¢ 7(0)}. Use
the regular Hausdorff assumption to show that the value of function of h are in
fact elements of the space Y'; once this is done, the verification of the requested
properties of the map A is trivial.

Since 7 is a preinterpretation, the set h(z) C 7 cannot contain any finite
subcover of X: such a subcover would be an element of M and its w-image
would have to cover all of X. To show that h(z) is inclusion-maximal, for every
O € 7 such that x € 7(O) I must produce a set P € h(z) such that OUP = X.

By the regular Hausdorffness of the space X in the model M, M |= O =
U; O; where the closure of each O; is a subset of O, or in other words, there is
P; € 7 such that O; N P, = 0 and OU P, = X. Since 7 is a preinterpretation,
there is an index ¢ such that x € 7(O;). Then 7(P;) N7(0;) = 0, in particular
P; € h(z) and P, UO = X as desired. O

Now, let X, = U{rng(hz): m is a topological preinterpretation of X} C Y
and equip the set Xy with the topology inherited from Y. Let mg: X — X be

10



defined by mo(x) = x(z), and let mo: 7 — P(Xo) be defined by m(0) = x(0) N
Xo = {7 (O): = is a topological preinterpretation of X}. It is easy to verify
that m is a topological preinterpretation of X to which every preinterpretation
7 is reducible via the map h,; i.e., 7 is the topological interpretation of X.
For the uniqueness of the interpretation, suppose for example that 7: (X, 7) —

(X ,7) is another topological interpretation. There must be a reduction h: X0 —
X of mo to . It is easy to observe that h, oh must be the identity and therefore
the reduction h in fact witnesses the equivalence of the two interpretations. [

Example 4.3. Suppose that X is a topological space and P is the poset of
its nonempty open sets ordered by inclusion. If G C P is a generic filter, in
the generic extension V[G] the map m: X — X U {G} where points of X are
mapped to themselves and ground model open sets O C X are mapped to
O U{G} if G € O and to O otherwise, is a preinterpretation by a genericity
argument. Thus, for every regular Hausdorff space X which contains no isolated
points there is a generic extension in which the interpretation map of X is not
a surjection.

This means that for example the space Q will have have rather counterintu-
itive interpretations in generic extensions containing Cohen or even unbounded
reals. Note that the space Q does not belong to the interpretable category.

Example 4.4. Suppose that M = (X, 7) is a space whose topology is generated
by a metricd. If m: X — X is an interpretation, one can define a metric don X
by setting d(zo, 1) < € if 2o, 21 belong to 7(Op), m(O1) respectively for some
open sets Op, 01 € 7 such that yo € Oy and y; € Oy imply d(yo,yo) < €. It is
not difficult to see that d is a metric generating the topology of X, n'X C X is
dense, and dom = d. This means that the interpretation of a metrizable space
is again metrizable and for example the interpretation of Q can be viewed as a
set of reals.

Example 4.5. Suppose that M = (X, ) is a uniform space, with the topology
generated by a uniform set © of covers. Let 7: (X,7) — (X,7) be an inter-
pretation. The space X is then uniform, and © = {7”/C: C' € O} is a uniform
set of covers generating its topology. To see this, note that if C;D € M are
open covers such that C is a star-refinement of D (for every O € C there is
P € D such that ¢(O,P) = J{Q € C: QN O # 0} C P holds) then 7"C is a
star-refinement of 7”’C' (since ¢(O, P) is equivalent to ¢(w(O), w(P))).

Intepretations of regular Hausdorff spaces commute with taking open or
closed subspace. This is the contents of the following theorem.

Theorem 4.6. Suppose that M is a model of set theory and M = (X, T) is
a reqular Hausdorff space and O € 7 is an open set. Let m: X — X be an
interpretation.

1. @ 1 O, the map from X | O to X | w(O), extends to an intepretation of
the space X | O.

11



7 X\ O, the map from X \ O to X \ 7(0), extends to an intepretation
of the space X \ O

Proof. T will work on (2), (1) is similar. Write Y = X \ O and Y = X \ 7(0),
both equipped with the inherited topologies o and & respectively. Define a map
x:Y = Y by x(y) = 7(y), and a map x: ¢ — & by x(PNY) = n(P)NY
for a set P € 7. Note that this depends only on P NY and not on P, since if
Py, P, € 7 are sets with the same intersection with Y, then P,UO = P, U O, so
m(Po)Um(0O) = w(Py)Un(O) and so w(Fy) and 7(P;) have the same intersection
with Y. Since 7 is an interpretation of X, x is a preinterpretation of Y.

To show that in fact y is an interpretation of Y, suppose that x': Y — Y is
another preinterpretation of ¥; I must find a reduction of X’ to x. Consider the
adjunction space X’ which is the union of XUY” modulo the equlvalence induced
by the attaching map x': ¥ — Y’ , with the resulting topology 7/. Consider the
map ©': X — X’ given by n'(z) = [z], and the map 7’': 7 — 7 given by
©'(0) = [O]Ux/ (ONY). Tt is not difficult to check that 7’ is a preinterpretation
of the space X, and so is reducible to 7 via some map h: X’ — X. Clearly, the
map h [ Y’ reduces x’ to x as desired. O

Theorem 4.7. Suppose that M is a model of set theory and M |= (X, 1),(Y, o)
are regular Hausdorff spaces and f: X —'Y is a continuous function. Suppose
that m: X — X and x: Y — Y are interpretations.

1. There is a unique continuous function f: X — Y which contains the set
{{(n(z),x(y)): x € X,y €Y, f(x) =y} as a subfunction.

2. For the unique function f, whenever O € T and P € o are open sets and

[P =0, then f~'x(P) = 7(0).

Proof. First of all, every continuous function satisfying (1) has to satisfy (2)
as well. Suppose that P € o and O € T are sets such that f~'P = O. First,
suppose for contradiction that z € 7(O) and f(z) ¢ x(P). Since 7 is a preinter-
pretation, there must be sets P € 0 and O € 7 such that f~'P = O, cl(P) C P
and z € 7(0). Then, the f-preimage of x(X \ cl(P)) contains x but no points
in 70 which are dense around z, contradlctlng the continuity of the function f
at . The contradiction in the case that ¢ m(O) and f(z) € x(P) is obtained
in a similar way.

The existence and uniqueness of the function f immediately follows from
the following claim.

Claim 4.8. For every x € X there is a unique y € Y such that whenever O € T
and P € o are open sets and f~1P = O, then x € 7(O) + y € x(P).

Proof. The uniqueness of the point y is clear: whenever yy # y1 € Y are
distinct points then there are disjoint sets Py, P; € 7 such that xzg € x(P) and
r1 € X(P1). Let Og = f~1Py and O; = f~!P;. These are disjoint open subset
of X, and so x can belong to at most one of 7(Op) and 7(Oy).
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For the existence of the point y, consider the space Z = Y U{p} for some point
p, and define amap £: Y — Z by £(y) = y. Define also the map &: ¢ — P(Z) by
EP)=PU{p}if z € n(f~1(P), and £(P) = P otherwise. It is easy to use the
fact that 7 is a preinterpretation to show that the map & commutes with finite
intersections and unions in the model M. Thus, equipping the set Z with the
topology generated by the range of &, the map £ turns into a preinterpretation
of the space Y. Since x is an interpretation, there is a reduction h: Z — Y of
& to x. It is easy to check that the point y = h(p) € Y works as desired. O

Define the function f: X — Y by letting f(ac) =y if x,y satisfy the state-
ment of the claim. It is clear that f satisfies (2). Since the range of x generates

the topology on the space Y, it is clear that f is continuous. This completes
the proof of the theorem. O

Corollary 4.9. Suppose that M |= X,Y,Z are reqular Hausdorff spaces and
f: X =Y and g: Y — Z are continuous functions. Then the interpretation of
go f equals the composition of interpretations of f and g.

Proof. The composition of the interpretations is continuous, and it contains
the pointwise image of g o f under the interpretation maps as a subset. By
the uniqueness part of Theorem 4.7, it must be equal to the interpretation of

go f. O

Corollary 4.10. Suppose that M = X,Y are regular Hausdorff spaces and
f: X =Y is a continuous function. Then y € Y is in the range of f if and
only if the interpretation of y is in the range of the interpretation of f.

Proof. Let m: X — X and x:Y — Y and f: X =Y be interpretations.
If f(x) = y then f(’/T(LC)) = x(y) by the definition of f, proving the left-to-
right direction. For the right-to-left direction, if y € Y is a point which does
not belong to rng(f) then X = J{f'P: P C Y is open and y ¢ P}. The
interpretations commute with the union, f-preimage, and membership and so
every element of X is mapped into an open set which does not contain 7(y) as
desired. O

Corollary 4.11. Interpretation of a homeomorphism is a homeomorphism.

Example 4.12. An interpretation of a covering map between two regular Haus-
dorff spaces is a covering map between the interpreted spaces. Suppose that
M is a model of set theory and M = X,Y are regular Hausdorff spaces and
f: X — Y is a covering map. By the definition of covering, in the model M
the set C' = {0 C Y: O is open and f~1O = |J Do for some nonempty family
Do consisting of pairwise disjoint open subsets of X on which f is a homeo-
morphism with O} is an open cover of Y. Let 7: X — X and y: Y = Y be
Borel-topological interpretations. x”C is still an open cover of the space Y.
Moreover, for each open set O € C, f~10 = 7(JUDo) = 7" Do. The family
7" Do still consists of pairwise disjoint open subsets of X. Moreover, for every
set P € Dg, the function f | P is interpreted as a homeomorphism between
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7(P) and x(0). This completes the verification that f: X — Y is a covering
map.

Example 4.13. An interpretation of an injection need not be an injection. Let
X,Y be two dense disjoint sets of Q with the inherited order topology and let
X UY be their topological sum. Let f: X — Y be the identity map. Pass to a
generic extension V[G] in which there is a Cohen real r € R. The interpretation
of X UY can be viewed as a topological sum of two sets of reals, both of which
contain r. The two copies of r will be mapped by f to the same value, namely
r itself.

This pathology will not occur in the class of interpretable spaces by Corol-
lary 7.7.

Example 4.14. The interpretation of a surjection need not be a surjection. Let
f be the surjective identity map from X =the reals with discrete topology to
Y =the reals with the usual Euclidean topology. Pass to any generic extension
V[G] which contains new reals. Easy computations exhibited else where in the
paper show that the interpretation of X is just the space X of ground model
reals with the discrete topology, Y is just the space of all reals with the Euclidean
topology, and f is the identity map, which now is not surjective anymore.

This feature can hardly be called a pathology as both spaces involved are inter-
pretable and very natural. Surjectivity of the interpreted surjections, if it occurs
at all, is an important issue. It is normally guaranteed by stronger properties
of the maps, such as openness or perfectness as in Theorems 9.4 and 9.1.

5 Interpretations of complete spaces

It turns out that interpretations of spaces in natural completeness categories
have strong uniqueness features which make it much easier to evaluate them.

Definition 5.1. Let (X, 7) be a topological space. A triple (U, <, f) is a com-
pleteness system if U is a set, < is a partial ordering on it, and f: A — 7 is a
function so that

1. for every u € U, f(u) CJ{f(v): v < u} holds;

2. for every strictly descending sequence (u,: n € w) in the ordering < and
every collection F' of closed subsets of X with the finite intersection prop-
erty such that cl(f(u,)) contains an element of F for every n € w, then

NF #0.

Theorem 5.2. Suppose that M is a transitive model of set theory and M = X
is a reqular Hausdorff space and (U, <, f) is a completeness system on X. There
is a unique preintepretation m: X — X for which (U, S,f> is a completeness
system on X and it is the interpretation.
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Here, the symbol f denotes the function defined by f(u) = 7(f(u)). Note that
since the interpretation is defined without regard to the completeness system,
it follows that every completeness system on X in the model M is interpreted
as a completeness system on X.

Proof. The uniqueness part is easy. Suppose that 7: X — Xisa preinter-
pretation such that (U, §,f> is a completeness system; it will be enough to
show that 7 is an interpretation. To this end, suppose that x: X — Y is an-
other preinterpretation. For every point y € Y, use (1) to find a descending
sequence (u,: n € w) in U such that y € [, x(f(u,). Consider the collection
F, = {cl(x(0)): O € 7,y € x(0O)}. This is a filter of closed subsets of X such
that for every n € w cl(f(u,)) € F. By the completeness assumption on the
space X, (Fy # 0. It is not difficult to use Hausdorffness of X to show that
the intersection can contain at most one point. Let h: ¥ — X be the map such
that h(y) € (| Fy for all y € Y. It is immediate that h is a reduction of x to .

The existence of the required preinterpretation is a little harder. Let X be
the set of all collections A C 7 which do not contain a finite subcover of X, are
maximal with respect to that condition, and such that there is an infinite de-
scending sequence (u, : n € w) such that for every n € w, X\, cl(f(um)) €
A. Equip X with the topology generated by the sets 7(0) = {A € X: O ¢ A}
for O € 7. Let 7: X — X be the map defined by 7(z) = {O € 7: 2 ¢ O}. T will
show that 7 is a preinterpretation and (U, <, f ) is a completeness system on X.

