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Abstract

We consider the phenomenon of oscillations in the solution families to partial differential
equations. To begin, we briefly discuss mechanisms preventing oscillations/concentrations
and make a short excursion in the theory of compensated compactness. Pursuing the philos-
ophy “everything what is not forbidden is allowed” we show that certain problems in fluid
dynamics admit oscillatory solutions. This fact gives rise to two rather unexpected and in
a way contradictory results: (i)many problems describing inviscid fluid motion in several
space dimensions admit global-in-time (weak solution); (ii) the solutions are not determined
uniquely by their initial data. We examine the basic analytical tool behind these rather
ground breaking results - the method of convex integration applied to problems in fluid me-
chanics
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1 Oscillations, concentrations and how to handle them

Some of the arguments below are illustrative and may be not completely rigorous, in the sense
that certain hypotheses are omitted to keep the presentation clear and concise.

1.1 Oscillations

Consider an a-periodic continuous function g : R→ R,

g(x+ a) = g(x) for all x ∈ R,
∫ a

0

g(x)dx = 0,
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and a sequence
gn(x) = g(nx), n = 1, 2, . . .

Our goal is to describe the limit limn→∞ gn. Apparently, the sequence g(nx) does not converge
pointwise, not even a.a. pointwise. To capture its asymptotic behavior, we have to consider its
averaged values, ∫

R

gn(x)ϕ(x) dx, where ϕ ∈ C∞c (R).

Introducing the primite function G,

G(x) =

∫ x

0

g(z) dz

we easily observe that G is also continuous and periodic. Consequently, by means of the by–parts–
integration formula,∫

R

gn(x)ϕ(x) dx =

∫
R

g(nx)ϕ(x) dx = − 1

n

∫
R

G(nx)∂xϕ(x) dx→ 0

as n → ∞ for any smooth function ϕ. We say that the sequence {gn}∞n=1 converges weakly to 0,
gn ⇀ 0. As a straightforward consequence we deduce that a sequence

hn(x) = h(nx), where h is a− periodic,

converges weakly to the integral average

∫ a

0

h(x) dx, hn ⇀

∫ a

0

h(x) dx.

Thus the weak convergence does not, in general, commute with non–linear compositions, specif-
ically

gn ⇀ g does not imply H(gn) ⇀ H(g) if H is not linear.

Convex compositions are weakly lower semi–continuous,

gn ⇀ g implies

∫
R

H(g)ϕ dx ≤ lim inf
n→∞

∫
R

H(gn)ϕ dx for any ϕ ≥ 0

whenever H is convex. This can be easily seen from the Taylor decomposition,

H(gn) = H(g) +H ′(g)(gn − g) +
1

2
H ′′(ξ)(gn − g)2. (1.1)

Formula (1.1) also reveals the difference between the weak limit of H(gn) and H(g) due to the
quadratic term. Indeed one can deduce that gn converges strongly to g only if there exists a strictly
convex function H such that H(gn) ⇀ H(g).

3



1.2 Concentrations

Consider a sequence

gn(x) = ng(nx), where g ∈ C∞c (−1, 1), g(−x) = g(x), g ≥ 0,

∫
R

g(x) dx = 1.

It is easy to check that

•
gn(x)→ 0 as n→∞ for any x 6= 0, in particular gn → 0 a.a. in R;

•
‖gn‖L1(R) =

∫
R

gn(x) dx =

∫
R

g(x) dx = 1 for any n = 1, 2, . . . .

Next, we observe that gn does not converge weakly to 0. Indeed∫
R

gn(x)ϕ(x) dx =

∫ 1/n

−1/n

gn(x)ϕ(x) dx ∈
[

min
x∈[−1/n,1/n]

ϕ(x), max
x∈[−1/n,1/n]

ϕ(x)

]
→ ϕ(0)

as soon as ϕ is continuous. As a matter of fact, the limit object cannot be identified with any
integral average, it is a measure - the Dirac mass δ0 concentrated at 0.

