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Abstract. Notions as the numerical range W (S,T) and the spectrum o(S,T’) of couple
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INTRODUCTION

The development of modern science and technology is associated with passing from
linear to nonlinear models. In mathematics and particularly in functional analysis it
reflects the tendency for studying nonlinear operator equations. In the present paper
we deal with a special class of nonlinear operator equations involving homogeneous
and polynomial operators. These operators arise as a natural generalization of linear
operators and conserve a number of their properties. For example, any polynomial
operator is continuous if and only if it is bounded. Also notions as the norm, sym-
metry, selfadjointness, spectrum and numerical range can be transfered from linear
theory to homogeneous operators. We have introduced these notions in [3], [4], [9]
and [11] (in rather different way than it was done in [1], [12], [13], [14], [15]). In this
paper we use these notions and their properties to derive some existence theorems
for equations of the type Sz — AT = y with a couple (S, T') of homogeneous operators
from a Banach space into its dual. Some conditions for the existence of eigenval-
ues and eigenvectors of the couple (S,T) (i.e., the existence of nontrivial solutions
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of the equation Sx — AT = 0) both in the symmetric and nonsymmetric case are
given. Finally we show, similarly as in the linear case, that the set of eigenvalues
of the couple of selfadjoint homogeneous operators creates at most a countable set.
These results can be applied to various boundary value problems as, for example, in
nonlinear elasticity, fluid mechanics and others.

1. NOTATION AND DEFINITIONS

Throughout this paper let X denote a Banach space and X* its dual space. By the
symbol (-,-) we mean the pairing between X and X*. In the case of a Hilbert space
we use the same symbol for the inner product. For the norm or weak convergence of
a sequence {x,} C X to a point zg € X we use the symbols z,, — g or z, = g,
respectively.

Let R and C be the spaces of real and complex numbers, respectively. Further, we
denote S1(0) = {z € X: ||z|| = 1}, the unit sphere in X.

Definition 1.1. We say that an operator F' from X into a Banach space Y is

(a) a positive homogeneous operator of a degree k if there is a number k € R such
that F(tx) =t* - F(z) for any € X and any t € R, t > 0.

(b) a homogeneous operator of a degree k on a real (complex) space X if k is an
integer and the equality F(tz) = t* - F(x) holds for any t € R (t € C), t # 0
and any z € X.

(¢) For any continuous positive homogeneous operator F': X — Y of a degree k > 0
we define the norm by

IF| = sup [IF()].
z€S51(0)
Remark 1.2. Tt is easy to show that for any z € X, the estimation || F(z)| <
|FIl - Jlz]/* holds.

Definition 1.3. We say that a homogeneous operator P of a degree k > 1 from
X into a Banach space Y is a homogeneous polynomial operator if there is a k-linear
symmetric operator Z: X x X x ... x X — X, (i.e., P(x1,22,...,2)) is linear
in any variable x;, j = 1,2,...,k and does not change its values under arbitrary
permutation of all variables) such that #(z,z,...,x) = P(z) for any z € X.

The operator & is called the polar operator to the operator P. For any continuous

k-linear operator & we define the norm by

2= sup ||Z(z1,22,...,2k)|

z;€51(0),
i=1,2,...,k
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Remark 1.4. Polynomial operators have some properties which are similar to
the properties of linear operators. For example, it is easy to prove that for any
polynomial operator P the following conditions are equivalent.

(a) P is continuous at the point zero,
(b) P is continuous at any point,
(c) P is bounded (i.e., P has a finite norm || P]|),
(d) P is uniformly continuous on every bounded set,
)

(e) P is Frechet differentiable at any point.

Definition 1.5. We say that a homogeneous operator F': X — X* is
a) positive if (Fx,x) > 0 holds for any € X, x # 0,

b) positively defined if there is a number ¢ € R, ¢ > 0 such that igf(o) Re(Fz,z) =
TEST

c>0.

Definition 1.6. An operator F: X — Y is called hemi-continuous at xg € X, if
for any sequence {t,} C R, t, — 0, and for any h € X we have (F(zo-+t,h)) — F(zo)
in the weak topology of the space Y. We say that the Gateauz-derivative F' of a
differentiable operator F': X — Y is hemi-continuous at a point z € X, if for any
sequence {t,} C [0,+00) such that ¢, — 0 and for arbitrary points h € X, y € X
the sequence {F’(z+t,h)y} C X* converges in the weak*-topology of the space X*
to the point F'(z)y € X*.