To show that 7 is a preinterpretation, suppose that O =  J;; O; is a union of
open sets in the model M; I must show that 7(O) = |J, 7(O;). The right-to-left
inclusion is clear from the definitions. For the left-to-right inclusion, suppose
that A € X is a point and A € 7(0), meaning that O ¢ A holds; I must find
i € I such that O; ¢ A. Find a set P € 7 such that P € Aand OUP = X.
In the model M, consider the tree T of all finite attempts to build a descending
sequence (u,: n € w) in U such that for every n € w, for no finite set J C I
it is the case that (,,c,, cl(f(um)) C U;c; Oi U P. The tree T is well-founded
in the model M since any descending sequence of this form would yield a set
F ={c(f(n)):n € w,X\0;:1 € I,X\ P} with finite intersection property.
The intersection [ F would be nonempty by the completeness of the system
on X, and any point in that intersection would have to belong to O\ |J, O;; a
contradiction. Since the model M is transitive, the tree T is well-founded even
in the model M. Use the definition of the set X to find a descending sequence
(un: n € w) such that X \ .., cl(f(um)) € A for every n € w. The sequence
does not form an infinite path through the tree 1" and so there must be n € w
and a finite set J C I such that | J;c; O; U PU,,c, (X \ cl(f(m))) = X. This
means that one of the sets O; for i € J must fail to belong to A, in other words
A € 7(0;) as desired.

To show that the sieve (S, 7(O(s)): s € S) is a complete sequence of covers
of X, suppose that F is a collection of closed subsets of X with the finite
intersection property, and such that there is an infinite descending sequence
(up:n € w) in U such that cl(w(f(n)))) contains an element of F' as a subset
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for every n € w; I must produce an element of (JF. Let A’ = {O € 7: 7(O) is
disjoint from an intersection of finitely many elements of F'}. The set A’ C 7
contains no finite subcover of X, and it contains the sets X \ [,,c,, cI(f(um))
for every n € w. Extend A’ into an inclusion-maximal subset A C 7 containing
no finite subcover and check the definitions to verify that A € () F. O

Corollary 5.3. Suppose M |= X is a compact Hausdorff space. Then X has a
unique compact topological preinterpretation which is also its topological inter-
pretation.

Proof. Note that a space X is compact if and only if w with reverse ordering
and the function f defined by f(n) = X for every n € w together form a
completeness system. O

Corollary 5.4. Interpretations of compact subsets of reqular Hausdorff spaces
are compact.

Proof. Suppose that M is a transitive model of set theory and M E X is a
regular Hausdorff space and K C X is compact. Let 7: X — X be an interpre-
tation of X. Theorem 4.6 shows that 7 [ K: K — w(K) is an interpretation.
Corollary 5.3 then implies that w(K) is compact. O

Corollary 5.5. Every completely metrizable space X with a metric d in a tran-
sitive model M is interpreted as a completely metrizable space. In fact, the
interpretation is just the completion of X with respect to d with the natural
interpretation map.

Proof. Work in the model M. Let U be the set of all open balls of finite d-
radius and let v < w if radius of v is smaller than half of the radius of u. The
function f on U is defined by f(u) = w. This is a completeness system on X.
Let 7: X — X be an interpretation. By Theorem 5.2, (U, <, f) is interpreted
as a completeness system on the interpretation X. Define a metric d on X by
setting d(z,y) < € + 27" just in case z € 7(0) and y € w(P) for some open
balls O, P C X whose centers have distance < € and whose radii are smaller
than 2-"~1. The metric d generates the topology of the space X, rng(r) ¢ X
is dense and d = don. The completeness of the interpreted system implies that
d is complete. Tt follows that X is (isomorphic to) the completion of (X, d). [

Example 5.6. The Baire space or the Hilbert cube in a transitive model M
are interpreted as the Baire space or the Hilbert cube.

Example 5.7. The transitivity of the model M is necessary in the assumptions
of Corollary 5.5. Let M be a model of set theory containing an M-ordinal «
which is illffounded. In the model M, consider the space o with the usual
minimum difference metric. The completion of (o)™ is o, which contains
an infinite decreasing sequence x. Now, by a wellfoundedness argument inside
M, M | o¥ = |J{O:: t is a nondecreasing finite partial map from w to a}
where Oy = {y € a¥: t C y}. It is clear that = does not belong to the natural
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interpretation of any of the sets O; in the union, and therefore o is not the
interpretation of (a<)M.

Corollary 5.8. FEvery complete uniform space with a countable complete uni-
form sequence of covers in a transitive model M is interpreted as a complete
uniform space.

Example 5.9. The countability cannot be removed from the assumptions of
Corollary 5.8. In a transitive model M, consider the space X = w“! with
the (uncountable) complete uniform collection of covers {C,: a C w; is finite},
where C, = {O;: t € w*} and O, = {x € X:t C x}. If the interpretation
preserved the completeness of this system of covers, it would have to be (equiv-
alent to) the identity map from X = (w*1)™ to (w*1)". However, Example 13.2
describes a situation where the interpretation of X is different.

Corollary 5.10. Every Cech complete space in a transitive model M is inter-
preted as a Cech complete space.

Corollary 5.11. FEwvery interpretable space in a transitive model M 1is inter-
preted as an interpretable space.

To conclude this section, I provide a testable criterion for a map 7 to be an
interpretation; this will be used in several situations later. Suppose that M is
a model of set theory and M | (X, 7) is a regular Hausdorff space. Suppose
that m: X — X ,T — 7 is a topological preinterpretation. Then for every
open set O € 7, 7(0) = X \ cl(#”(X \ O)). The left-to-right inclusion is clear
since m(0) C X is an open set disjoint from 7”/(X \ O). For the right-to left
inclusion use the fact that the range 7’7 generates the topology 7: whenever
z € X\ cl(x”(X \ 0)) is a point, it has to have an open neighborhood disjoint
from 7”(X \ O), this neighborhood can be taken of the form m(P) for some
P € 7, and since 7w(P) contains no points in 7#”(X \ O) it must be the case that
P C O and so z € n(P) C 7(0O) as desired.

The previous paragraph shows that a given map 7: X — X can be com-
pleted into a topological preinterpretation in at most one way. This justifies the
following definition:

Definition 5.12. Suppose that M is a model of set theory, M = (X, ) is
a regular Hausdorff space, (X,7) is a topological space, and m: X — X is
a function. The canonical extension of 7w is the map 7: 7 — 7 defined by

7(0) = X \ cl(x”(X \ O)).

If the original map 7 from X to Xis arbitrary, then the canonical extension 7
is easily seen to preserve inclusion and finite intersections, but on other accounts
it may be very poorly behaved. Still, it is the only candidate for extending m
into a topological preinterpretation.

Proposition 5.13. Suppose that M is a transitive model of set theory, M E
(X,7) is an interpretable space, and w: X — X is a map to a reqular Hausdorff
space (X, 7). Let w: 7 — 7 be the canonical extension of w. Suppose that there
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1s in the model M a basis 0 C T closed under intersections, and a complete sieve
(S,0(s): s € S) such that

1. for every x € O € o it is the case that w(z) € T(O);

2. whenever @ € o and {P;: j € J} is a finite subset of o and Q C |J; P;

3. @0 generates the topology T;

4. the sets on the sieve are in the basis T and moreover (S,7(O(s)): s € )
is a complete sieve for X.

Then the map 7: T — T s a topological interpretation.

Note that for a compact space X the last item reduces to the demand that X
is compact.

Proof. By Theorem 5.2 and (4) it is only necessary to verify that 7 is a topo-
logical preinterpretation. It is clear from the definitions that the canonical
extension ™ on 7 preserves inclusion and commutes with finite intersections.
The first item implies then that for every z € X and O € 7, it is the case that
z € O <> w(x) € 7(0). The only thing left to verify is that the map 7 commutes
with arbitrary unions of open sets in the model M.

Suppose then that M = O = J,.; O; is a union of open sets and argue that
7(0) = U, 7(O;) must hold. The right-to-left inclusion follows from the fact that
7 preserves inclusion. For the left-to-right inclusion, assume for contradiction
that the set 7(O) \ |, 7(O;) is nonempty, containing some point x € X. By the
third item, there is an open set ) € o such that x € 7(Q) and the closure of
7(Q) is a subset of (O). It is easy to argue from (1) and (3) that the closure of
@ must be a subset of O in the space X. In the model M, let {P;: j€ J} Co
be a collection such that X \ cl(Q) = U, ;.

Let b be any infinite branch of the tree S such that x € (), 7(O(b(n))). Then,
no set 7(O(b(n)) is covered by finitely many sets in the collection {7 (0;): i €
I,m(P;): j € J}. By (2) and a wellfoundedness argument with the model M,
in the model M there must be an infinite branch ¢ such that no set O(e(n)) for
n € w is covered by finitely many sets in the collection {O;: i € I, P;: j € J}.
By the completeness of the sieve in the model M, the set X \ (U; O; U, P))
must be nonempty. However, any element of this set belongs to O and not to
any O; for i € I, contradicting the initial assumption. O

6 Interpretations of Borel sets
The purpose of this section is to show that for interpretable spaces, it is possible

to extend interpretations to the o-algebra of Borel sets so that the interpretation
commutes with the algebraic operations.
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Theorem 6.1. Suppose that M is a transitive model of set theory and M =
(X,T) is an interpretable space with its Borel o-algebra B. Suppose moreover
that m: (X, 7) — (X, %) is an interpretation and write B for the Borel o-algebra
of the space X. Then there is a unique map m: B — B such that it agrees with
the action of m on T, and commutes with complements and countable unions
and intersections in M.

Proof. The uniqueness of the extension is clear as Borel sets are obtained from
closed and open sets by complements, countable unions and intersections. The
existence of the map is a much more complicated matter. The problem is that
a Borel subset of X in the model M can be obtained from open and closed sets
by countable unions and intersections in two different ways, and then the two
different ways may yield different results when reinterpreted over the space X.
This does not happen due to the wellfoundedness of the model M; this is the
contents of the present proof.

Work in M. Let S be a complete sieve for the space X. Select symbols U
and N for union and intersection. Define a Borel code by € recursion in the
following way. If A C X is a closed or open set, then {A} is a Borel code and
if B is a countable set of Borel codes, then {U, B}, {N, B} are Borel codes. By
induction on the rank of the code ¢ define a set B, C X in the following way.
If ¢ = {A} for an open or closed set A C X, then B, = A; and if ¢ = {U, D},
resp. ¢ = {N, D} then B. = J,cp Ba, resp. Be = (\yep Ba-

Still working in M, for every Borel code ¢ associate a certain ordering 7.
Let P be the set of all sequences of the form s = (s;, E;: i € n) where s;’ s form
a strictly descending sequence of nodes in S, E;’s form a strictly descending
sequence of closed nonempty sets, and E; C O(s;); write E(s) = E,_1. The set
‘P is naturally ordered by extension. By €-recursion on the Borel code ¢, define
orderings T.. Elements of T, will always be finite tuples whose first coordinate is
a play in P, and for each such tuple p = (s, 40,91 ...) I will write E(p) = E(s).

e if ¢ = {A} for an open or closed set A C X, then T, consists of all pairs
(s,0) where s € P and E(s) C A. The ordering is that of strict extension
in the first coordinate;

e if ¢ = {U, D} for some countable set D of codes, then T, consists of all
pairs (s,d,u)) such that s € P, d € D, uw € T; and E(s) C E(u). The
ordering is defined by (t,d,u) > (s,e,v) if t properly extends s, e = d,
and u > v in Ty;

o if ¢ = {N, D} for some countable set D = {d;: i € w} of codes with a fixed
enumeration, then T, consists of all tuples (s, u;: ¢ € n) where s € P has
length n, for every i € n, u; € Ty,, and E(s) C E(u;). The ordering is
defined by (s,u;: i € n) > (t,v;: ¢ € m) if t properly extends s and for
each 7 € n, u; > v; in the ordering Ty, .

Claim 6.2. In the model M : If p is an infinite descending sequence in T, then
N, E(p(n)) is a nonempty set which is a subset of Be.
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Proof. This is proved by an elementary €-induction argument on the code ¢. [

Now move out of the model M. Let 7: X — X be an interpretation. For
every closed set C' C X in the model M, write 7(C) = cl(n”’C) which is equal
to X \ 7(X \ C). For every Borel code ¢ € M define a set B, € X in the
following way. If ¢ = {A} for a closed or open set A C X, then B, = w(A); and
if ¢ = {U, D}, resp.c = {N, D} then B, = Uden By, resp. B, = Naen By.

Claim 6.3. For every Borel code c € M and every element x € B, there is an
infinite descending sequence p in T, such that x € (), T(E(p(n))).

Proof. By induction on the rank of the code c¢. The only interesting case is that
of countable intersection, so ¢ = ([, D) for some countable set D = {d;: i € w}
of codes with a fixed enumeration in the model M.

Suppose that ¢ = {N,D} and = € B.. By the induction hypothesis, for
every ¢ € w there is an infinite descending sequence p; in T, such that z €
N,, 7(E(pi(n))). By induction on n € w build sequences t,, € P of length n such
that to Cp1 C ..., x € E(t,), and (t,,pi(n): i € n) € T,. Once this is done,
the sequence p given by p,, = (tn,pi(n): i € n) is as required.

To perform the induction step, suppose that the sequence t,, has been found,
with last pair s € S and E C X closed. In the model M, A = {X\E}J{O(¢): t €
S is a one step extension of s in S} is an open cover of the space X. As 7 is a
preinterpretation, 7’/ A is an open cover of X and so there must be a one step
extension s’ € S of s such that z € 7(0). Let t,11 = 78", (V;cpyq Epi(n +
1)) Ncl(O). The induction step has been performed. O

Claim 6.4. Suppose that ¢ € M s a Borel code. Then B. = 0 if and only if
B.=0.