2 Equations preventing oscillations, compactness and com-

pensated compactness

We show that families of (hypothetical) solutions of certain problems cannot exhibit oscillations
and/or concentrations.

2.1 Elliptic equations

A trivial examples of problems without oscillatory solutions are elliptic equations as

−∆xu(x) = f(x) in a bounded domain Ω, u|∂Ω = 0. (2.1)

Indeed integrating by parts yields immediately∫
Ω

|∇xu|2 dx =

∫
Ω

fu dx ≤ ‖f‖L2(Ω)‖u‖L2(Ω).

In view of the standard Poincaré inequality, we get

‖u‖L2(Ω)
<∼ ‖∇xu‖L2(Ω),

and, in accordance with the Rellich–Kondraschev theorem, the embedding

W 1,2(Ω) ↪→↪→ L2(Ω)

is compact. Consequently, both oscillations and concentrations are prevented by constraint im-
posed by the elliptic equation (2.1).
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2.2 Scalar conservation laws

A more subtle example of compactness is related to solution families of nonlinear scalar conserva-
tion laws. For the sake of simplicity, consider the Burgers equation

∂tu+ ∂xf(u) = 0, u(t, 0) = u(t, 1), t ∈ (0, T ). (2.2)

First observe that for linear f , the problem admits oscillatory solutions. Indeed any function
of the form

u(t, x) = v(t− x), v(z + 1) = v(z)

satisfies solves (2.2) with f(u) = u. General linear functions f(u) = au can be handled by simple
rescaling.

2.2.1 Non–linear case, entropies

For any continuously differentiable function S, we easily derive the identity

∂tS(u) + ∂xF (u) = 0, where F ′(z) = f ′(z)S ′(z). (2.3)

Although (2.3) can be formally derived from (2.2) on condition that the solutions is smooth, it may
be viewed as an addition constraint imposed on the solution set. Convex S are called entropies,
the associated function FS is the entropy flux.

2.2.2 Maximum principle

Consider a convex function S such that

S(z) =


0 for z ≤ L

> 0 for z > L

Integrating (2.3) over (0, 1) and using periodicity of u we easily obtain

d

dt

∫ 1

0

S(u(t, x)) dx = 0.

In particular ∫ 1

0

S(u(t, x)) dx = 0 for all t ≥ t0 as long as

∫ 1

0

S(u(t0, x)) dx = 0.

This can be reformulated as the maximum principle:

u(t, x) ≤ L for all t ≥ t0 as soon as u(t0, x) ≤ L.
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In a similar fashion we conclude

inf
y∈[0,1]

u(t0, y) ≤ u(t, x) ≤ sup
y∈[0,1]

u(t0, y) for all t ≥ t0, x ∈ [0, 1]. (2.4)

Thus concentrations in the solution set of (2.2) can be controlled by the initial data. Here and
hereafter in this section we therefore assume that solutions of (2.2) are uniformly bounded.

Finally, we note that the same can be derived under a weaker stipulation than (2.3), namely

∂tS(u) + ∂xF (u) ≤ 0, where S is convex, F ′(z) = f ′(z)S ′(z). (2.5)

2.2.3 Compensated compactness, Div–curl lemma

Our goal is to show that the family of constraints (2.3), or even (2.5) prevents oscillations in the
family of solutions to (2.2) as long as f is a genuinely non–linear function. To this end, we recall
the celebrated Div–Curl lemma of Murat and Tartar [2].

Lemma 2.1. Let {Un}∞n=1, {Vn}∞n=1 be two sequences of vector valued defined on a set Q ⊂ RN

such that

Un → U weakly in Lp(Q;RN),

Vn → V weakly in Lq(Q;RN),

where
1

p
+

1

q
< 1.