A notion of the adjoint operator to a nonlinear operator was defined and some of
its properties were studied in papers [3] and [4].

Definition 1.7. ([3], Definition 3.) Let D C X be an open set which is star-
shaped with respect to the origin (i.e., for any x € D and all ¢ € [0,1] we have
tz € D). Let an operator F': D C X — X* have the Gateaux-derivative F'(z) at
any point x € D and let F satisfy the following conditions:

(1) F(0)=0
(2) The function (F'(tx),z) of the variable t € [0, 1] is integrable for arbitrary (but
fixed) points x € D, h € X.

Let us suppose, further, that for any « € D there exists a unique point z*(z) € X*
such that for all h € X we have
1
/ (F'(tz)h, z)
0

Then we call the operator F*: D C X — X* defined for z € D by F*(z) = z*(z)
the adjoint operator to operator F.
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Remark 1.8. In the case of a real Banach space X the adjoint operator F*
from Definition 1.7 can be written in the form

F*(z) = / [F'(t2)]" () dt,
0

where [F'(tz)]” denotes the adjoint operator to the continuous linear operator
F'(tx).

Remark 1.9. According to [4] (Theorem 2.6) the adjoint operator F* to a
nonlinear operator F exists if F' satisfies the conditions (1) and (2) from Definition
1.7 and, moreover, F' has at any point z € X a hemi-continuous Gateaux-derivative.
Then both F and F* are hemi-continuous and the following estimation holds:

1
[1F* ()]l < Hxll/llF’(tw)I\dt zeX.
0

The following proposition is a direct consequence of Definition 1.7 and results from
[3] and [4] applied to the class of homogeneous operators.

Proposition 1.10. Let F': X — X* be a homogeneous operator of a degree k > 1
having a hemi-continuous Gateaux-derivative F'. Then for any x € X the following
assertions hold:

(1) F*(z) = £ [F'(2)] "z, where F* is the adjoint operator to the operator F and
[F'(z)]" is the adjoint operator to the continuous linear operator F'(x).

(2) F(z) = H(z)+R(z). Here H, R: X — X* are hemi-continuous operators which
can be written as

H(z) = —[F(m) —|—kF*(a;)},

k

Zk—H[F(m)—F*(m)}-

(3) H is a potential operator, H = grad ¢, where

and the operator R fulfils the equality

2ki

(R().2) = 55

Im{(F(a;),:c)}
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@) 1F* @) < gIF @)l - [l
(5) If S, T: X — X* are homogeneous operators with their adjoint operators S*,
T* then
(S — AT)* = S* — \T* for any \ € C.

Definition 1.11. Let M C X be an open set which is starshaped with respect
to the origin. We shall say that an operator F': M — X* satisfying F'(0) = 0 is
symmetric on M if its adjoint operator F** exists and, for any x € M, F(z) = F*(z).
Let X be a Hilbert space. We say that F': X — X™* is selfadjoint if F' is symmetric
on the whole space X.

Definition 1.12. ([9] Definition 3.1.) Let S, T: X — X* be homogeneous
operators of a degree k. By the numerical range of the couple (S,T) we mean the set
W (S, T) of complex numbers defined by

(Sz, )

wis.1)={

cx € 81(0), (Tx,z) # 0}.

It is evident that if X is a Hilbert space, S is a continuous linear operator and T
is the identity operator then we obtain the well-known Hausdorff’s and Toeplitz’s
definition of the numerical range.

Definition 1.13. ([11] Definition 3.1) Let S, T: X — Y be positive homoge-
neous operators. By the approzimative spectrum (briefly spectrum) of the couple
(S,T) we understand the set ¢(S,T) of complex numbers defined by

o(S,T) = {)\ eC: $€1§11f(0) |Sz — A\Tz|| = 0}.

Definition 1.14. ([11] Definition 3.8.) We say that Ao € C is an eigenvalue of
a couple (S,T) of positive homogeneous operators S, T: X — Y, if there is a point
xo € S1(0) C X such that Szg — AgTxo = 0. the point xg is called the eigenvector
of the couple (S,T) related to Ag. The set of all eigenvalues of the couple (S,T) is
denoted by A(S,T).

