
Turing instability and Turing patterns
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PřF UK, Prague, 26 October 2018



Outline

I Introduction

I Well mixed chemical reactor

I Chemical reactor with free diffusion

I Turing instability and Turing patterns



Introduction

Over 6 000 citations in WoS.



Turing instability – pattern formation



Chemical kinetics in well mixed reactor
Law of mass action: The rate of a chemical reaction is directly
proportional to the product of concentrations of reactants.

Schnakenberg system [J. Schnakenberg 1979]

2U + V
k1→ 3U ∅

k2,k3

 U ∅ k4→ V

Well mixed reactor
Concentrations u = u(t), v = v(t) of U,V satisfy

du

dt
= k1u

2v + k2 − k3u

dv

dt
= −k1u

2v + k4

Initial condition

u(0) = u0 and v(0) = v0



Example

Schnakenberg system in a well mixed reactor
k1 = 10−6, k2 = 1, k3 = 0.02, k4 = 2

Initial condition 1: u0 = 0
v0 = 0
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Example

Schnakenberg system in a well mixed reactor
k1 = 10−6, k2 = 1, k3 = 0.02, k4 = 2

Initial condition 2: u0 = 0
v0 = 100
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Example

Schnakenberg system in a well mixed reactor
k1 = 10−6, k2 = 1, k3 = 0.02, k4 = 2

Initial condition 3: u0 = 100
v0 = 0
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Example

Schnakenberg system in a well mixed reactor
k1 = 10−6, k2 = 1, k3 = 0.02, k4 = 2

Initial condition 3: u0 = 100
v0 = 0
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Stability

Well mixed reactor

du

dt
= k1u

2v + k2 − k3u

dv

dt
= −k1u

2v + k4

Stationary state

us =
k4 + k2

k3
, vs =

k4

k1u2
s

Example
us = 150, vs = 88.889



Chemical kinetics in a reactor with free diffusion
Concentrations u = u(t, x), v = v(t, x) of U,V satisfy

∂u

∂t
= d1

∂2u

∂x2
+ k1u

2v + k2 − k3u in Ω = (0, L)

∂v

∂t
= d2

∂2v

∂x2
− k1u

2v + k4 in Ω

Boundary conditions:

∂u

∂x
=
∂v

∂x
= 0 at points 0 and L

Initial condition:

u(0, x) = u0(x) and v(0, x) = v0(x) for all x ∈ Ω

Stationary state:

us =
k4 + k2

k3
, vs =

k4

k1u2
s



Examples

Ω = (0, 1)

k1 = 10−6, k2 = 1, k3 = 0.02, k4 = 2

Example 1. d1 = d2 = 1 [Video “Schnak II diff=1.avi”]

Example 2. d1 = d2 = 10−5 [Video “Schnak II diff=1e-5.avi”]

Example 3. d1 = 10−5, d2 = 10−3

Initial condition is a centered bump [Video “Schnak II C.avi”]

Example 4. d1 = 10−5, d2 = 10−3

Initial condition is an asymmetrically placed bump
[Video “Schnak II D.avi”]



Definitions

Turing instability occurs if stationary solution (us , vs) is

(a) stable with respect to spatially homogeneous disturbances

(b) unstable with respect to spatial disturbances

Turing pattern is a spatially nonhomogeneous stationary solution.



Turing instability

Reaction-diffusion system:

∂u

∂t
= d1

∂2u

∂x2

f (u, v)︷ ︸︸ ︷
+k1u

2v + k2 − k3u in Ω = (0, L)

∂v

∂t
= d2

∂2v

∂x2
−k1u

2v + k4︸ ︷︷ ︸
g(u, v)

in Ω

Linearisation matrix:

A =

[
fu fv
gu gv

]
(us , vs)

Turing conditions:
(T1) trA < 0
(T2) detA > 0
(T3) d2fu − d1gv > 0
(T4) 4d1d2 detA < (d2fu + d1gv )2



Further development

Patterns in 2D Patterns in 3D

Patterns on manifolds Patterns on growing domains



Our research

Nonsmooth kinetics

∂u

∂t
= d1∆u + f (u, v)

∂v

∂t
= d2∆v + g(u, v) + τv−



Conclusion

Turing instability and Turing patterns
are mutually independent phenomena.
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