In addition, let

{divUn}∞n=1 be precompact in W−1,s(Q),

{curl Vn}∞n=1 be precompact in W−1,s(Q;RN×N)

for some s > 1.
Then

Un ·Vn → U ·V weakly in Lr(Q),
1

r
=

1

p
+

1

q
.

We will not give the complete proof of this result but restrict ourselves to the situation

divUn = 0, curlVn = 0.

Moreover, as the result is local, we may assume that Q is a simply connected domain. Accordingly,
we can write

Vn = ∇xΦn, where ‖Φn‖Lq(Q) + ‖∇xΦn‖Lq(Q;RN ) ≤ c.

In particular, in accordance with the Rellich–Kondrachev compactness embedding theorem,

Φn → Φ in Lq(Q), where ∇xΦ = V.

Now, for a compactly supported function ϕ we get∫
Q

Vn ·Unϕ dx =

∫
Q

∇xΦn ·Unϕ dx = −
∫
Q

ΦnUn∇xϕ dx→ −
∫
Q

ΦU ·∇xϕ dx =

∫
Q

U ·Vϕ dx
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2.2.4 Compactness for genuinely nonlinear scalar conservation law

Let {un}∞n=1 be a sequence of solutions to (2.2) such that

|un(t, x)| ≤ c for all (t, x)

uniformly for n→∞.
Passing to suitable subsequences, we may suppose that

un → u weakly-(*) in L∞,

S(un)→ S(u) weakly-(*) in L∞,

F (un)→ F (u) weakly-(*) in L∞

for any convex entropy S with the corresponding flux F .
Seeing that [S(u), F (u)] satisfy the equality (2.3), or even the inequality (2.5), we may use

Div–Curl lemma to deduce

S1(un)F2(un)− F1(un)S2(un)→ S1(u) F2(u)− F1(u) S2(u) (2.6)

passing again to subsequences as the case may be. Indeed we may apply Lemma 2.1, with N = 2,

divt,x[S1, F1] = ∂tS1 + ∂xF1, curlt,x[F2,−S2] = ∂tS2 + ∂xF2.

It turns out that validity of (2.6) for any convex entropies S1, S2 with the corresponding fluxes
F1, F2 implies strong convergence of {un}∞n=1 as soon as the flux f is a strictly convex function.
Taking

S1(u) = u, F1(u) = f(u), S2(u) = |u− U |, F2(u) = sgn(u− U)(f(u)− f(U)), U − constant,

we deduce from (2.6)

lim
n→∞

[
unsgn(un − U)(f(un)− f(U))− |un − U |f(un)

]
= lim

n→∞
un lim

n→∞

[
sgn(un − U)(f(un)− f(U))

]
− lim

n→∞
|un − U | lim

n→∞
f(un),

where the limits are understood in the weak sense. This relation can be rewritten as

lim
n→∞

[
|un − U |

(
f(u)− f(U)

)]
= (u− U)sgn(u− U)(f(u)− f(U)) (2.7)

Let U = u(τ, y), where (τ, y) is a Lebesgue point of u, specifically

lim
r→0

1

|Br(τ, y)|

∫
Br(τ,y)

|u− u(τ, y)| dx dt = 0. (2.8)
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Now, relation (2.7) yields

lim
r→0

1

|Br(τ, y)|

∫
Br(τ,y)

[
lim
n→∞

[
|un − u(τ, y)|

(
f(u)− f(u(τ, y))

)]]
dx dt

= lim
r→0

1

|Br(τ, y)|

∫
Br(τ,y)

(u− u(τ, y))sgn(u− u(τ, y))(f(u)− f(u(τ, y))) dx dt = 0.

Combining this with (2.8) we replace u(τ, y) by u in the integral on the left hand side to conclude

lim
r→0

1

|Br(τ, y)|

∫
Br(τ,y)

[
lim
n→∞

|un − u|
(
f(u)− f(u)

)]
dx dt = 0

This relation can be interpreted that for any Lebesgue point of u

• either
lim
n→∞

|un − u| = 0,

• or
f(u) = f(u).