Proposition 1.15. (Proposition 3.14 [11]) Let S, T: X — X* be positive homo-
geneous operators. Let S be continuous and T positively defined. Then the following

assertions hold:
(1) W(S,T) is a bounded set and for any A € W(S,T) we have

(A € U, where c= inf Re{(Tz,z)}.

c z€51(0)
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(2) If, in addition, S and T are polynomial operators then W(S,T) is a convex
set. (A generalization of Hausdorfl and Toeplitz theorem on the convexity of

numerical range.)
Definition 1.16. Let w: [0, +00) — [0, +00) be a continuous increasing function
such that w(0) = 0, , li-Igl w(t) = +oo. Then the mapping J: X — 2% defined on a
—+400
real Banach space X by

J(0) =0,
J(z) = {z" € X*: (z,2") = w(|z]]) - llz]l, [=*]| = w(llz]),z # 0}

is called the duality mapping on X with the gauge function w.

2. EQUATIONS WITH HOMOGENEOUS OPERATORS AND EIGENVALUES

Proposition 2.1. Let S,T: X — X* be homogeneous operators of a degree k > 0
and let T' be positively defined. Suppose that A € C is a number having a positive
distance d > 0 from the range W (S, T) and let the mapping (S — AT') be surjective.
Suppose, further, that there exists a singlevalued branch (S — \T)~! of the inverse
operator to (S — AT'). Then the following assertions are true.

(1) (S — AT)"! is a bounded homogeneous operator of the degree + and for any
y € X* we have

(s x7)y] < ('di')

where

= inf T .
c melgl(o)Reﬂ z,z)}

(2) If, in addition, (S — AT)~! is a homogeneous polynomial operator, then it is

continuous on X*.

Proof. Using the definition of W (S, T) we obtain, by virtue of the assumptions
of the present theorem, that for any = € S1(0) the inequality

' (Sz, z)

(Tz,2) " A' >4

holds. This yields |(Sz — ATz, z)| > d - |(Tx,z)| > d- ¢ for any x € S1(0).
Choosing a nonzero point z € X and substituting the point ﬁ € 51(0) into the
above inequality we obtain after simple calculations

|(Sz — ATz, 2)| > d-c- ||z
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This implies that
|Sz — ATz|| >d-c-|z||* for any z € X.

Now, let y € X* be an arbitrary point. Due to surjectivity there is x € X such
that y = Sz — Mz and x = (S — XT)~'y. Thus ||y|| > d-c- ||(S — AT)~y||*, which
gives the inequality in the assertion (1).

To show that (S —AT)~! is homogeneous of the degree k! let us put F = S —\T.
Then, due to homogeneity of the operator F, for any ¢t € R, t > 0 we have

F(tt-z) =t F(z)=t-y,

so that
Fl(ty)=F' [F(t% x)] = th.a=tr - Fl(y).
The inequality in (1) and the homogeneity provide the boundedness of the operator
(S — AT)~! and assertion (1) is proved.
The assertion (2) follows from Remark 1.4. O

Theorem 2.2. Let X be a real reflexive Banach space and let S, T: X — X*
be a hemi-continuous homogeneous operators of a degree k > 1. Let us suppose that
there is a A € R\ 0(S,T) such that the operator S — AT is monotone.

Then the following assertions hold.

(1) For any y* € X* there is a solution xg € X of the equation Sx — ATz = y*.
(2) xo =0 if and only if y* = 0.

Proof. Because A ¢ o(S5,T), there is a positive real number C' > 0 such that
for any x € S1(0),
ISz — ATz| > c.

Using homogeneity we immediately obtain that
|Sz — ATz| > c-||z||* for any z € X,

so that
lim ||Sz — ATz| = +oc.

llzll—o0

Hence, the operator S — AT is weakly coercive. Being hemi-continuous and defined on
the whole space X the operator S— AT is maximal monotone, and applying a theorem
on surjectivity of maximal monotone operators (see for example [2]) we obtain the
assertion (1). Hence, for any y* € X* there is zo € X such that (S — AT)(zo) = y*.