Proof. The right-to-left implication is easier. By elementary €-induction on the
code ¢ show that for every # € X, € B, > © € B.. Thus, if B, # 0 and
z € B, then B, # 0 as well, since 7(x) € B..

The left-to-right implication is harder, and it uses the wellfoundedness of the
model M. If B, # 0 then by Claim 6.3 there is an infinite descending sequence
in the ordering T,. Since the model M is wellfounded, there must be such an
infinite descending sequence in the model M as well. By Claim 6.2, B, # 0 as
desired. O

Claim 6.5. Suppose that ¢,d € M are Borel codes. Then B, C By if and only
if B. C By.

Proof. First, work in the model M. By &-recursion on the code ¢ define a code
—c. If ¢ = {A} for some open or closed set A C X then let ¢ = {X \ A}. If
¢ ={U, D} then ¢ = {N,{~d :d € D}} and if ¢ = {U, D} then ¢ = {U,{—d :
d € D}}. Tt is can be proved by an immediate €-induction on the code ¢ that
B,=X\B..and B, =X\ B_..
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Now suppose that ¢,d € M are Borel codes. Consider the code e = {N, {c, ~d}.
Then B, C By = 0 if and only if B, = 0 if and only if (Claim 6.4) B, = 0 if and
only if B, C By as desired. O

Finally, we are ready to extend the preinterpretation 7 to Borel sets. Let
B € M is a Borel set; define 7(B) = B, for any Borel code ¢ € M such that
B = B.. Claim 6.5 shows that this definition does not depend on the choice of
the code ¢. Now, suppose that M |= B = |J,, By, is a countable union of Borel
sets. There must be a sequence (¢, : n € w) € M of Borel codes such that
B, = B,, for every n € w. Consider the Borel code d = {U,{c, : n € w}}.
Then clearly B = By, and n(B) = By =, B., = U, 7(B,) as desired. The
countable intersection is handled in the same way. O

As a result, whenever I encounter an interpretation 7: X — X of an inter-
pretable space and a Borel set B C X, I will freely use the symbol 7(B) to refer
to the Borel subset of X which is the image of B under the unique extension of
7 to the o-algebra of Borel sets.

Example 6.6. The conclusion of the theorem may fail for the most common
non-interpretable spaces. Consider the space X = Q with the usual topology
and a generic extension V[G] containing a Cohen real » € R. Let m: X — X be
an interpretation; it cannot be extended to an interpretation of Borel sets. To
see this, note that the extension would have to assign m{z} = {w(z)} for every
singleton z € X, and since X is a countable union of singletons, m(X) would
have to be equal to 7"/ X. This contradicts the conclusion of Example 4.3.

Example 6.7. The conclusion holds in general for some non-interpretable
spaces. If (X, 7) is an interpretable space and o is an alternative topology
on it which extends 7, consists of only 7-Borel sets and is Lindel6f, then the
interpretation of (X, 7) naturally extends to an interpretation of (X, o). Since
every o-Borel set is also 7-Borel, the theorem provides for an extension of the
interpretation to the algebra of o-Borel algebra. At the same time, the space
(X,0) may not be interpretable. A good example of this behavior is the Sor-
genfrey line as an extension of the usual Euclidean topology on the real line.
Sorgenfrey line is not interpretable by Example 7.10.

Example 6.8. The conclusion of the theorem may fail for illfounded models M,
even if their w is wellfounded. Suppose that M is a model of set theory and
« its ordinal which is illfounded in V in it. In M, consider the space o+ 1 with
order topology and the space X = (o + 1) in the model M. By Theorem 7.2
(which does not need the assumption of wellfoundedness of the model M), the
interpretation of X is the natural map to the space X = (& + 1)¥, where
& is the completion of the linear ordering on « in V. For every n € w, let
O, ={z € X: x2(n) > x(n + 1)}; this is an open set in the model M. Since
M = a is wellfounded, it is the case that M |=(),, O, = 0. On the other hand,

any infinite descending sequence in « is an element of [, 7(Oy,).
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Corollary 6.9. Suppose that M is a transitive model of set theory, M = (X, T)
is an interpretable space and (Cy,: n € w) is a development on X. Letw: X — X
be an interpretation. Then (7" Cy: n € w) is a development on X. In particular,
interpretable Moore spaces are interpreted as Moore spaces.

Proof. In the model M, consider an open set O € 7. Let P,(0) = |J{Q €
Cn:Q ¢ O}. Since (Cp:n € w) is a development, O N[, P, = 0. Now,
step out of the model M. By Theorem 6.1, 7(O) N[, 7(P,(O)) = 0 holds for
every open set O € 7, which is to say that for every point « € w(O) there is
a number n € w such that z belongs to no set in the cover 7”C,, which has
nonempty intersection with the complement of O. Since every open set in the
space X is a union of open sets in the range of the interpretation 7, it follows
that (7”/C,: n € w) is a development on X as desired. O

Corollary 6.10. Suppose that M is a transitive model of set theory and M =
<:X’ T) is an interpretable space andY C X its G5 subset. Suppose that w: X —

X is an interpretation. Then the function x =7 Y, x: Y — 7n(Y) extends to
an interpretation of the space Y .

Proof. For every open set O € 7, let x(ONY) = 7(O) N7(Y). This depends
only on O NY and not on all of O by Theorem 6.1. The fact that 7 is an
interpretation immediately implies that x is a preinterpretation. To show that
X is in fact an interpretation, I will produce a complete sieve on Y whose x-image
remains complete on 7(Y) and then use Theorem 5.2.

Work in the model M. Let Y = ﬂn Q). be a countable intersection of
an inclusion-decreasing sequence of open sets. It is easy to adjust an arbi-
trary complete sieve (S,0(s): s € S) on the space X to one with the following
property: (*) if s € S has length n then O(s) N Q, = UJ{O(¢): t is an im-
mediate successor of s and cl(O(t)) C @Q,}. Now let T = {s € S: for every
n < dom(s) greater than 0, O(t | n) C Qn—1}. It is clear that T is a tree.
Let (T, P(t): t € T) be defined by P(t) = Y N O(¢). It is immediate from
(*) that (T, P(t): t € T) is a sieve on the space Y. It is also complete by a
repeated use of Proposition 3.7: for every finitely branching tree U C T, the
set (), U{cl(O(t)): t € U,|t| = n} C X is compact, by (*) it is a subset of Y,
and so it is equal to (), U{cly (P(t)): t € U,|t| = n} C Y which must then be
compact.

Now, move out of the model M. The reasoning of the whole previous para-
graph is transported by 7 without damage. The only notable point is that
the sieve (S,7(0(s)): s € S) is complete on the space X by Theorem 5.2. It
follows that the sieve (T, x(P(t)): t € T) is complete on the space w(Y). By
Theorem 5.2 again, the map x is an interpretation as desired. O

7 Products

In order to speak about relations and fnctions on topological spaces, it is nec-
essary to evaluate interpretations of products. The two theorems presented in
this section both rely on a basic feature of finite products:
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Proposition 7.1. Suppose that {Y;: j € J} is a finite collection of topological
spaces, and Hj Y; is covered by a finite collection of rectangular boxes {By: k €
K}. Then there are finite open covers {C;: j € J} of the respective spaces Y;
such that whenever O; € C; for j € J is a selection, then there is k € K such
that Hj Oj C By.

Proof. For every j € J and every x € X let O, be the intersection of all open
subsets of X; which serve as a side of some of the boxes Bj, and contain the
point z. Let C; = {Oy: x € X;}. It is easy to verify that these covers work. [

Theorem 7.2. Suppose that M is a model of set theory and M [ X, are
compact Hausdorff spaces fori € I and write X =[], X;. Suppose that for

everyi € I, m: X; — X; is an interpretation and write X = IL X;. Then

1. the product map 7 = [[, m: X — X extends to an interpretation of the
product;

2. the coordinate projection functions are interpreted as the coordinate pro-
jection functions.

Proof. Define a basic function on X to be a function g on a finite set J C I such
that for every j € J, g(j) € 7;. If g is a basic function then let O(g) = {z €
X:Vj e Jz(j) € g(j)}. Let 0 = {O(g): g is a basic function on X}; this is a
basis for the space X. Also, define O(rg) = {z € X:Vj € J z(j) € n(yg ()} C
X. The set & = {O(ng): g is a basic function on X} is a basis for X. The
following claim records the relationship between o and &.

Claim 7.3. Let g be a basic function on X.

1. For everyx € X, x € O(g) > 7(z) € O(mg);

2. if hy: k € K is a finite set of basic functions and O(g) C |J, O(hi) then
O(rg) C U, O(mhy,).

The first item is proved by unraveling the definitions, and the second follows
from Proposition 7.1 applied in the model M. Now, let @ be the canonical
extension of the product map 7 to the topology of X as in Definition 5.12. Note
that ZO(g)) = O(m(g)) holds for every basic function g on X: for the right-to-
left inclusion, observe that O(wg) is an open set disjoint from 7" (X \ O(g)) by
(1) of the claim. For the left-to-right inclusion, if & is a basic function such that
O(7h) is disjoint from 7" (X \ O(g)) then O(h) C O(g) by (1) of the claim, and
O(wh) C O(mg) by (2) of the claim.

Finally, apply Proposition 5.13 to see that 7 is an interpretation, using the
fact that the space X is compact. (2) of the theorem is then immediate. O

Theorem 7.4. Let M be a transitive model of set theory and M = (X;, 7, B;)
for i € w are interpretable spaces. Let w;: X; — X; be interpretations for every
1€ w.
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1. The product map @ = [[,m: X = [[, X; — X = [[, Xi can be extended
to an interpretation of the product space;

2. the coordinate projection functions are interpreted as the coordinate pro-
jection functions.

Proof. The proof follows the argument for Theorem 7.2 letter by letter except for
the last paragraph. To replace the compactness argument in the last paragraph,
work in M. For every i € w find complete sieves (S;,0;(s): s € S;) on each
space X; in the model M. Let (T, P(t): t € T') be the product sieve on the space
X as desribed in the proof of Theorem 3.8; it is complete and its open sets are
rectangular boxes with finite support. Step out of the model M. The sieves
(S;,mi(04(s)): s € S;) are complete sieves for each space X; by Theorem 5.2.
Their product sieve is again complete on the space X. Thus, the canonical
extension 7 of 7 maps a complete sieve to a complete sieve, and Proposition 5.13
is applicable again to show that 7 is an interpretation. O

Corollary 7.5. Let M be a transitive model of set theory and M = (X, 1), (Y, o)

are interpretable spaces and f: Xo — X1 is a continuous function. Then f is
just the interpretation of f viewed as a closed subset of X x Y.

Proof. Let m: X — X and x:Y — Y be interpretations. Then f CXxYisa
closed set containing the set g = {(m(z), x(f(z)): x € X}. The set (7 x x)(f) C
X x Y is exactly the closure of the set g. Thus, it will be enough to show
that every vertical section of the set (m x x)(f) is nonempty. One illuminating
way to see this is to note that the projection function from X x Y to X, when
restricted to the graph of f, is a homeomorphism. Thus, it must be interpreted
as a homeomorphism of (7 x x)(f) and X by Corollary 4.11. O

Corollary 7.6. Suppose that M is a transitive model of set theory and M =
X,Y,Z are interpretable spaces and f: X — Z and g: Y — Z are continuous
functions. Let: X = X, x:Y =Y, ¢ Z = 7, andf X—>Zandg Y =2
be interpretations. If rng(f) Nrng(g) = 0 implies rg(f) Nrng(g) = 0.

Proof. In the model X, consider the product X x Y x Z and use the fact that
rng(f)Nrng(g) = 0 to see that it is the union of sets O x P x @ such that either
QN0 =0or g7 'QNP = 0. By the theorem, the product of interpretations is
again an interpretation and thus the union of the corresponding open sets covers
the whole product. This means that rng(f)Nrng(j) = 0 by Theorem 4.7(2). O

Corollary 7.7. If M E f: X — Y is a continuous injection between two
interpretable spaces, then f is injection again.

Proof. Immediate from Corollary 7.6. O

I conclude this section with instructive examples of pathological behavior in
products for spaces that do not fall into the interpretable category.
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Example 7.8. The product of interpretations the space of rational numbers in
a Cohen forcing extension does not extend to a preinterpretation of the product.
To see this, Let X, Y C Q be two disjoint dense sets of rationals with the inher-
ited topology. Thus, both are homeomorphic to the rationals. The collection
C = {(I xJ): I,J are disjoint open intervals of rational numbers} is a cover of
the space X x Y.

Now, let € R be a Cohen real and work in V[r]. Suppose that 7: X — X
and x: Y — Y are interpretations. The computation of the interpretation of
the space of rational numbers shows that there are elements z € X and y € ¥
such that for every open interval of rational numbers with rational endpoints,
x € 7w(I) if and only if r is between the endpoints of I, and similarly for y.
Clearly, the point (z,y) € X xY does not belong to the union of interpretations
of the rectangles in the cover C.