For strictly convex f this implies strong convergence of {un}∞n=1.

3 Oscillatory solutions

Our model problem is the compressible (barotropic) Euler system describing the time evolution of
the density % and the velocity u of a compressible inviscid fluid:

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0.
(3.1)

For the sake of simplicity, we consider the periodic boundary conditions,

x ∈ Ω =
(
[−1, 1]|{−1,1}

)N
. (3.2)

The problem is supplemented by the initial conditions,

%(0, ·) = %0, u(0, ·) = u0. (3.3)

3.1 Weak solutions

The weak formulation of problem (3.1–3.3) reads:
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• [∫
Ω

%ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt (3.4)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0, T ]× Ω);

• [∫
Ω

%u ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%u · ∂tϕ + %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt (3.5)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0, T ]× Ω;RN).

3.2 Reformulation via Helmholtz decomposition

We start by introducing the momentum m along with its Helmholtz decomposition

m = v +∇xΦ, divxv = 0,

∫
Ω

Φ dx = 0.

Accordingly, the equation of continuity reads

∂t%+ ∆xΦ = 0, %(0, ·) = %0, (3.6)

while the momentum equation takes the form

∂tv + divx

(
(v +∇xΦ)⊗ (v +∇xΦ)

%

)
+∇x (∂tΦ + p(%)) = 0, v(0, ·) = v0. (3.7)

3.2.1 Density ansatz

At this stage we can choosed and arbitrary (smooth) density profile %(t, x), t ∈ [0, T ], x ∈ Ω
satisfying only

%(0, ·) = %0, ∂t%(0, ·) = −∆xΦ0, %0u0 = v0 +∇xΦ0,

and
0 < % ≤ %(t, x) ≤ %, t ∈ [0, T ], x ∈ Ω.

Now, the potential Φ is uniquely determined by the elliptic problem

∆xΦ = −∂t%.

3.2.2 Reformulation as abstract “Euler” system

From now on, we shall assume that h = ∇xΦ and H = ∂tΦ + p(%) are given functions and look for
solution of (3.7) that reads:

∂tv + divx

(
(v + h)⊗ (v + h)

%
− 1

N

|v + h|2

%
I
)

+∇x

(
H +

1

N

|v + h|2

%

)
= 0, (3.8)

divxv = 0, (3.9)

v(0, ·) = v0. (3.10)
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3.2.3 Kinetic energy

We will look for solutions with prescribed kinetic energy

1

2

|v + h|2

%
= E,

where E = E(t, x) is a given non–negative function. Going back to (3.8) we get

H +
1

N

|v + h|2

%
= H +

2

N
E;

whence the choice

E = Λ− N

2
H,

where Λ is constant, reduces (3.8) to the “pressureless” equation

∂tv + divx

(
(v + h)⊗ (v + h)

%
− 1

N

|v + h|2

%
I
)

= 0.

Finally, we impose the impermeability conditions

v · n|∂Ω = 0.

3.3 Abstract problem

For given functions h, % ≥ 0, and E ≥ 0, our goal is to find a weak solution for the problem:

∂tv + divx

(
(v + h)⊗ (v + h)

%
− 1

N

|v + h|2

%
I
)

= 0, (3.11)

divxv = 0, (3.12)

v · n|∂Ω = 0, (3.13)

v(0, ·) = v0, (3.14)

1

2

|v + h|2

%
= E. (3.15)

The weak formulation of (3.11–3.15) reads:

•
v ∈ L∞((0, T )× Ω) ∩ Cweak([0, T ];L2(Ω;RN)), v(0, ·) = v0; (3.16)
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• ∫ T

0

∫
Ω

v · ∂tϕ +

(
(v + h)⊗ (v + h)

%
− 1

N

|v + h|2

%
I
)

: ∇xϕ dx dt = 0 (3.17)

for all ϕ ∈ C1
c ((0, T )× Ω);

• ∫ T

0

∫
Ω

v · ∇xϕ dx dt = 0 (3.18)

for any ϕ ∈ C1([0, T ]× Ω);

•
1

2

|v + h|2

%
= E a.a. in (0, T )× Ω. (3.19)

4 Oscillatory lemma

We reproduce the basic tool of the L∞−approach in fluid mechanics called oscillatory lemma due
to DeLellis and Székelyhidi [1].