To prove (2) we first realize that if o = 0, then y* = 0 because S and T are
homogeneous operators. Now, let y* = 0 and suppose zg # 0. Then the point ﬁ €
S1(0) is an eigenvector and A is an eigenvalue of the couple (S,T'). Hence A € o(S,T)
which contradicts the assumption of the theorem and the proof is complete. a
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Corollary 2.3. Let X be a real reflexive Banach space and let S,T: X — X*
be homogeneous polynomial operators. Suppose S is continuous and T' is positively
defined.

Then for any A € R \m for which the operator S — AT is strongly monotone
there is a singlevalued inverse operator (S — XT')~! which is defined and bounded
on X*.

Proof. According to Theorem 3.13 in [11] we have o(S,T) C W(S,T) so that
A ¢ o(S,T). Being polynomial, the operators S and T are hemi-continuous and
applying Theorem 2.2, we obtain a solution xg € X of the equation Sx — A\Tx = y*
for any y* € X*. This solution must be unique because S — AT is strongly monotone.
Using Proposition 2.1 we complete the proof. O

Remark 24. If S, T: X — X are linear operators on a real Hilbert space
X then the operator S — AT is strictly monotone if and only if for any = € S1(0)
the inequality (Sz — ATz, z) > 0 holds. Moreover, if S, T are selfadjoint and T is
positively defined, then the last inequality is satisfied for any A < m where

. (Sz,x)
= f
m xelgl(o) (Tx,x)

and the opposite inequality holds for any A > M, where

(Sz, x)
M = sup .
z€S1(0) <T:E,:E>

In the latter case the operator S — AT is strongly monotone for any A < m and
the operator —(S — AT) is strongly monotone for any A > M. According to the
definition of W(S,T) for selfadjoint operators we have W (S,T) C [m, M] so that
applying Corollary 2.3 we obtain the existence and continuity of the inverse operator

(S —AT)~! for any A € R\ [m, M].

In [10] (Theorem 5.25) conditions are shown under which the aproximative spec-
trum o(S,T) of a couple (S,T") of homogeneous symmetric operators is nonempty
and contains nonzero points. Another simple condition for the spectrum o(S,T) of
homogeneous operators(not necessarily symmetric) to be nonempty is given in the
following proposition.

Proposition 2.5. Let X be a Hilbert space and let S, T: X — X be continuous
homogeneous operators which are not identically zero and satisfy the condition

(%) sup [(Sz, Tz)| = ||S]| - | T[]
z€S51(0)
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Then the aproximative spectrum o (S, T) contains a nonzero point A € o(S,T), A # 0

such that
I\ = IS
1|

Proof. If the condition (x) is fulfilled then, according to the definition of
supremum, for any positive real number £ > 0 there is a point zy € S1(0) such that

[(Szo, Two)| > [[S] - IT]] — e

Choosing ¢ € [0,27) such that (Sxo,Tzo) = |(Szo,Tx0)| - €¥ and denoting A =

s
HTH -€l% we obtain

IS0 — ATao||> = ||Szoll® + [ Tao|l* - IAI* - [X<sxo,Tx0> + \(Sz0, Tzo)

S]] NElN

<2|IS)12 + 2= (e — |S]| - |IT|) =

Hence 1nf ||Sac — AT'z|| = 0, so that according to Definition 1.13, A € ¢(S,T') and
xE

[A| = 0 The proof is complete. O

Recall that the condition (x) in Proposition 2.5 is satisfied if S is a symmetric
homogeneous polynomial operator on a Hilbert space X and T is the duality mapping
defined for any x € X by Tx = c- ||z||*~! -z where ¢ € R is a positive constant. (See
[11] Theorem 3.15.)

An example of nonsymmetric operators S, T' satisfying the condition (k) is the
following.