The problem in the previous example is apparently caused by the fact that the
interpretation of Q does not respect the Borel structure on the space. The
difficulty disappears if one considers only interpretations of topological spaces
with Borel structure as in Section 15. The next less trivial counterexample will
work even then:

Example 7.9. Let X be the space of all wellfounded trees on w. In every
generic extension collapsing ¢ to Ny, the product of interpretations of X and w*
may not extend to an interpretation of X x w®. The set of all wellfounded trees
is viewed as a subspace of the space P(w<“) with its usual Polish topology. Let
V|G| be some generic extension collapsing ¢ and work in the model V[G]. It will
be enough to find a Borel topological preinterpretation 7: X — X such that X
contains an illfounded tree T' C w<“. Consider the open sets O; = {(S,y) €
Xxwv:t¢ SAtCw} C X xw¥ for t € w<¥. It is immediate that the sets
O; C X x w* are open rectangles and | J, O; = X x w® holds in V. However, if
y € w* is a branch through the illfounded tree T', the pair (T, y) is not covered
by any of the interpreted rectangles.

To find the space X, consider the union B of all interpretations of ground
model Borel subsets of P(w<%“) containing only illfounded trees. By the Shoen-
field absoluteness, the interpretations also contain only illfounded trees, and as
there are only countably many ground model Borel sets, the set B is Borel and
contains only illfounded trees. The set of wellfounded trees is not Borel, so there
must be an illfounded tree T ¢ B. Let X = X U{T}, let 7: X — X be the
identity map, and for every Borel set B C P(w<*) in the ground model, let
7(C'N X) be the intersection of the interpretation of C' with X. It is important
to observe that this definition depends only on C'NX by the choice of the tree T'.
In the ground model, if C, D C P(2<%) are two Borel sets in the ground model
such that C N X = DN X, then CAD is a Borel set consisting of illfounded
trees only. By the choice of the tree T, T belongs to the interpretation of C' if
and only if it belongs to the interpretation of D. It is immediate now to check
that 7 is a preinterpretation of the space X.

Example 7.10. Let X be the Sorgenfrey line. In every generic extension adding
a new real, the product of topological interpretations of X cannot be extended
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to a topological preinterpretation of X x X. Write 7 for the Sorgenfrey topology
and o for the Euclidean topology on X and move to a generic extension V[G]
containing a new real r € R.

First, it is easy to evaluate the interpretation of (X, 7). Note that every
Sorgenfrey open set is an open set of reals together with countably many points,
and moreover a union of a collection of Sorgenfrey open sets is equal to a union
of a countable subcollection. Moreover, every open set of reals is Sorgenfrey
open. This means that every preinterpretation of o can be uniquely extended
to an preinterpretation of 7, and every preinterpretation of 7 can be restricted
to a preinterpretation of o. It is immediate to conclude that the interpretation
of 7 is just the space <X7 7) where X is the set of all reals and 7 is the topology
on X generated by closed-open intervals [r, s) where r, s are ground model reals,
together with the obvious map .

I will now show that the product map m X 7 cannot be even defined as
a preinterpretation of the ground model Sorgenfrey plane. In the model M,
consider the collection A of all open sets of the form [rg, sg) X [r1, s1) such that
either —s; < sg or else 19 = —r;. The union of the rectangles of the first
kind covers the part of the plane below the negative diagonal; the union of the
rectangles of the second kind covers the diagonal an the part of the plane above
it. Thus, M E|JA = X x X. On the other hand, the union of the products
of interpretations of the intervals does not cover the plane R x R: if r € Ris a
real which is not in the ground model, then the point (r, —r) does not belong
to the union.

8 Interpretable structures

Most topological spaces in practice come equipped with useful structures. These
structures can be interpreted along with the spaces in question. It is natural to
hope that the properties of the interpreted structures will not be far from the
properties of the original structures. This section contains what I know about
this problem at this point.

Definition 8.1. A interpretable structure is a tuple X = (X;: i € I,R;: j €
J, fr: k € K) where X; are interpretable spaces—the constituent spaces of X,
R; are Borel finitary relations between the various spaces and fj are finitary
partial continuous functions with closed or G5 domain and range in one of the
spaces.

There are many interpretable structures commonly considered in mathemat-
ics, including topological groups, group actions, normed vector spaces with their
duals and the application functions and so on. They can be interpreted in an
obvious way:

Definition 8.2. Suppose that M is a transitive model of set theory and let
MEX=(X;:i€l,R;:j€J fr: k € K) is an interpretable structure on a
space X. An interpretation of X, written for short as 7: X — X is a structure
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X = (XZ': 1 € I7Rj:j € J,fk: k € K) with the same signature as X, and a
tuple of constituent interpretations m;: X; — X; such that for each j € J, the
relation Rj is interpreted as the image of R; under the appropriate product of
the maps ;, and for each k£ € K, the function fk is interpreted as the image of
fx under the appropriate product of the maps ;.

The general expectation is that the interpreted structure will be at least in
some ways similar to the original structure in the model M. The following is
the best general theorem in this direction.

Theorem 8.3. (Analytic absoluteness) Suppose that M is a transitive model of
set theory and let M =X is a Cech complete structure on a space X . Suppose
that 72 X — X is an interpretation of the space X. The map 7 is a X1-
elementary embedding of the structure X to X.

Proof. Assume for simplicity that X has a single constituent space X.

First, by an elementary induction on complexity of a quantifier free formula
(&), show that, writing n for arity of ¢, the set By = {# € X": X = ¢(Z)} C
X" is a Borel set in the model M, and the interpretation (¢™)(By) is exactly
the set {Z e X™: X |= (&)}

Now, let ¢ be a ¥ formula, ¢(Z) = I§ ¢ (&Z,y) where ¢ is quantifier free.
Suppose Z is a finite string of elements of X. If X | ¢(&) then there is ¢ such
that X = (&, %) holds. Then, by the first paragraph, X |= ¢(x(Z), 7(%)) and
so X = ¢(n(Z)) as desired. If, on the other hand, X }= —¢(Z), then the Borel
set B = {y: X = ¢(&,¥)} is empty, by the first paragraph it is interpreted as
{7: X E ¢(x(Z),7)}, and at the same time it is interpreted as the empty set.
Thus, X | —¢(n(Z) as desired and the proof is complete. O

Example 8.4. The interpretation of the ordered field R of a transitive model
M is the ordered field R. The axioms of ordered fields are II;. The real ordering
is complete without endpoints, and the field is Archimedean—these two features
characterize the real numbers. They also survive the interpretation process,
the former by Corollary 5.3 and the latter by the fact that an interpretation
commutes with unions of open sets, so R = J,,(—n, n) is preserved.

Theorem 8.3 shows that if a structure X in the model M belongs to a class
which is axiomatizable with X7 and II; formulas, then its interpretation belongs
to the same class. As an example, the interpretation of a topological group is a
topological group, the interpretation of a continuous group action is a continuous
group action, the interpretation of a compatible metric is a compatible metric,
similarly for Banach spaces or Hilbert spaces etc.

A persistent problem in the interpretation theory is the following. Suppose
that a IT; (X etc.) formula defines a topologically simple set (closed, open, Borel
etc.) One would like to conclude that the same formula defines the interpretation
of the set in the interpreted structure. This is by no means an automatic matter.
The following theorem offers an affirmative answer to the absoluteness question
which is easy to apply in numerous cases.
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Definition 8.5. Let X be an interpretable structure with a constituent space
X. A II; formula ¢ absolutely defines a closed set if for every poset P, P |-
whenever 7: X — X is an interpretation then the formula ¢ in the structure X
defines a closed subset of X.

While the definition may look awkward, in practice it is normally the case that
there is a ZFC proof that the formula ¢ defines a closed set in all structures
similar to X, and then ¢ absolutely defines a closed set in X.

Theorem 8.6. (Shoenfield absoluteness) Suppose that M is a transitive model
of set theory containing all ordinals. Suppose M |= X is an interpretable struc-
ture with a constituent space X and ¢ is a Il formula that absolutely defines a
closed set. Let m: X — X be an interpretation. Then

m({r € X: X d()}) = {z € X: X = d(a)}.

Proof. 1t is easy to see that the statement can be reduced to the following.
Suppose that M = X,Y are interpretable spaces and B C X x Y is a Borel
set such that the interpretation of B in all forcing extensions projects into an
open subset of the interpretation of X. Write O = p(B) C X, where p is the
projection from X X Y to X; thus O C X is an open set. Let mp: X, Y — X, Y
be an interpretation. I need to conclude that mo(O) = p(w(B)).

To prove this statement, in the model M consider the Lévy collapse poset
P collapsing the size of bases of X and Y to Ry. Let G C P be a generic filter
over V. In the model M[G], let xo: X,Y — XO, Y, be interpretations over the
model M.

Claim 8.7. M[G] = x0(O) = p(xo(B)).

Proof. Let x be a P-name for interpretations of X,Y respectively. By the
homogeneity of the poset P, the set A={Q e 7:Ip e Ppl x(Q) Cp(x(B))}
is equal to {@Q € 7: PIF x(Q) C p(x(B))} and therefore is in the model M. By
the assumption on the Borel set B, the projection of x(B) is forced to be open
and therefore equal to | J X" A. By the analytic absoluteness 8.3, O = | J A. Since
x is forced to be an interpretation, xo(O) = xo(UA) = Ux0A = p(xo(B)) as
desired. O

In the model M[G], the underlying spaces XO, Yy are second countable, in-
terpretable, and therefore Polish. In the model V]G], let x1: Xo,Yy — X1, Y1
be an interpretation over the model M[G]. By a standard Shoenfield absolute-
ness argument [4, Theorem 25.20] between the models M[G] and V[G] and the
claim, x1(x0(0)) = p(x1(x0(B))). Now, by faithfulness 13.1 applied to the
chain M C M[G] C V[G] of models, x10x0: X,Y — X1,Y] is an interpretation
over the model M. By faithfulness 13.1 applied to the chain M C V C V[G] of
models, there must be an interpretation 7y : X , Y - X 1, Y7 over V such that
m 0 pig = X1 © Xo- Let x € X be an arbitrary point. By the analytic absolute-
ness 8.3 applied to the interpretation 7y, if € m(O) then mo(B), # 0 and if
x ¢ mo(O) then mo(B),; = 0. Thus, mo(O) = p(m(B)) as desired. O
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Theorem 8.6 makes a short work out of many fairly involved manual checks.
However, it has the disadvantage of needing the assumption that the model M
contains all ordinals, which is typically not necessary for the conclusion.

Example 8.8. Suppose that M is a transitive model of set theory containing all
ordinals, M | f: G x X — X is a continuous minimal flow of an interpretable
group on a compact space. Let 7m: G, X — G’,X be an interpretation. Then
the flow f is again interpreted as a flow by analytic absoluteness 8.3. In fact,
the interpreted flow f will be minimal again: the set C = {K € K(X): K
is f-invariant} is defined by a IIy formula, the formula will always define a
closed subset of the hyperspace no matter which extension of the model M one
considers, and therefore m(C) = {K € K(X): K is f-invariant} by Shoenfield
absoluteness 8.6. However, in M, the set C contains just one element, namely
X. Thus, 7(C) contains also only one element X and f is a minimal flow. It is
possible to perform the whole computation by hand and thereby show that the
conclusion holds even for transitive models M which do not contain all ordinals.

Example 8.9. Suppose that M is a transitive model of set theory containing
all ordinals and M | K is a compact convex set. Suppose that 7: K — K
is an interpretation; by analytic absoluteness, the convexity structure on K
gives rise to a convexity structure on K. The space C'(K,R) is interpreted as
C(K,R) by Theorem 11.1. Now, the closed set of convex functions in C(K,R)
is defined by a II; formula which absolutely defines a closed set. The conclusion
of Shoenfield absoluteness 8.6 is that its interpretation is the set of convex
functions in C' (K' ,R). A manual computation can remove the assumption that
M contains all ordinals.

Example 8.10. Suppose that M is a transitive model of set theory, M = X
is a locally convex topological vector space with interpretable topology, K C X
a compact convex set such that the set L C K of all extreme points of K is
compact. Suppose that 7: X — X is an interpretation. Note that the set of
extreme points of K is defined by a Iy formula: L = {z € K: Vyp,y1 € K Vr €
[0,1] 2 = ryo+ (1 —r)y1 = = = yo V & = y1} in the structure including X,
[0, 1], multiplication, addition, and the predicate for K. Note also that it is not
possible to apply Shoenfield absoluteness 8.6 to argue that (L) is the set of all
extreme points of m(K) as it is not clear whether the set of all extreme points
of m(K) must be compact. Instead, it is necessary to resort to an interesting
manual computation:

Work in the model M for a moment. By the Krein—-Milman theorem [7,
Theorem 3.23|, K is the topological closure of the algebraic convex closure of L.
That is, K = cl({,, K) where for each number n € w write I,, C [0,1]" for the
compact set of all n-tuples whose sum is 1, and each K, is the image of L™ x I,
under the map f(Z,7) = >, riz;. Note that each set K,, C X is compact.

Step out of the model M. Each 7(K,,) is the image of w(L™) x 7([,,) under
the map 7(f). In other words, J,, 7 (Ky) is the algebraic convex closure of
7(L). But then, 7(K) = cl(U,, 7(K,)) is the topological closure of the algebraic
convex closure of 7(L). The set m(L) C X is compact by Corollary 5.4. By

29



Milman’s theorem [7, Theorem 3.25], all extreme points of m(K) belong to the
set w(L). Also, the set m(L) consists only of extreme points of 7(K) by the
analytic absoluteness. In conclusion, w(L) is exactly the set of all extremities
of 7(K) as desired.