4.1 Formulation with constant coefficients

We consider a very particular case of problem (3.11–3.15) with a specific choice of parameters:
Ω = [−1, 1]N , N = 2, 3, h = 0, % = 1, E > 0 - a positive constant. In addition, we consider the
“do nothing” boundary conditions, meaning there is no restriction imposed on the test functions
on ∂Ω. The relevant weak formulation reads:

•
v ∈ L∞((0, T )× Ω) ∩ Cweak([0, T ];L2(Ω;RN)), v(0, ·) = v0; (4.1)

• ∫ T

0

∫
Ω

v · ∂tϕ +

(
v ⊗ v − 1

N
|v|2I

)
: ∇xϕ dx dt = 0 (4.2)

for all ϕ ∈ C1
c ([0, T ]×RN);

• ∫ T

0

∫
Ω

v · ∇xϕ dx dt = 0 (4.3)

for any ϕ ∈ C1
c ([0, T ]×RN);

•
1

2
|v|2 = E a.a. in (0, T )× Ω. (4.4)
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4.2 Subsolutions

We introduce a the set X of subsolutions [v,U] satisfying

•
v ∈ C1([0, T ]× Ω;RN), U ∈ C1

(
[0, T )× Ω;RN×N

sym,0

)
; (4.5)

• ∫ T

0

∫
Ω

v · ∂tϕ + U : ∇xϕ dx dt = 0, v(0, ·) = v0 (4.6)

for all ϕ ∈ C1
c ([0, T ]×RN);

• ∫ T

0

∫
Ω

v · ∇xϕ dx dt = 0 (4.7)

for any ϕ ∈ C1
c ([0, T ]×RN);

•
1

2
|v|2 ≤ N

2
λmax [v ⊗ v − U] < E in [0, T ]× Ω. (4.8)

4.3 Oscillatory lemma

The basic result reads as follows:

Lemma 4.1. Let Q = (−1, 1) × (−1, 1)N , N = 2, 3, and let h ∈ RN , V ∈ RN×N
sym,0, E > 0 be

constant satisfying
1

2
|h|2 ≤ N

2
λmax [h⊗ h− V] < E ≤ E.

Then there are sequences

vn ∈ C∞c (Q;RN), Un ∈ C∞c (Q;RN), n = 1, 2, . . .

such that
∂tvn + divxUn = 0,

1

2
|h + vn|2 ≤

N

2
λmax [(h + vn)⊗ (h + vn)− V− Un] < E, n = 1, 2, . . . , (4.9)

vn → 0 weakly in L2(Q;RN) as n→∞,
and

lim inf
n→∞

1

|Q|

∫
Q

|vn|2 dy ≥ c(E)

(
E − 1

2
|h|2
)2

. (4.10)

Remark 4.2. As the constant fields h and V obviously solve the exact problem, the oscillatory
lemma asserts the existence of compactly supported perturbation such that:
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• the perturbed solution remain in the set of subsolutions;

• the oscillatory increment of the L2-norm of the field vn expressed through (4.10) “shifts” the
subsolution to the neighborhood of the boundary of the set

1

2
|v|2 =

N

2
λmax [v ⊗ v − U] = E.

The rest of this section is devoted to the proof of Lemma 4.1. We follow the arguments of De
Lellis and Székelyhidi [1].

4.3.1 Geometric setting

We introduce the set

C(E) =

{
h ∈ RN , V ∈ RN×N

sym,0

∣∣∣ N
2
λmax [h⊗ h− V] < E

}
.