Example 2.6. Let S, T: L?[0,1] — L?[0, 1] be homogeneous operators of de-
gree 2 defined by

Sz = [ a(s)-2*(t)dt = a(s) - ||z||?,

o

T = /b(s) -z (t) dt = b(s) - ||z|?

o

where a(s), b(s) € L?[0,1].
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Then the condition (x) will be satisfied if b(s) = k-a(s), where k € R is a constant.
Indeed, in this case we obtain

(| Szl = ||/ t)ydt| = lla|| - [Jz]* = [IS]| = sup |[|Sz|| = [lall,
z€S51(0)

|T=|| = ||/ t)ydt|| = [oll - [«]* = |IT|| = sup [Tz| = [|bll,
z€S1

sup [(Sz,Tx)| = sup [a(s) - [[z]|* b(s) - [|2]*)|
z€S51(0) z€851(0)

[{a(s), b(s))| = [a(s), k - a(s))| = [k] - [la]*
= llall - floll = 151/ 1T°1]-

At the same time we have
S (2)h = / 2a(s)a(®)h(t)dt, [§'(x)]"h = / 2a(t)e(s)h(t) dt,
0 0

hence, by virtue of Proposition 1.10, we obtain

S*x=1[9(2)] z = /1a(t)x(s) /1a t)dt # Sx

and thus the operator S (and similarly the operator T') is not symmetric.
Other conditions for the existence of nonzero eigenvalues of the couple (S,T) are
given in [11] Theorem 3.16.

Theorem 2.7. ([10] theorem 5.24) Let X be a Hilbert space and let S, T: X — X
be homogeneous operators of a degree k > 1 which are both symmetric on S; (0) C X.
Suppose, further, that S and T' have hemi-continuous Gateaux-derivatives on S;(0)
and let T' be positive.

Then the following assertions hold:

(1) The couple (S,T) has only a real aproximative spectrum o(S,T') which lies in
the interval [m, M|, where

m = inf (Sm,x)’ M = sup {5z, z)
ze51(0) (Tx, x) 255 (0) (T, )

and both the boundary points m and M belong to the spectrum o(S,T).
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(2) If, in addition, there is a point y € S1(0) such that the number A\ = %
is equal to m or M then X\ is an eigenvalue of the couple (S,T) with y its

eigenvector.

Theorem 2.8. Let X be a real Hilbert space and let S, T: X — X be selfadjoint
homogeneous operators which are continuously Gateaux differentiable on X. Suppose
that at least one of the following assumptions is satisfied:

(1) S is a monotone not identically vanishing operator and T' is a compact positively
defined operator

(2) S is a compact not identically vanishing operator and T is a strongly monotone
operator.

Then the couple (S,T) has a nonzero eigenvalue.

Proof. According to Theorem 2.7 it suffices to show that the functional f(z) =
(Sz,z)
(Tz,z)
easily transform this problem to the problem of finding extremes of g(z) = (Sz, x)

on the set U defined by U = {z € X: (Tz,z) = 1}.
Suppose that the assumption (a) is satisfied. Then, according to [19] (Example

assumes its minimum (or maximum) on S;(0). Using homogeneity we can

8.7, p. 110), the functional g(x) is weakly lower semicontinuous and, according to
[19] (Lemma 8.7, p. 111), the set U is weakly closed. Because T is positively defined,
U is also bounded and thus the functional g(x) assumes its minimum on U. (See [19],
theorem 9.2, p. 114.)

There is a point y € S1(0) such that f(y) = zeiglf(o) f(z), and applying Theorem

2.7 we obtain the assertion. Suppose that (b) is satisfied. Then the functional
g(z) is weakly continuous and the set V = {z € X: (T'z,z) < 1} is convex and
bounded because T is strongly monotone. This implies that V is weakly compact.
If the functional g attains positive (negative) values then it attains its maximum
(minimum) at a nonzero point zg € V.

At the same time o € U because, if this is not the case, then

sup g(x) = g(xo) = (Sxo,x0), where 0 < (Txg,zo) < 1.
zeV

o

Putting x; = —2—— we obtain (Tx1,21) = 1 and simultaneously g(z;) =
(Tzo,xo) F+1

<757£0x“20> > g(z0), which is impossible. Hence the functional f(x) must attain its

extreme on S1(0) and the proof follows as in the previous case. O

Proposition 2.9. Let S, T: X — X be homogeneous operators on a Hilbert
space X mapping every weakly convergent sequence in S;(0) C X into the norm
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convergent sequence and satisfying the condition (*) from Proposition 2.5. Then the

couple (S,T) has a nonzero eigenvalue A such that |A| = %

Proof. First we show that the functional g(x) = (Sz, Tz) is weakly continuous
on S;(0). Indeed, for a point zo € S1(0) and any sequence {z,} C S1(0), =, — xo
we have ||Sz, — Szo|| — 0 and ||Tx, — Txo| — 0.