Example 8.11. The demand that M contain all ordinals cannot be removed
from the assumptions of Theorem 8.6. To show this, use the fact that the
statement “z € w* is constructible” is ¥3(z) [4, Theorem 25.26] to find an
effectively closed set C' C (w*”)? such that for every x € w¥, x is constructible
if and only if the projection of C, into the second coordinate is not all of w®.
Now, suppose that V = L and M is a countable transitive model which contains
a point x € w* such that M |= x is not constructible. Then M |=the formula
Vz (z,y,z) ¢ C with a free variable y absolutely defines a closed subset of w*,
namely the empty set. However, it defines a nonempty set in V.

9 Quotients

In this section, I will show that certain commonly encountered types of quotient
spaces are interpreted in the expected way. This is connected to the evaluation
of interpretations of certain types of surjective maps. As the first case, recall
that a function f: X — Y is open if images of open sets are open.

Theorem 9.1. (Open mapping theorem) Let M be a transitive model of set
theory and M |= (X, 7),(Y,0) is an interpretable space and f: X — Y is an
open continuous function. Let m: X — X and x: Y — Y be interpretations.
Then

1. f is an open continuous function from X to Y ;

2. whenever O € T and P € o are open sets such that f"O = P, then

f'm(0) = x(P).

In particular, a continuous open surjection is interpreted as continuous open
surjection.

Proof. 1t is enough to verify that if the function f is surjective then its inter-
pretation f is surjective, as both (1) and (2) then follow by applying this result
to the restricted functions f [ O. Suppose that y € Y is a point and work
to find 2 € X such that f(z) = y. Define a collection F of closed subsets of
X by F = {c(f~'n(P)): P € o and y € x(P)}. Tt will be enough to show
that (VF # 0, since every point in the intersection must be mapped to y by
Theorem 4.7.

To this end, in the model M find a complete sieve (S, O(s): s € S) on X.
By induction on n € w build an inclusion-descending sequence (s, : n € w) of
elements of the tree S such that y € x(f”O(t,)). This is easy to do. Start with
so = 0 and once ¢, is found, let D,, = {O(t): t is a one-step extension of s, },
note that |JD,, = O,, and use the fact that (J7"D,, = x(f"O(s,)) to find a
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one-step extension s,11 of s, such that y € x(f”O(s,)). This concludes the
induction step.

Now, let E = FU{cl(O(s,)): n € w}. Observe that the collection E has finite
intersection property. To see this, suppose that n € w is a number and P € o is
an open set such that y € x(P). The set x(f”O(sy)) N x(P) is an open subset
of the space Y containing y, therefore nonempty, and as y is an interpretation,
the open set f”O(s,) NP C Y must be nonempty. Thus, there must be a point
z € O, such that f(z) € P, and then 7(x) € 7(O(s,)) N f~*x(P,) and the
latter set is nonempty as desired.

The sieve (S, 7(O(s)): s € S) on the space X is complete by Theorem 5.2,
and so [ F # 0, showing that [ F # 0 as desired. O

Corollary 9.2. Suppose that M is a transitive model of set theory and M =
(X, T) is an interpretable space and E is a closed equivalence relation on it such
that saturations of open sets are open, and such that the quotient X/E is a
reqular Hausdorff space. Let m: X — X be an interpretation.

1. The map [z]g — [7(x)](g) extends to an interpretation of X/E in the
space X /m(E);

2. The interpretation of the quotient map f: X — X/FE is the quotient map
f+ X - X/n(E).

Proof. The quotient map f is open in the model M by the assumptions on
the equivalence relation E. By Theorem 9.1, it is interpreted as an open map
f : X =Y where Y is the interpretation of the space X/E. Every open map is
a quotient map, and so it is enough to show that the equivalence relation F' on
X given by z¢ F 21 is equal to m(E).

Note that F' is closed and it contains 7"/ FE which is dense in the closed
equivalence relation 7w(E); so it is enough to show that if O, P € T are open
sets such that (O x P) N E = 0 then (7(0) x 7(P)) N F = 0. To see this,
note that (O x P) N E = 0 is equivalent to f”O N f”P = 0, which implies
f'7(0) N f'xm(P) = 0 by Corollary 7.6, which by the definition of F indeed
means that (7(O) x 7(P)) N F = 0 as desired. O

Example 9.3. The corollary shows that the coset spaces for closed subgroups
are interpreted in the expected way. Suppose that M is a transitive model of
set theory and M = (G, ,-) is an interpretable topological group and H C G
is a closed subgroup. Let E be the closed equivalence relation on X defined
by zg E x1 if zg - xl_l € H. This is a closed equivalence relation such that
saturations of open sets are open. Now let 7: G — G be an interpretation. It is
not difficult to verify that 7(-) is a group operation, w(H) is a closed subgroup,
7(E) is an equivalence relation connecting o,z just in case zo -z € w(H).
Corollary 9.2 then shows that the interpretable coset space G/H is interpreted
as G/m(H).

Now, recall that a function f: X — Y is perfect if it is continuous, surjective,
images of closed sets are closed and preimages of singletons are compact.
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Theorem 9.4. (Perfect mapping theorem) Suppose that M is a transitive model
of set theory and M = (X,T) is an interpretable space, (Y,o) is a regular
Hausdorff space and f: X — Y is a perfect mapping. Let m: X — X and
xX:Y — Y be interpretations, and f: X 5 Y the interpreted map. Then

1. f is a perfect mapping;

2. whenever O € 7, P € o are open sets such that f"X \ O =Y \ P then
J(XA\7(0)) =Y \x(P).

Proof. T will start with a small claim.

Claim 9.5. In the model M: if O = |J,c; O; is a union of open sets, then
Y\ f(X\O)={D €o: f71D is covered by finitely many sets O;}.

Proof. The right-to-left inclusion follows from the definitions. For the left-to-
right inclusion, suppose that y € Y \ /(X \ O) is a point. The set f~1{y} is
a compact subset of O and so there is a finite set J C I such that f~*{y} C
Uics Oi- Let D =Y\ f"(X \ U,c; Oi), note that y € D and D belongs to the
union on the right hand side. O

Suppose that y € Y is an arbitrary point; I will argue that f’l{y} c Xis
nonempty and compact.

To this end, in the model M let (S,0(s): s € S) be a complete sieve on the
space X. By induction on n € w build nonempty initial levels T;, C S of height
n of a finitely branching tree T' = |J,, T}, so that y € x(Y" \ f/(X \ U{O(?): ¢
is a terminal node of the tree T, }). This is easy to do using the claim at each
level plus the fact that x is an interpretation. After the induction has been
performed, note that the m-image of the sieve (S,0(s): s € S) is a complete
sieve on the space X by Theorem 5.2. Thus, the set K = N,, U{cl(m(O(t)): t €
T is a node on n-th level of T} C X is compact. No finite subcollection of
E = {n(f~Y(P)): P € 0 and y ¢ x(P)} can cover the set K, and therefore
K\ |JF is a nonempty compact subset of K. The definitions and Theorem 4.7
imply that f~'{y} = K\ JE.

Thus, we conclude that f is a surjective function such that preimages of
singletons are compact. (2) now immediately follows by the application of this
fact to the perfect mapping f [ (X \ O0): X\ O — Y \ P. To conclude the
proof, it remains to show that f is a closed mapping. Suppose that C C X
is a closed set and y € Y is a point not in f”C’; I must find an open set
P € o such that y € x(P) and f”"C N x(P) = 0. To find the set P, use the
compactness of K = f~1{y} to find an open set O € 7 such that K C 7(O)
and 7(O) N C = 0. Let P € o be the open set equal to Y\ f/(X \ O). By (2),
f'C c f/(X\ 0) =Y\ x(P). Thus, the set P € ¢ works as required. O

Corollary 9.6. Suppose that M is a transitive model of set theory and M =
(X, T) is an interpretable space and E is a closed equivalence relation on it such
that saturations of closed sets are closed, equivalence classes are compact, and
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such that the quotient X/E is a regular Hausdorff space. Let m: X — X be an
interpretation.

1. The map [z]g — [7(x)]r(g) extends to an interpretation of X/E in the
space X /m(E);

2. The interpretation of the quotient map f: X — X/E is the quotient map
f+ X = X/n(E).

Proof. The quotient map f is perfect in the model M by the assumptions on
the equivalence relation £. By Theorem 9.1, it is interpreted as a perfect map
f : X =Y where Y is the interpretation of the space X/E. Every perfect map
is a quotient map, and so it is enough to show that the equivalence relation F'
on X given by xg F' x1 is equal to w(E). This follows letter by letter the second
paragraph of the proof of Corollary 9.2. O

Example 9.7. The corollary shows that gluing in interpretable spaces is inter-
preted in the expected way. Suppose that M is a transitive model of set theory
and X is the closed unit square in it, and F is the equivalence relation on X
connecting (0, z) with (1,1 — x) and leaves all other points equivalent only to
themselves. The quotient X/E is the Mobius strip. The equivalence relation E
satisfies the assumptions of Corollary 9.6 and so the interpretation of X/FE is
the Mébius strip again.

Example 9.8. Suppose that M is a transitive model of set theory and M = H
is a Hilbert space with a norm ¢. Let S C H be the unit sphere, and E the
equivalence of linear dependence on S. The relation F satisfies the assumptions
of Corollary 9.6. The quotient S/E is the projective Hilbert space of H. Thus,
the interpretation of the projective Hilbert space in M is a projective Hilbert
space.

10 Hyperspaces

Recall that if X is a topological space then K(X) denotes the space of its
nonempty compact subsets, equipped with Vietoris topology, generated by sets
{Ke K(X): KCO}and {K € K(X): KNO = 0} as O varies over all open
subsets of X.

Theorem 10.1. Suppose that M is a model of set theory and M = (X, T) is
an interpretable space. Suppose that w: X — X is an interpretation. Let K(X)

be the hyperspace of X as evaluated in M, and let K(X) be the hyperspace of
X.

1. The map n: K(X) — K(X) can be extended to an interpretation of the
hyperspace K(X);
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2. Whenever O € 7 is an open set, T({K € K(X): K C 0}) = {K ¢
KX):KCcn(O)} andn({K e K(X): KNO#0})={Ke K(X): KN
m(0) # 0}.

The interpretation m maps compact subsets of X in M to compact subsets of
X by Corollary 5.4, so the map 7: K(X) — K(X) is well-defined.

Proof. Whenever A, B C 7 are finite sets, let U(A, B) C K(X) be the set of
all K € K(X) such that for every O € A K C O holds, and for every O € B
K NO #0 holds. A similar definition will be used to generate open sets of the
space K(X). Note that 0 = {U(A, B): A, B C 7 finite} is a basis of the space
K(X) in the model M and 6 = {U(n"A,7"B): A, B C 7 finite} is a basis of the

space K(X). The following claim captures the conversation between the bases
o and 6.

Claim 10.2. Let A, B C 7 be finite sets.
1. for every K € K(X), K € U(A,B) < n(K) e U(n" A, 7" B);

2. if A;,B; C 7 for i € I are finite sets and I is finite and U(A,B) C
U; U(A;, By), then U(n" A, 7" B) C |J, U(n" A;, 7" B;).

Proof. For (1), just unravel the definition of the set U(A, B) and use the fact that
7: X — X is an interpretation. For (2), suppose that the conclusion fails, as
witnessed by some set L € K(X), L € U(n"A, 7" B)\ U, U(7" A;, 7" B;). Then,
there is a partition I = IoUI; and sets O; € A; for i € Ip and O; € Bj for j € I
such that if i € Iy then L ¢ 7(0;) and if j € I then LN7(O;) = 0. This means
that for every i € Iy, the set (N 7"A\ U<z, 7(O5)) \ O; is nonempty, and for
every P € B, the set 7(P) N (7" A\ U,¢;, 7(O;) is nonempty. As 7: X — X
is an interpretation, this in turn means that the sets ((VA\ U7, O;) \ O; is
nonempty for every i € Io, and for every P € B, the set PN A\ Uy, O;
is nonempty. The finitely many points from these nonempty open sets can be
collected to form a finite set K € U(A, B) \ UJ; U(A;, B;) in the model M. (2)
follows. 0

Now, I will argue that Proposition 5.13 can be applied with the basis o to
show that the canonical extension 7 of the map 7: K — 7(K) from K(X) to
K(X) of Definition 5.12 is in fact an interpretation.

To this end, first observe that 7(U(4, B)) = U(x" A, n"B). For the right-
to-left inclusion, note that U(x” A, 7" B) ¢ K(X) is an open set disjoint from
7" (K(X)\U(A, B)) by (1) of the claim. For the left-to-right inclusion, note that
if U(n"C, 7" D) € K(X) is an open set disjoint from 7" (K (X)\ U(A, B)), then
U(C,D) Cc U(A, B) and by (2) of the claim, U(7"C,n" D) C U(n" A, 7" D).

Work in the model M and find a complete sieve (S,O(s): s € S) on the
space X. As in the proof of Theorem 3.8 observe that (S,U(O(s),0): s € S)
is a complete sieve on the space K(X). Step out of the model M, and use
Theorem 5.2 to argue that (S, 7(O(s)): s € S) is a complete sieve on the space
X and Theorem 3.8 to argue that (S,U(7(O(s)),0): s € S) is a complete sieve
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on the space K (X). Thus, the canonical extension 7 moves a complete sieve on

K(X) to a complete sieve on K(X). Proposition 5.13 now completes the proof
of the theorem. O

11 The compact-open topology

The most usual spaces of continuous functions are interpreted in the expected
way:

Theorem 11.1. Let M be a transitive model of set theory and M = (Xo,10),
(X1, 71) are a compact Hausdorff space and a completely metrizable metric space
respectively. Let C(Xg, X1) the the space of continuous functions from Xy to
X1 with the compact-open topology as evaluated in M. Let my: Xg — X, and
T X1 — Xl be interpretations. Let C(Xo,Xl) be the space of continuous
functions from X, to X1 with the compact-open topology. Then

1. the map 7: f + (mo x m1)(f) extends to an interpretation of C(Xo, X1)
to C(Xo,Xl);

2. the evaluation function (z, f) = f(x) from Xo x C(Xg, X1) to X1 is in-
terpreted as the evaluation function from Xo x C(Xo, X1) to X;.