We list several facts that can be verified by direct computation:

•
[h,V] 7→ λmax [h⊗ h− V] (4.11)

is a convex function on RN ×RN×N
sym,0;

•
N

2
λmax [h⊗ h− V] ≥ 1

2
|h|2 (4.12)

N − 1

2
λmax [h⊗ h− V] ≥ 1

2
‖V‖2 (4.13)

for any v ∈ RN , V ∈ RN×N
sym,0, moreover,

N

2
λmax [h⊗ h− V] =

1

2
|h|2 ⇔ h⊗ h− 1

N
|h|2I = V. (4.14)

In accordance with (4.11–4.13), the set C(E) is an open bounded convex set that is non–void
as soon as E > 0. Moreover, it can be shown that

∂C(E) =

{
h ∈ RN , V = h⊗ h− 1

N
|h|2I

∣∣∣ 1

2
|h|2 = E

}
. (4.15)

Our next goal is to show that for any [h,V] lying in the interior of C(E), there is a sufficiently
long segment parallel to a difference of two boundary elements with the center at [h,V].

Lemma 4.3. Let E > 0 and [h,V] ∈ C(E).
Then there exists a, b enjoying the following properties:

13



•
1

2
|a|2 =

1

2
|b|2 = E, |a± b| > 0; (4.16)

• there is L > 0 such that

[h + λ(a− b),V + λ (a⊗ a− b⊗ b)] ∈ C(A),

dist [ [h + λ(a− b),V + λ (a⊗ a− b⊗ b)] ; ∂C(A) ] ≥ 1

2
dist [ [h,V] ; ∂C(A) ] (4.17)

for all −L ≤ λ ≤ L;

•
L|a− b| ≥ C(N)

1√
E

(
E − 1

2
|h|2
)
. (4.18)

Proof. The dimension of the space RN ×RN×N
sym,0 is

n =
N(N + 3)

2
− 1.

As the set C(A) is convex with the boundary given by (4.15), Caratheodory’s theorem yields

[h,V] =
n∑
i=1

αi

[
ai, ai ⊗ ai −

1

N
EI
]
,

1

2
|ai| = E,

n∑
i=1

αi = 1, α1 ≥ α2 . . . αn ≥ 0.

Moreover, shifting [h,V] slightly as the case may be, we may assume

|ai ± aj| > 0 whenever i 6= j.

Now, consider the segment

[h + λ[aj − a1],V + λ[aj ⊗ aj − a1 ⊗ a1]] λ ∈ [−αj, αj], j > 1. (4.19)

Since

[h,V] =
n∑
i=1

αi

[
ai, ai ⊗ ai −

1

N
EI
]
,

and α1 ≥ αj, j > 1, the endpoints of the segment represent a convex combination of [ai, ai ⊗ ai −
1
N
EI]; whence they belong to C(A), and, in view of convexity of this set, the whole segment (4.19)

is contained in C(A).
Finally, we chose aj, j > 1 such that

αj|aj − a1| ≥ αk|ak − a1| for all k > 1, (4.20)

14



and set

L =
1

2
αj, a = a1, b = aj.

One can easily check, using convexity, that (4.17) holds. Thus it remains to verify (4.18). To
see (4.18) we realize that

h =
n∑
i=1

αiai;

whence, by virtue of (4.20),

|h− a1| ≤

∣∣∣∣∣
n∑
i=2

αi(ai − a1) ≤ n

∣∣∣∣∣ ≤ nαj|aj − a1|.

Finally,

2E − |h|2 =
(√

2E + |h|
)(√

2E − |h|
)
≤ 2
√

2E
(√

2E − |h|
)

= 2
√

2E (|a1| − |h|) ≤ 4
√

2EnL.