Further,

(S, Tx,) — (Sxo, Txo)| = |(Sxs, — Sx0, T20) + (S, TTp — Txo)|
Szn — Sxol| - [ Txol| + [ Szl - | T2n — Toll

<
< |1Szn = Swoll - | TN + IS - 1T 2n — Taol|,
so that (Sz,,Tz,) — (Szo, Tzo) and thus g(z) is weakly continuous at zo.

Due to condition (x) from Proposition 2.5 we can find a sequence {y,} C S1(0)
such that [(Syn, Tyn)| — ||S|| - ||T||. Using the Eberlein-Smuljan theorem (see [21])
we choose a subsequence {y,, } such that y,, — vo.

Then (Syn, s Tyn,) — (Syo, Tyo) and thus |(Syo, Tyo)| = ||S|| - |T|]. Putting A =
% -e'?, where ¢ € [0,2n] is such that (Syo, Tyo) = |{Svyo, Tyo)| - €'¥, we obtain an
eigenvalue A of the couple (S,T) with the eigenvector yo € S1(0).

The structure of the spectrum o(S,T") of a couple of symmetric homogeneous
operators is, in a sense, similar to the structure of the spectrum of linear selfadjoint

operators as the next proposition shows. O

Proposition 2.10. Let S,T: X — X be symmetric homogeneous operators of
a degree k > 0 on a Hilbert space X and let T be positive. Then for any nonzero
eigenvalue \g € A(S,T) there exists a neighbourhood U(X\g) C R such that

U(Xo) NA(S,T) = {Xo}-

Proof. Let 2y € 51(0) be an eigenvector belonging to the eigenvalue Ay # 0.

Suppose that equation Sx — ATz = 0 has a parametric solution [)\(t), a;(t)] defined
and differentiable in a neighbourhood U(0) C R of the origin such that A\(0) =
Ao, £(0) = xo. We shall show that A(t) must be a constant function.

Consider a mapping F: R x R x S1(0) — R defined by the equation F(t, A\, x) =
(Sz,z) — AX(T'z,z). Then for the function

f(s)=F(t,\o + 8,70+ sh), s€RheX
we obtain

f’(O) = <S,(.'170)h, .'170> + <S.’170, h> — )\0 [<T’(.’170)h, .'170> + <TLEO, hﬂ — <TLEO,.'170>
= (k + 1) . <S.’170 - )\0T$0,h> - <T.’170,1E0> = —<TLEO,IEO> 7£ 0.
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This implies that by using the Implicit Function Theorem we can find a positive
real number € > 0 and functions \: (—¢,+¢) — R, z: (—¢, +¢) — S1(0) which are
both differentiable on the interval (—¢, +¢), satisfying the identity

(++) (Sa(t) — A(t) - Te(t), 2(t)) = 0,

or, equivalently,
(Sa(t),x(t))
(T'z(t), (1))

for any t € (—¢,4¢), A(0) = Ao, (0) = zo. Using symmetry and homogeneity of the
operators S, T we obtain after some calculations

At) =

dr(t)  (k+1) (Sz(t), z(t)) dz(t)
dt — (Txz(t),z(t)) <S””(t) B (Tm(t),m(t)>Tx(t)’ dt >
(k1 dz(t)
Due to () we have 9 = 0 for any t € (—¢,+¢), so that A(t) = A is a constant

function on the interval (—e,+e). Hence, there is a neighbourhood U(Xg) of Ao
such that A is the unique eigenvalue of the couple (S,T) on U(XAo) and the proof is
complete. a

Theorem 2.11. Let S,T: X — X be symmetric homogeneous operators of a
degree k > 0 on Hilbert space X. Suppose that S is completely continuous and T is
a duality mapping with the gauge function w(t) = c - t*, where ¢ > 0 is a constant.
Then the following assertion hold:

(1) The aproximative spectrum o(S,T) of the couple (S,T) is at most a countable
set, possibly with a unique limit point, zero.

(2) Every nonzero point A € (S, T) is an eigenvalue of the couple (S,T).

Proof. The assertion (1) is a direct consequence of Proposition 2.10 and the
assertion (2) follows from Theorem 3.16 in [11]. O
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