Proof. Let d € M be any complete metric on the space X7; this turns C'(Xg, X1)
into a complete metric space with the metric e(f, g) = sup{d(f(z),g(z)): = €
Xo}. The metric d is interpreted by m; as a complete metric on the space
X; by Theorem 5.5. Let é be the complete metric on C(Xo, X1) defined by
é(f,g) = sup{m (d)(f(z),9(z)): = € Xo}.

The first observation is that the map 7 is an isometric embedding from
(C(Xo, X1), €) to (C(Xo, X1), ). To see this, suppose that f, g € C(Xo, X;) are
functions. The set {d(f(x),g(x)): x € Xy} is dense in {71 (d)(7(f),7(9)): = €
Xo}, so these sets have the same supremum and e(f,g) = é(w(f),7(g)) must
hold.

The second point is that the range of 7 is dense in the space C(Xo, Xl) For
this, suppose that f € C(X'O7 Xl) is a function and € > 0 be a positive rational
number.

Claim 11.2. There is a sequence y = (Og(n,i) € 179,01(n,i) € 71: 4 € I,,n €
w) such that for each number n € w,

1. I, is a finite set, | J; Oo(n,i) = Xo, and the vertical sections of the set
U, cl(Oo(n,%)) x cl(O1(n,i)) have d-diameter at most 2~ "¢;

2. U, cl(Oo(n+1,1)) x cl(O1(n+1,7)) C |J; Oo(n,i) x O1(n,i);
3. f CcU;m0(00(n,i)) x 7(01(n,1)).

Proof. This is a straightforward compactness argument with the space Xo. Note
that f C Xy x X1, as a continuous image of the compact space Xy, is compact.
O
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By a wellfoundedness argument with the transitive model M, there is an
infinite sequence z = (Og(n,4) € 79,01(n,i) € 71: 0 € I,,n € w) in the model
M satisfying the first two items from the claim, and such that z starts with the
same tuple (O(0,7),01(0,7): i € Ip) as the sequence y obtained in V' by an
application of the claim. Let g C Xo x X1 be defined as (1, U;¢;, (cl(Oo(n, ) x
cl(O1(n,q))). It is not difficult to verify that g € C(Xop,X1) is a continuous
function and é(n(g),7(f)) < e. This proves that the range of 7 is dense in the
metric space (C(Xo,Xl),é>.

Now, by Theorem 5.5, the map 7 extends to an interpretation of C'(Xg, X1)
in C(Xo, X1) so that m(e) = é&. The proof of item (2) is left to the reader. [

The interpretation of spaces of continuous functions opens the door to the
interpretation of regular Borel measures.

Theorem 11.3. Suppose that M is a transitive model of set theory and M =
(X,71,B) is a locally compact Hausdorff space with Borel structure and p is a
reqular Borel measure on X. Suppose that m: X — X is an interpretation.
Then there is a unique regular Borel measure [i on X such that for every set

B € B, u(B) = ji(x(B)).
Proof. 1T will need an easy general claim.

Claim 11.4. Whenever K C O are a compact and open subset of X respectively
then there is an open set P € T such that K C w(cl(P)) C O.

Proof. Since m: X — X is an interpretation, for every point x € K there are
sets Oy, P, € 7 such that z € O, and 7(0,) C O and cl(P,) C O,. By a
compactness argument, find an open set L C K such that K C UwEL 7w (P,) and
let P =J,cp, Pe- The set P € 7 works. O

First, handle the case of a compact space X. In this case, the measure p must
be finite by regularity. In the model M, let F': C(X,R) — R be the continuous
linear operator of Lebesgue integration: F(f) = [ f du. By Theorem 11.1, the
space C(X,R) is interpreted as C’(X7 R) via a a map which I will call 7 again.
By analytic absoluteness 8.3, 7(F) is a continuous linear operator on C'(X,R).
By the Riesz representation theorem, there is a regular Borel measure /i on X
such that 7(F') is the integration with respect to fi. I claim that ji works.

First, prove that for every open set O € 7, u(O) = i(w(0)). For the <
inequivalence, if ¢ < p(O) is a rational number, then by the regularity of y there
is a compact set K € M such that K C O and pu(K) > ¢. By the Hausdorfiness
of the space X in the model M, there is a continuous function f € C(X,[0,1])
such that f | K = 1 and f | (X \ O) = 0. Then by analytic absoluteness
supp(n(f)) € m(O) and so (7(0O)) > w(F)(n(f) = F(f) > q as required. For
the > inequivalence, if ¢ < fi(7(O)) is a rational number, then by the regularity
of fi there is a compact set K C 7(O) such that K C #(O) and ji(K) > q. By
Claim 11.4, there is an open set P € 7 such that cl(P) C O and K C 7(P).
There is a continuous function f € C(X,]0,1]) such that f | cl(P) = 1 and
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F1(X\0)=0. Then u(0) = F(f) = n(F)(x(f)) = alcl(w(P))) = i(K) > q
as desired.

Now, it follows that for every compact set /{ C X in the model M, u(K) =
(r(K)) since u(K) = pu(X) — p(X \ K) = 3(X) — a(r(X \ K)) = (x(K)) by
the work on open sets. By regularity of the measure p, it also follows that for
every set B € B, u(B) = ji(m(B)) as desired.

For the uniqueness of the regular Borel measure fi, by the inner regularity
of i and Claim 11.4, for every open set O C X, i(O) = sup{i(n(P): P €
7,7(P) C O} and so the values of ji on open sets are uniquely determined by
the demand on agreement with pu. The values of i on other Borel sets are
uniquely determined by the outer regularity demand on fi.

For the general case of a locally compact space X and a (possibly infinite)
regular Borel measure p on X, for every open set O € 7 such that cl(O) is
compact write po for the restriction of the measure p to cl(O), fio for the
unique measure on the compact set cl(r(0)) € X obtained from uo by the
work on the compact case, and let i be the measure on X defined by i(B) =
sup{fio(B Ncl(n(0))): O € 7 and cl(O) C X is compact}. The verification of
the required properties of the measure [ is routine and left to the reader. [

Example 11.5. Suppose that M is a transitive model of set theory and M | G
is a topological group with locally compact Hausdorff topology. Let p be the
left invariant Haar measure on G in the model M. Let m: G — G be an
interpretation. Then fi is a left invariant Haar measure on the group G. For
the sake of brevity, I deal with the case of a compact group Gj the slightly more
involved general case is left to the interested reader. Note that the p-integration
linear operator F' on C(G,R) in the model M is invariant under left shifts by
elements of G. By analytic absoluteness 8.3, this is also true of the interpretation
F of F, and so the measure i1 obtained from F must be left-invariant as well.

12 Banach spaces

In this section, I provide several theorems on the interpretation of the usual
operations and concepts surrounding Banach spaces.

Theorem 12.1. Topological vector space over R (if interpretable) is interpreted
as a topological vector space over R. A normed Banach space is interpreted as a
normed Banach space. The following properties of Banach spaces are preserved
by the interpretation functor:

1. local convexity;
2. uniform convezity.

Proof. These are all elementary consequences of analytic absoluteness 8.3. Sup-
pose that M is a transitive model of set theory and M = X is a topological
vector space. First of all, the axioms of topological vector space are all Iy,
and therefore they survive the interpretation process. Now suppose that ¢ is
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a complete norm on X; then d(z,y) = ¢(x — y) is a complete metric on X.
Let m: X — X be an interpretation. The interpretation 7(¢) satisies the tri-
angle inequality by analytic absoluteness, since the triangle inequality is a II;
statement. By Theorem 5.5, X is just the completion of 77X under the metric
7(d). In particular, w(d) is a complete metric on X, by analytic absoluteness
(7(d))(z,y) = 7(¢)(z — y) and so m(¢) is a complete norm on X. Therefore,
a Banach space is interpreted as a Banach space, and its complete norms are
interpreted as complete norms.

The local convexity is the statement that every (basic) open neighborhood
in X is a union of convex open sets. Now, if an open set O C X in 7 is convex,
then 7(O) is convex again, since convexity is a II; property of the set. Also,
interpretations commute with arbitrary unions and so if O = J; O; is a union
of convex open sets in the model M, then 7(O) = |J, 7(O;) is a union of open
convex sets as desired.

The uniform convexity is a II; statement and therefore survives the inter-
pretation process again. O

Now, I am ready to show that various operations on Banach spaces commute
with the interpretation functor. The most popular operation on Banach spaces
is certainly taking a dual, either with the weak* topology, or with the topology
obtained from the dual norm. For a normed Banach space X with norm ¢,
write X* for its normed dual with the dual norm ¢*. The bracket () x denotes
the evaluation map from X x X* to R: (z,z*) = z*(x).

Theorem 12.2. Suppose that M is a transitive model of set theory and X = M
18 a Banach space with norm ¢, with dual X* and dual norm ¢*. Letm: X — X

be an interpretation. (@) is a complete norm on X,’ write (X)* for the dual of
X with the dual norm w(¢)*. Then

1. X* is interpreted as a closed subset of (X)*;
the norm ¢* is interpreted as the restriction of the norm w(¢)*;

the bracket () x is interpreted as the restriction of the bracket () ¢ ;

e

if M |= X is uniformly convex then the normed dual of X is interpreted
as all of X*.

Proof. Let x* be a continuous linear functional from X to R in the model
M. By Theorem 4.7, w(z*) is a continuous function from X to R; by analytic
absoluteness 8.3, the function 7(z*) is linear and so an element of (X)*.

Let B C X be the ¢-unit ball; so m(B) C X is the m(¢)-unit ball. Since
7" (x*) C w(2z*) and 7" B C w(B) are dense sets, it is the case that (z*)”(B) is a
dense subset of (w(z*))’n(B), and so ¢*(z*) = (7w(¢)*)(n(x*)). It follows that
the map x* — mw(z*) is a norm and metric preserving embedding from (X*, ¢*)
to ((X)*,m(¢)*) which also commutes with the brackets.

Let x: X* — Y be an interpretation of the dual space X*. By Theorem 5.5,
the space Y is just the completion of x”X™* under the norm x(¢*). As a result,
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there is a unique isometric embedding h: (Y, x(¢*)) = ((X)*,7(¢)*) such that
h(x(x*)) = m(x*). Clearly, (ho x)"”({)x) is a subset of the bracket ()¢ and
(h o x)"¢* is a subset of the norm (7(¢))* on (X)*. Since in both cases the
functions in question are continuous, it follows that (h o x)({)x) is equal to
the restriction of the bracket () ¢ to X x rng(h) and the (ho x)(¢*) is just the
restriction of (7(#))* to rng(h). This completes the verification of the first three
items.

For the last item, I will use the following general claim of independent in-
terest:

Claim 12.3. The set {n(z*): z* € X*} C (X)* is dense in the weak* topology.

Proof. Recall that the weak* topology is just the topology of pointwise con-
vergence of linear functionals in (X )*. Thus, it will be enough, given a linear
functional x* € ()A()*7 points z; € X and open sets O; C R for i € n, such that
for all i € n z*(x;) € O; holds, to produce a linear functional z** € X* such
that for all i € n, 7(z**)(z;) € O; holds.

Suppose for simpicity that the points x; € X are linearly independent. Find
a real number € > 0 such that for all ¢ € w, the interval (x*(x;) — €, 2™ (x;) +¢€)
is a subset of O;. Find a natural number 7 such that 7(¢)(z*) < r. Find points
y; € X such that

e {y;: i € n} is a linearly independent collection;
* d(yi) 2 ¢ (z:);
o ¢ (x; —m(y;)) < e/2r.

This is easy using the fact that 7/ X C X is dense. Find rational numbers
t; for i € w such that ¢(x;) —e/2 < t; < ¢(x;) for each i € n. In the model
M, use the Hahn—Banach theorem to find a linear functional ¢(z**) < r and
x**(y;) = t; for each i € n. Then, for each i € n, it is clear that 7(z**)(z;) =
(@) (y;) + 7 (2**)(z; —y;) € (t—€/2,t+¢/2) C O;, which completes the proof
of the claim. 0

For the conclusion of last item, it is enough to show that the interpretation
of X* is dense in (X)* in the sense of the dual norm m(¢)*: since these are
both complete metric spaces, the density necessitates the conclusion that the
interpretation of X* is in fact equal to (X )*. Since the interpretation of X*
is a convex subset of ()A( )*, it is enough to show that it is dense in the sense
of the weak topology of (X)* by [7, Theorem 3.12]. Now (the key step in the
proof), since M = X is uniformly convex, then so is X by Theorem 12.1, so
X is reflexive by Milman-Pettis theorem [6] and the weak topology on (X )*
coincides with the weak® topology. Thus, the desired conclusion follows from

Claim 12.3. O

Example 12.4. In a transitive model M of set theory, consider the spaces
X =/{; and Y = {, with their usual norms. The space X, being separable,
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is interpreted as ¢;. On the other hand, whenever a C w is a set which is not
in M, the characteristic function of a is an element of ¢, which is not in the
closure of Y. Thus, the interpretation of Y will be a proper closed subset of the
normed dual of the interpretation of X.