4.3.2 PDE setting

Following De Lellis and Székelyhidi [1], we introduce a mapping:

ξ = [ξ0, ξ1, . . . , ξn] 7→ Aa,b(ξ) ∈ R(N+1)×(N+1)
0,sym ,

Aa,b(ξ) =
1

2
((R · ξ)⊗ (Q(ξ) · ξ) + (Q(ξ) · ξ)⊗ (R · ξ)) (4.21)

where
Q = ξ ⊗ e0 − e0 ⊗ ξ, R = ([0, a]⊗ [0,b])− ([0,b]⊗ [0, a]) ,

and

e0 = [1, 0, . . . , 0], a,b ∈ RN ,
1

2
|a|2 =

1

2
|b|2 = E > 0, |a± b| > 0.

Aa,b can be seen as a Fourier symbol of a pseudo–differential operator, where ξ = (ξ0, ξ1, . . . , ξN)
corresponds to ∂ = [∂t, ∂x1 , . . . , ∂xN ].

The following was shown in [1]:

• if φ ∈ C∞c (R×RN), then

Aa,b(∂)[φ] =

[
0 w
w H

]
satisfies ∂tw + divxH = 0, divxw = 0; (4.22)

• for

ηa,b = − 1

(|a||b|+ a · b)2/3

[
[0, a] + [0,b]− (|a||b|+ a · b) e0

]
, ψ ∈ C∞(R), (4.23)

we have

Aa,b(∂)[ψ([t,x] · ηa,b)] = ψ′′′([t,x] · ηa,b)

[
0 a− b

a− b a⊗ a− b⊗ b

]
. (4.24)
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4.3.3 Proof of oscillatory lemma

We are ready to prove Lemma 4.1.

Step 1
Given [h,V] ∈ C(E), we identify the vectors a, b satisfying (4.16–4.18).

Step 2
a, b being fixed, we consider the operator Aa,b and the vector ηa,b as in (4.21–4.23).

Step 3
Let ϕ ∈ C∞c (Q) such that

0 ≤ ϕ ≤ 1, ϕ(t, x) = 1 whenever − 1

2
≤ t ≤ 1

2
, −1

2
≤ xj ≤

1

2
, j = 1, . . . , N.

The vectors vn, Un can be taken in the form[
0 vn
vn Un

]
= Aa,b(∂)

[
ϕ
L

n3
cos (n[t, x] · ηa,b)

]
,

where L is the constant form (4.17), (4.18). In accordance with (4.22), the functions vn, Un satisfy

∂tvn + divxUn = 0, divxvn = 0

and are compactly supported in Q. Moreover, in view of (4.24) and the fact that Aa,b is a
differential operator of third order, we get

Aa,b(∂)

[
ϕ
L

n3
cos (n[t, x] · ηa,b)

]
= ϕ sin (n[t, x] · ηa,b)L

[
0 (a− b)

(a− b) a⊗ a− b⊗ b

]
+

1

n
Rn

with |Rn| uniformly bounded for n → ∞. This yields (4.9) for n large enough, and, in view of
(4.18), relation (4.10) follows. We have proved Lemma 4.1.

5 Ill posedness of the Euler system in the space dimension

N = 2, 3

As a corollary of the existence of oscillatory subsolutions we show that the compressible Euler
system is basically ill posed in the class of weak solutions. The basic result in this direction
concerns the “pressureless” incompressible Euler system:

divxv = 0,

∂tv + divx

(
v ⊗ v − 1

N
|v|2
)

= 0,
(5.1)
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with the boundary conditions
v · n|∂Ω = 0, (5.2)

and prescribed energy
1

2
|v|2 = E a.a. in (0, T )× Ω. (5.3)

Note that if E > 0 is constant, then the equation of continuity reduces to

∂tv + divx (v ⊗ v) = 0;

whence v solves the compressible Euler system (3.1) with % ≡ 1!