Theorem 12.5. Suppose that M is a transitive model of set theory and M =
(X, T) is a Banach space and Y the unit ball of its dual with the weak™ topology.
Suppose that T: X — X is an interpretation and write Y for the unit ball of the
dual of X with the weak* topology.

1. The map 7: Y — Y extends to an interpretation;

2. the bracket on X XY is interpreted as the bracket on X xY.

Proof. The weak* topology is just the pointwise convergence topology. Thus,
define basic functions on X as the functions g whose domain is a finite subset
of X and whose values are real intervals with rational endpoints. For each basic
function g define a basic open set U(g) C Y as the set of all points y € Y such
that for every z € dom(g), y(z) € g(x). Let 0 = {U(g) C Y: g is a basic
function on X}; this is a basis of the topology on the space Y. Similarly, define
basic functions g on X and their corresponding open sets U(g) on the space Y.
Let 6 = {U(n"g) CY: g is a basic function on X}.

Claim 12.6. ¢ is a basis for the topology on Y.

Proof. Suppose that h is a basic function on X and y € Y belongs to U(h).
Write h = {{(2;,q;)i € I} and let € > 0 be a rational number such that for every
iel, (y(z;) —e,y(x;) +€) C ¢;. Use the density of 77X in X to find points
x} € X; and intervals ¢, with rational endpoints so that the norm of z; — w(x%)
is less than < ¢/8 and (y(z;) —e/4, y(x;)+e/4) C ¢, C (y(z;) —€/2,y(x;)+¢/2).
Let g = {{(z},q}): ¢ € I'} and use the linearity and bounded norm of operators
in Y to conclude that = € U(x"g) C U(h). O

Claim 12.7. Suppose that g is a basic function on X.

1. whenever y € Y theny € U(g) if and only if w(y) € U(n"g);

2. if h; fori € I and some finite set I are basic functions on X and U(g) C
U; U(hi), then U(x"g) C U, U(x"h).

Proof. For the first item, just unravel the definition of the set U(g) and of
the map m on operators. For the second item, suppose that the conclusion
fails and y € Y is an operator in U(r"g) \ U, U(7"h;). Let Xo C X be the
finite-dimensional space generated by dom(g) U |J; dom(h;). By analytic abso-
luteness 8.3, there must be an operator zo € M on Xy of norm < 1 which is
in U(g) \ U, U(h;). By the Hahn-Banach theorem in the model M, z, can be
extended to an operator z on all of X of norm < 1. Then z € U(g) \ U, U(h:)
as desired. O
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Now, let @ be the canonical extension of the map n: Y — Y as described
in Definition 5.12. First argue that 7(U(g)) = U(x"g). For the right-to-left
inclusion note that U(7”g) C Y is an open set disjoint from 7 (Y \ U(g)) by (1)
of the claim. For the left-to-right inclusion, if h is a basic function on X and
U(x"h) C Y is disjoint from " (Y \U(g)) then U(h) C U(g) by (1) of the claim,
and so U(n"h) C U(n"g) by (2) of the claim. Now, the canonical extension 7
must be an interpretation of Y in Y by Proposition 5.13, since the space Y is
compact. O

13 Faithfulness

It is interesting to see how the interpretations behave when there are more
models around. The behavior in the category of interpretable spaces is the
expected one. Outside of the category, there is an instructive counterexample.

Theorem 13.1. Suppose that My C My are transitive models of set theory,
My E (Xo,70) is an interpretable space, My = mo: (Xo,70) — (X1,71) is an
interpretation over My, and m1: (X1, m1) — (Xa,72) is an interpretation over
M. Then my omg: (Xo,70) = (Xa2,72) is an interpretation over My.

Proof. The composition map is clearly a preinterpretation, and this would hold
of any topological space Xy. If (S, O(s): s € S) is a complete sieve on X in the
model My, then by a repeated use of Theorem 5.2 the pair (S, 7(0(s)): s € S)
is a complete sieve on X in the model My, the pair (S, 71 (7mo(O(s))): s € S) is a
complete sieve on X, and therefore the composition 71 o g is an interpretation
as desired. O

Example 13.2. The conclusion of Theorem 13.1 fails for X = w“!. To see,
this I will first prove a characterization theorem for interpretations of the space
X in generic extensions in the presence of the continuum hypothesis.

Claim 13.3. (with Justin Moore) Assume the Continuum Hypothesis. Let P
be a partial ordering. The following are equivalent:

1. P the interpretation of XV is XVIC with the identity map;

2. P adds no reals and no cofinal branches to branchless trees of size Nj.

Here, by XV[6 I mean the product w*! as evaluated in V[G].

Proof. Tt is not difficult to show that to prove (1), one has to prove the following.
Let F' be a collection of finite partial functions from w; to w such that Va €
X 3f € F f C a; then P I- Vo € XVI€l 3f € F f c 2. To this end, look at
the tree T' of all functions whose domain is some countable ordinal, range is a
subset of natural numbers, and ¢t € T implies that for no f € F, f C t. The
assumptions imply that T has no cofinal branches. Suppose now that (2) holds.
Let & be a P-name for a new element of X. Since P adds no new reals, all
initial segments of & are forced to be in the ground model. And since P I & is
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not a branch through 7', there must be an initial segment of & which is not in
T and therefore contains some f € F' as a subset. Thus, (1) holds.

Now, suppose that (2) fails. There are two distinct cases. Suppose first that
P adds a new real. Use the CH assumption to find an enumeration (z,: w <
a < wy) of all elements of w*. For every w < a < wy, consider the open set
Of ={z € X:z | z(a) = 2o | z(a)}. Note that |J,On = X since for every
element x € X there is an ordinal « such that z | w = 2z, and then z € O,.
However, if & is a P-name for any function from w; to w such that & | w ¢ V
and for every w < a < wy @(«) is a number so large that z, and & [ w differ
below #(«), then P IF & does not belong to the natural interpretation of the
set O, for any ordinal a. In other words, an open cover of X" does not cover
XVIG and (1) fails.

Suppose now that P adds no new reals and instead adds a branch through
some branchless tree T of size N;. One can assume that every countable in-
creasing sequence in T has a unique supremum, every terminal node of T is
on a limit level, and nonterminal nodes split into exactly two immediate suc-
cessors. For every t € T let X; be the set {s € T: s < t} equipped with
discrete topology. The product ¥ = [[, X; is naturally homeomorphic to a
closed subspace of X, so it will be enough to show that there is an open cover
of YV which is not a cover of YV, Consider the following open subsets of Y
O; ={y € Y: y(t) =t} for terminal nodes t € T, Q; = {y € Y: if y(t) =t
then for neither of the two immediate successors s of ¢, y(s) = s} for nonter-
minal nodes t € T, and Py; = {y € Y: y(s) is not compatible with y(¢)} and
Ry ={y €Y:y(t) <y(s) <t} for any two nodes s,t € T.

On one hand, in the P extension, the product YV is not covered by the
union of (the natural interpretations of) these open sets: if b C T is a cofinal
branch in V[G] then the point y € YISl defined by y(t) =largest element of
b which is < ¢ does not belong to any of the open sets. On the other hand, in
the ground model the product Y is covered by the union of these open sets: if
y €Y fell out of all of them then define b = rng(y) and observe that

e b is a linearly ordered subset of T' by the definition of Pg;
e b is countable as T has no cofinal branches in the ground model;

e b does not have a maximum. Such a maximum ¢ would have to have
y(t) =t by the definition of the sets R(s,t), but then if ¢ is nonterminal
then y € @Q; and if ¢ is terminal then y € Oy;

e b does not have a limit ordertype, since for the supremum ¢, y(t) < t would
have to hold and y would belong to one of the sets R(s,t).

Since the last two items cover all possibilities, a contradiction is reached showing
that YV is covered by the open sets indicated and (1) again fails. O

It is now a routine matter to start with a model of CH and construct generic
extensions V' C V[G] C V[H] such that both V[G] and V[H] are o-closed
extensions of V' and V|G| contains a branchless tree T of size N; which does

42



have branches in V[H]. For example, to obtain V[G] just add an w;-tree T
with countable approximations (it will be a Suslin tree by [4, Theorem 15.23])
and then add a generic branch through it to form V[H]. It is well known that
V[H] is a o-closed extension of V. Once this is done, the claims show that
the interpretation of XV in V[H] over V is XV the interpretation in V[G]
is XVI& and the interpretation of XVI¢! is not XV[H] in violation of the
conclusion of Theorem 13.1.

Theorem 13.4. Suppose that X is an interpretable space and M is an elemen-
tary submodel of a large structure containing X as an element and some basis of
X as an element and a subset. Let m: M — M be the inverse of the transitive
collapse of M and X = w‘l(X). Then 7: X — X is an interpretation of the
space X over the model M.

Proof. The map m commutes with finite intersections and arbitrary unions in
the model M simply because 7 is an elementary embedding. Moreover, the
range of m generates the topology of the space X since it contains a basis by the
assumptions. Thus, the map 7 is a preinterpretation, and this would be true
for any topological space X. To prove that 7 is an interpretation, find a basis
o of X which is an element and a subset of the model M. Given a complete
sieve (S,0(s): s € S) for the space X, refining and thinning out if necessary it
is possible to amend it so that it uses only sets from the basis ¢ and so that if
t € S and sg, s1 are immediate successors of ¢ then O(sg) # O(s1). Such a sieve
has size < |o| and one such a sieve must belong to the model M by elementarity;
it is then even a subset of M. Then, the interpretation of the complete sieve
71((S,0(s): s € S)) on X is the complete sieve (S,0(s): s € S) on X and
therefore m: X — X is an interpretation by Theorem 5.2. O

Example 13.5. Whenever X is a second countable space which is not Polish
and M is a countable elementary submodel of a large structure containing X,
then the conclusion of the theorem fails since interpretations of spaces over
countable M must be Polish.

14 Preservation theorems

In this section I will show that certain properties of topological spaces survive
the interpretation process. This is to say, if M is a transitive model of set
theory and M |= X is a topological space with property ¢ and 7: X — X isa
topological interpretation, then X has property ¢. There are very many open
questions.

In the category of compact Hausdorff spaces, many topological properties
are preserved simply because every open cover of the interpretation has a finite
refinement whose elements are in the range of the interpretation map. This
immediately gives the following:

Proposition 14.1. Suppose that M is a model of set theory and M = X is
a compact Hausdorff space and f: X — X is a continuous map. Suppose that
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7 X = X and f: X = X are interpretations.

1. if M = X is connected then X is connected;
2. if M = X is totally disconnected then X is totally disconnected;

3. the Lebesgue covering dimension of X as computed in M is equal to that

of X;
4. the topological entropy of f as computed in M is equal to that of f

I do not know if such categories as Lyusternik—Schnirelman category, small
inductive dimension or large inductive dimension are necessarily preserved by
interpretations of compact Hausdorff spaces. In the broader category of inter-
pretable spaces, much more complicated behavior is possible. I include just one
preservation schema which yields many results.

Definition 14.2. A property ¢ of open covers of topological spaces is good if

1. it is upwards absolute: suppose that M is a transitive model of set theory
and M E X is an interpretable space and C' is an open coverof X with
¢(C). If m: X — X is an interpretation, then ¢(7x”C) holds;

2. it is diagonalizable: if X is an interpretable space, C' is an open cover
with ¢(C) and for every O € C, Do is an open cover of some open
set containing cl(O) as a subset such that ¢(Do) holds, then there is a
refinement of | J, Do which has property ¢;

3. if a finite cover fails to have ¢ then so do all of its refinements.

Say that X is ¢-compact if every open cover has a refinement which satisfies ¢,
and X is locally ¢-compact if for every point x € X and every neighborhood
2 € O there is an open set € P C O such that P is ¢-compact.

Several traditional properties of topological spaces can be expressed as local
¢-compactness for a good ¢:

Example 14.3. Local metacompactness. Consider the property ¢ of open
covers C' saying “every point is contained in only finitely many elements of
C”, or in standard terminology “C' is pointwise finite”. Then ¢ is good: ¢(C)
says that the intersection (), O, is empty, where O,, is the open set of points
contained in more than n many elements of the cover C'. This statements is
absolute by Theorem 6.1. For the diagonalization, if C is a pointwise finite
cover of X and for each O € C there is an pointwise finite open cover Do
of some open set containing cl(O), then the collection {P N O: P € Do} is a
pointwise finite refinement of | J, Do.

Example 14.4. Local paracompactness. Consider the property ¢ of open cov-
ers C saying “every point has a neighborhood which has nonempty intersection
with only finitely many elements of C”, or in standard terminology “C'is locally
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finite”. Then ¢ is good: ¢(C) says that the set {O C X: O is an open set with
nonempty intersection with only finitely many elements of C'} is a cover of X,
and this is preserved by interpretations. For the diagonalization, if C' is a locally
finite cover of X and for each O € C there is a locally finite open cover Do
of some open set containing cl(O), then the collection {P N O: P € Do} is a
locally finite refinement of | J, Do.

Example 14.5. Local Lindel6fness. Consider the property ¢ of open covers C'
saying that | J C is covered by countably many elements of C'.

Example 14.6. Local connectedness. Consider the property ¢ of open covers
saying C' that for every two sets P,@ € C there are sets {O;: ¢ € n} in C such
that Og = P,O,—1 = @, and O; N 0,11 # 0 for every i € n — 1.

Many properties such as (local) complete normality are not expressible in this
way.

Theorem 14.7. Suppose that ¢ is a good property of covers. Suppose that M is
a transitive model of set theory M = (X, 1) is a locally ¢-compact interpretable
space. Let m: X — X be an interpretation. Then X is locally ¢-compact; in
fact, if M = O € 7 is ¢-compact then w(O) is ¢-compact.

Proof. Suppose for contradiction that P € 7 is a ¢-compact set, and C is an
open cover on 7(P) which shows that 7(P) fails to be ¢-compact—thus, P has no
refinement with property ¢. Refining if necessary, I may assume that C' C #"'7.
Let (S,0(s): s € S) be a complete sieve on the space X in the model M. By
induction on n € w build nodes s,, € S and sets P,, € T so that

e 5o =0 and s,41 is an immediate successor of s,;
e P=PyD> P D... are ¢p-compact sets in the model M,;

e C | w(P,), the cover of 7(P,) consisting of intersections of elements of C
with 7(P,), has no refinement with property ¢;

o cl(P) C P,NO(sy).

This is not difficult to do. At the induction step, work in the model M and
write P, = |JD where @ € D implies that @ is a ¢-compact open set and
Q C P,NO(t) for some immediate successor ¢ of s,,. This is possible as the space
X is locally ¢-compact. I claim that there must be O € D such that C | 7(O)
has no refinement with property ¢ which makes the induction step immediately
possible. Suppose for contradiction that this fails. Use the ¢-compactness of
P, in the model M to find a refinement D’ of D with the property ¢ such that
the closure of every element of D’ is a subset of some element of D. Step out of
the model M. By the upward absoluteness, 7/ D’ is a cover of 7(P,) with the
property ¢. For every O € D there is a cover Do of w(O) which is a refinement
of C' | 7(O) and has the property ¢ by the contradictory assumption. By the
diagonalizability, there is is a refinement of | J, Do which is a cover of 7(P,)
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with the property ¢. However, this contradicts the third item of the induction
hypothesis.

Once the induction process is complete, let F be the collection {cl(7(P,)): n €
w}U{X\ O: 0 € C} of closed subsets of the space X. The collection F has
the finite intersection property since no set P, can be covered by finitely many
sets O such that 7(O) is an element of C: such a finite cover E would have to
be in the model M, 7" E would be a refinement of C' | P,, so it would fail ¢,
thus M = —¢(E) by the absoluteness clause of Definition 14.2, and M | E
witnesses the failure of ¢-compactness of the set P,, by the third clause of Defi-
nition 14.2. This would violate the second item of the induction hypothesis at n.
Now, since the m-image of the sieve is complete by Theorem 5.2, the collection
F' has a nonempty intersection, containing some element z € X. Then z ¢JC,
contradicting the assumption that C' was a cover. O

Corollary 14.8. The following properties of interpretable spaces are preserved
by interpretations over transitive models of set theory:

1. local paracompactness;
2. local metacompactness;
8. local Lindeldfness;

4. local connectedness.

The corollary can be sharpened in certain more special circumstances. For
example, by a theorem of Frolik [3], a regular Hausdorff space X is paracompact
Cech complete if and only if there is a perfect map f: X — Y onto a completely
metrizable space Y. Thus, if M E X is Cech complete and paracompact,
then the interpretation of X is again Cech complete and paracompact since
the perfect map is interpreted as a perfect map again by Theorem 9.4 and the
completely metrizable space is interpreted as completely metrizable again.

15 Interpretable Borel spaces

There are important spaces which are not interpretable, including Q or C,(R).
In general, the interpretation of such spaces exhibits various pathologies. In
a good class of examples though, one can adjust the notion of interpretation
so that the resulting functor commutes with many natural operations on such
spaces.

Definition 15.1. A Borel space is a triple (X, 7, B) where X is a set, 7 is a
topology, and B is the o-algebra of Borel sets.

Borel spaces have a natural notion of interpretation between transitive mod-
els of set theory:
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Definition 15.2. Suppose that M is a transitive model of set theory and M |=
(X,T,B) is a Borel space. A preinterpretation of the Borel space is a map
m: X - X, m:7— 7 and m: B — B where (X, 7,5) is a Borel space and

1. for every z € X and every O € 7, x € O < 7(x) € 7(0);

2. 7 | 7 commutes with finite intersections and arbitrary unions in the model
M, 7(0) =0 and 7(X) = X;

3. w1 generates the topology 7;

4. 7 | B extends 7 | 7 and it commutes with complements, countable unions
and intersections in the model M.

An interpretation is the largest preinterpretation in the sense of reducibility if
it exists.

Thus, Theorem 6.1 says that the notion of interpretation of Borel spaces
essentially coincides with interpretations of topological spaces in the category
of interpretable topological spaces. The development of the theory of interpre-
tations of Borel spaces closely follows the topological case.

Theorem 15.3. If M is a transitive model of set theory and M | (X, 1,B)
18 a Borel space whose topology is reqular Hausdorff, then its preinterpretation
exists, it is unique up to equivalence of preinterpretations, and its topology is
reqular Hausdorff again.

Theorem 15.4. The interpretation functor on interpretable Borel spaces com-
mutes with the operation of taking a Borel subset.

Definition 15.5. An interpretable Borel space is one isomorphic to a Borel
subset of an interpretable topological space, with the inherited Borel structure.

Theorem 15.6. The interpretation functor on interpretable Borel spaces com-
mutes with the operation of countable product.

As a final note, I will show that in a very common case, that of proper
bounding forcing extensions, the notions of interpretation of topological and
Borel topological spaces essentially coincide.

Theorem 15.7. Suppose that M is a transitive model of set theory such that

1. every countable subset of M is covered by a set in M which is countable
m M;

2. every function in w* is pointwise dominated by some function in w* N M.

Suppose M = (X, 7,B) is a reqular Hausdorff space with a Borel o-algebra.
If m: (X, 1) = (X, 7) is a interpretation of the topological space then w extends
to an interpretation of the Borel space.
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Proof. Tt will be enough to show that if 7 is a topological preinterpretation the
it can be extended to a Borel-topological interpretation, since then the direct
limits used to compute the topological and Borel-topological interpretations
coincide. The argument follows closely the proof of Theorem 6.1. Work in the
model M. By induction on the complexity of a Borel code ¢ € M, define an
ordering T,. An element p € T, will be a tuple whose first element will be a
nonempty closed subset of X denoted as E(p).

e if c = {A} for a nonempty closed or open set A C X, then T, is an ordering
of all pairs p = (E, n) such that E' C A is closed and nonempty and n € w.
The ordering is defined by (E,n) > (F,m) if F C F and n < m;

e if ¢ = {{J, D} for some countable set D of codes, T, is the ordering of all
triples (E, d,u) where E C X is a nonempty closed set, d € D, u € Ty,
and E C E(u). I'set (E,d,u) > (F,e,v) if FCE,d=eand v < u;

e if c = {(, D} for some countable set D = {d;: i € w} of codes with a fixed
enumeration, let T, be the set of all tuples (F,u;: i € n) where E C X is
a nonempty closed set, u; € Ty, for all i € n, and E C ()i € nE(u;). The
ordering is defined by (E,u;: i € n) > (F,v;: i € m) if F C E, m > n,
and for all i € n u; > v; in Ty,.

Claim 15.8. In the model M, if p is an infinite descending sequence in T, then
M, E(p(n)) C Be.

Claim 15.9. InV, if z € B, is a point then there is an infinite descending
sequence p in T, such that x € (), 7(E(p(n)).

Now, as in the proof of Theorem 6.1, it is just enough to show that if c € M
is a Borel code and B, # 0 then B. # 0. Suppose then that B, # 0. Let
T be the tree of all finite attempts tobuild an infinite descending sequence in
Te; so T € M. Use Claim 15.9 to find an infinite branch p in T such that
N, 7(E(p(n))) # 0. Use the assumptions (1) and (2) of the theorem to find
a finitely branching tree S C T in the model M such that b C S. For every
number n € w let C,, = Y{t(n): ¢ € S}. The set C,, C X is a finite union
of closed sets and as such it is closed. The set (), 7(Cp) C X is nonempty,
containing the point z, and since the map 7 is a topological interpretation, the
set [,, Cn C X must be nonempty. Let y € X be a point in this intersection. A
compactness argument with the finitely branching tree S shows that there must
be an infinite branch ¢ C S such that y € [, ¢(n). Claim 15.8 then shows that
y € B, as desired. O

Neither of the assumptions of Theorem 15.7 can be removed as the following
two examples show.

Example 15.10. Let k£ be an uncountable regular cardinal and let (X, 7, B)
be the subspace of 2% consisting of characteristic functions of finite sets with a
Borel structure.
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1. The interpretation of the Borel space X in every extension is X itself with
the identity function;

2. In every extension of V' in which cofinality of x is countable, the interpre-
tation of the topological space X icontains a characteristic function of an
infinite set.

Thus, for example if the Continuum Hypothesis holds and the Namba forcing
cofinalizes x = w) to w the extension contains no new reals but still in the
topological interpretation of the space X it is impossible to faithfully define
interpretations of Borel sets.

Proof. Observe that the space X is an F, subset of the space 2%. (1) then
follows immediately from Theorems 7.2 and 4.6. (2) is more difficult. Pass to
an extension in which there is a set @ C « of ordertype w which is cofinal in
k. Let g € 2" be the characteristic function of the set a. It will be enough
to show that the identity map = from X to X U {g} extends to a topological
interpretation of X. To see why the map m commutes with unions of open sets,
suppose that in V, O = (J,c; O; is a union of open subsets of the space X.
Suppose for simplicity that O = X and the set O; are obtained as intersections
of basic open subsets of 2% with X; I must prove that there is i € w such that
g € O;. To this end, work in V' and define the function h: k — k by h() =the
least ordinal « such that for every finite set b C «, the characteristic function
of b belongs to some open set O; such that the support of O; is a subset of
«. Since the cardinal k is regular, the function g is well defined. Comparing
ordertypes, it is easy to conclude that there must be an ordinal a € k such that
the ordinal interval [, f(c)] contains no elements of the set a. Then, there is
an index ¢ € I such that the characteristic function of a N « is in the open set
O;, and the support of O; is a subset of f(a). Since the map ¢ is coincides
with the characteristic function of a N« below f(«), it follows that g € O; as
desired. O

Example 15.11. Let (X, 7, B) be the Borel space of continuous functions from
[0,1] to [0,1] with pointwise convergence.

1. The interpretation of the Borel space X in every extension is the space
of continuous functions from [0, 1] to [0, 1] with the topology of pointwise
convergence on [0,1] NV}

2. In every extension in which there is an unbounded real, the interpretation
of the topological space X contains a discontinuous function.

Proof. Note that the space X is a Borel subset of Y = [0, 1][0’1] with the prod-
uct topology, consisting of uniformly continuous functions. To see how it is ex-
pressed as a Borel set, for positive rationals £, > 0let Ces = {f € Y: Vag, 21 €
[0,1] |zo — z1] <€ = |yo — y1| < 6} and observe that C.s C Y is a closed set.
Then X = (. U; Ces-
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For (1), apply Theorems 7.2 and 4.6 to see that the interpretation of the
Borel space X in any extension is just the space X of all uniformly continuous
functions from [0,1] NV to [0,1]. Every f € X has a unique extension to a
continuous function on [0, 1], and the extension map will be a homeomorphism
between X and the space of all continuous functions from [0, 1] to [0,1] with
pointwise convergence on the set [0,1] N V.

For (2), for every n € w let f,: [0,1] — R be a continuous function such
that supp(f,) C (27"71,27") and £,(27" —27"72) = 1. In the extension, let
a C w be a set such that for every increasing function h € w* NV there is m € w
such that the interval [m, h(m)] contains no numbers in a; such a set a exists as
the extension is assumed to contain an unbounded real. Let g: [0,1]NV — R
be the function defined as g = > ., fn. I will show that the identity map
m: X = X U{g} extends to a topological preinterpretation of X.

Indeed, suppose that O = | J; O; is a union of basic open sets in V. Suppose
for simplicity that O = X and the sets O; are basic open. It will be enough
to show that there is an index i € I such that g € O;. Work in V. For every
finite set b C w let ky = >, o, fn. This is a function in X, therefore it belongs
to one of the sets O;. Let h € w* be a function such that for every m € w and
every b C m there is i € I such that k, € O; and supp(O;) N (0,27 "(™)) = 0.
Now, the choice of the set a implies that there is m € w such that there are no
elements of a between m and h(m). Let b = aN'm, and let ¢ € I be an index
such that k;, € O; and supp(O;) N (0,27 (™)) = 0. Since outside of the interval
(0,27"(m)) the functions g and k, are equal, it follows that g € O; as desired.

Now, the map 7 does not extend to a Borel-topological preinterpretation of
X, since the F,s set {f € X: f(0) = 0AVmIn >m f(27" —27"72) = 1} is
empty in V while the only candidate for its interpretation in the space X U{g} is
the nonempty set {g}. It follows that the topological interpretation of X (which
must contain a copy of X U {g}) cannot be extended to a Borel-topological
interpretation of X. O

Again, it is necessary to restrict the category of all Borel spaces to a smaller
one if the notion of interpretation is to commute with natural operations such
as product:

Definition 15.12. An interpretable Borel space is a Borel space which is iso-
morphic to a Borel subset of an interpretable topological space to a Borel set,
with the inherited topology and Borel structure.
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