5.1 Infinitely many weak solutions to problem (5.1–5.3)

Our goal will be to show that given a continuously differentiable solenoidal field v0, problem (5.1–
5.3) possesses infinitely many weak solutions starting from v0 provided E > 0 is chosen large
enough. The main tool is the oscillatory lemma proved in the previous section.

5.1.1 The set of subsolutions

We consider the set of subsolutions introduced in (4.5–4.8) with constant energy E > 0. Let the
initial velocity v0 be a smooth vector field, divxv0 = 0, v0 · n|∂Ω = 0. Taking v ≡ v0 and U ≡= 0
we observe easily that (4.5–4.7) are satisfied. In addition, (4.8) holds provided E is large enough.
We conclude that the subsolution set is non–empty.

Next, we observe that for E bounded, the set of function (subsolutions) satisfying (4.5–4.7)
is (i) bounded in L∞((0, T ) × Ω), (ii) a subset of Cweak([0, T ];L2(Ω;RN)). Consequently, it is
metrizable by the metrics

d(u,v) =
∞∑
k=1

1

k2

| < u− v;φk > |
1 + | < u− v;φk > |

, φk a basis of L2(Ω;RN).

We consider the topological metric space X - the completion of the set of subsolutions with respect
to the metrics d. It is easy to check that:

• for any v ∈ X, there is U ∈ L∞((0, T )× Ω;RN×N
0,sym) such that (4.5–4.7) are satisfied;

•
1

2
|v|2 ≤ N

2
λmax [v ⊗ v − U] ≤ E. (5.4)

Note that (5.4) follows from (4.8) and the fact that

(v,U) 7→ N

2
λmax [v ⊗ v − U]

is convex.
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5.1.2 A Baire category argument

We introduce a concave functional

I(v) =

∫ T

0

∫
Ω

(
E − |v|

2

2

)
dx dt

defined on the space X. As X is a complete metric space, the points of continuity of I form a
residual set, in particular they are dense in X.

Our final goal is to show that if v is a point of continuity of I, then I(v) = 0, or, equivalently,

1

2
|v|2 = E a.a. in (0, T )× Ω, U = v ⊗ v − 1

N
|v|2I.

Suppose that I(v) > 0 for some v ∈ X. Then there is a sequence of subsolutions {vn}∞n=1,
with the corresponding fluxes {Un}∞n=1 such that:

vn → v in X, I(vn)→ I(v) ≥ δ > 0 as n→∞.

By virtue of Oscillatory Lemma (Lemma 4.1), we may construct a sequence

vm,n → vn in X as m→∞

satisfying

lim inf
m→∞

∫ T

0

∫
Ω

1

2

|vn + vm,n|2

2
dx dt ≥

∫ T

0

∫
Ω

|vn|2

2
dx dt+ c1(Ω, E)

∫ T

0

∫
Ω

(
E − 1

2
|vn|2

)2

dx dt

≥
∫ T

0

∫
Ω

|vn|2

2
dx dt+ c2(Ω, E)I(vn)2 ≥

∫ T

0

∫
Ω

|vn|2

2
dx dt+ c3(Ω, E)δ2.

Consequently, if δ > 0, we can construct a sequence {wn}∞n=1,

wn → v in X, lim sup
n→∞

I(wm) < I(v),

meaning v cannot be a point of continuity of I.
As each point of continuity of I represent a weak solution of (5.1), we obtain the following

result.

Theorem 5.1. Let Ω ⊂ RN , N = 2, 3 be a bounded smooth domain. Let v0 ∈ C1(Ω;RN) be given
such that

divxv0 = 0, v0 · n|∂Ω = 0.

Then there exists E0 > 0 such that for any E ≥ E0, the problem (5.1–5.3) admits inifinitely
many weak solutions satisfying

1

2
|v|2 = E for a.a. (t, x) ∈ (0, T )× Ω. (5.5)

Note carefully that solutions v obtained in Theorem 5.1 solve the compressible Euler system
(3.1 – 3.3) with constant density % ≡ 1.
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