MEAN-VALUE THEOREM FOR VECTOR-VALUED FUNCTIONS

Janusz Matkowski, Zielona Góra

(Received February 15, 2011)

Abstract. For a differentiable function $\mathbf{f}: I \rightarrow \mathbb{R}^{k}$, where I is a real interval and $k \in \mathbb{N}$, a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean $M: I^{2} \rightarrow I$ such that

$$
\mathbf{f}(x)-\mathbf{f}(y)=(x-y) \mathbf{f}^{\prime}(M(x, y)), \quad x, y \in I
$$

are given.
Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented.

Keywords: Lagrange mean-value theorem, mean, Darboux property of derivative, vectorvalued function

MSC 2010: 26A24, 26E60

1. Introduction

Let $I \subset \mathbb{R}$ be an interval. Recall that a function $M: I^{2} \rightarrow \mathbb{R}$ is said to be a mean in I if, for all $x, y \in I$,

$$
\min (x, y) \leqslant M(x, y) \leqslant \max (x, y) .
$$

A mean M in I is called strict if these inequalities are sharp whenever $x \neq y$, and symmetric if $M(x, y)=M(y, x)$ for all $x, y \in I$.

If M is a mean in I then, obviously, $M\left(J^{2}\right)=J$ for any subinterval $J \subset I$; in particular M is reflexive, i.e.

$$
M(x, x)=x, \quad x \in I
$$

Note also that if a function $M: I^{2} \rightarrow \mathbb{R}$ is reflexive and (strictly) increasing with respect to each variable, then it is a (strict) mean I. In the sequel such a mean is called (strictly) increasing.

According to the Lagrange mean value theorem, if $f: I \rightarrow \mathbb{R}$ is a differentiable function, then there exists a strict mean $M: I^{2} \rightarrow I$ such that

$$
f(x)-f(y)=f^{\prime}(M(x, y))(x-y), \quad x, y \in I
$$

Moreover, if f^{\prime} is one-to-one, then $M=M_{f}$ is unique, continuous, symmetric, strictly increasing, and

$$
M_{f}(x, y)=\left(f^{\prime}\right)^{-1}\left(\frac{f(x)-f(y)}{x-y}\right), \quad x, y \in I, x \neq y
$$

This result can be extended to functions $f: I \rightarrow \mathbb{R}^{k}$ as follows.

Theorem 1. Let $k \in \mathbb{N}$. If $\mathbf{f}: I \rightarrow \mathbb{R}^{k}, \mathbf{f}=\left(f_{1}, \ldots, f_{k}\right)$ is differentiable in an interval I, then there exists a vector of strict means $\mathbf{M}=\left(M_{1}, \ldots, M_{k}\right): I \times I \rightarrow I^{k}$ such that

$$
\begin{equation*}
\mathbf{f}(x)-\mathbf{f}(y)=(x-y)\left(f_{1}^{\prime}\left(M_{1}(x, y)\right), \ldots, f_{k}^{\prime}\left(M_{k}(x, y)\right)\right), \quad x, y \in I \tag{1.1}
\end{equation*}
$$

Moreover, if $f_{1}^{\prime}, \ldots, f_{k}^{\prime}$ are one-to-one, then $\mathbf{M}=\mathbf{M}_{\mathbf{f}}$ is unique, continuous, symmetric, the mean $M_{i}=M_{f_{i}}$ is strictly increasing and

$$
M_{f_{i}}(x, y)=\left(f_{i}^{\prime}\right)^{-1}\left(\frac{f_{i}(x)-f_{i}(y)}{x-y}\right), \quad x, y \in I, x \neq y ; i=1, \ldots, k
$$

Proof. It is enough to apply the Lagrange mean-value theorem to each of the coordinate functions.

This leads to a natural question when there is a unique mean M such that $M_{1}=\ldots=M_{k}=M$; in particular, when formula 1.1 can be written in the form

$$
\mathbf{f}(x)-\mathbf{f}(y)=(x-y) \mathbf{f}^{\prime}(M(x, y)), \quad x, y \in I ?
$$

The answer is given by the following

Theorem 2. Let $k \in \mathbb{N}$, $k \geqslant 2$, be fixed. Suppose that $\mathbf{f}: I \rightarrow \mathbb{R}^{k}, \mathbf{f}=\left(f_{1}, \ldots, f_{k}\right)$ is differentiable in an interval I and such that $f_{1}^{\prime}, \ldots, f_{k}^{\prime}$ are one-to-one. Then the following conditions are equivalent:
(i) there is a unique mean M in I such that

$$
\mathbf{f}(x)-\mathbf{f}(y)=(x-y) \mathbf{f}^{\prime}(M(x, y)), \quad x, y \in I
$$

(ii) there are $a_{i}, b_{i}, c_{i} \in \mathbb{R}, a_{i} \neq 0$, for $i=1, \ldots, k$, and a function $f: I \rightarrow \mathbb{R}$ such that

$$
f_{i}(x)=a_{i} f(x)+b_{i} x+c_{i}, \quad x \in I
$$

Proof. Since $f_{1}^{\prime}, \ldots, f_{k}^{\prime}$ are one-to-one, each of these derivatives is strictly monotonic and continuous. To show this assume, to the contrary, that f_{i}^{\prime} is not strictly monotonic. Then there are $x, y, z \in I, x<y<z$ such that either

$$
f_{i}^{\prime}(x)<f_{i}^{\prime}(y) \quad \text { and } \quad f_{i}^{\prime}(y)>f_{i}^{\prime}(z)
$$

or

$$
f_{i}^{\prime}(x)>f_{i}^{\prime}(y) \quad \text { and } \quad f_{i}^{\prime}(y)<f_{i}^{\prime}(z)
$$

By the Darboux property of the derivative, in each of these two cases we would find $u \in[x, y]$ and $v \in[y, z]$ such that $f_{i}^{\prime}(u)=f_{i}^{\prime}(v)$. This is a contradiction, as f_{i}^{\prime} is one-to-one. Now, the monotonicity of f_{i}^{\prime} and the Darboux property imply the continuity of f_{i}^{\prime}.

In particular, we have shown that each of the functions f_{i} is either strictly convex or strictly concave in the interval I.

Assume that condition (i) is satisfied. Then, by Theorem 1, $M=M_{f_{i}}$ for $i=$ $1, \ldots, k$, whence

$$
\left(f_{i}^{\prime}\right)^{-1}\left(\frac{f_{i}(x)-f_{i}(y)}{x-y}\right)=\left(f_{1}^{\prime}\right)^{-1}\left(\frac{f_{1}(x)-f_{1}(y)}{x-y}\right), \quad x, y \in I, x \neq y
$$

for all $i=2, \ldots, k$. Setting

$$
f:=f_{1}, \quad \varphi_{i}:=f_{i}^{\prime} \circ\left(f_{1}^{\prime}\right)^{-1}
$$

we hence get

$$
\frac{f_{i}(x)-f_{i}(y)}{x-y}=\varphi_{i}\left(\frac{f(x)-f(y)}{x-y}\right), \quad x, y \in I, x \neq y ; i \in\{2, \ldots, k\} .
$$

Since $f=f_{1}$ is strictly convex or strictly concave, it follows that (cf. [2], Theorem 1) there exist $a_{i}, b_{i}, c_{i} \in \mathbb{R}$ such that

$$
f_{i}(x)=a_{i} f(x)+b_{i} x+c_{i}, \quad x \in I ; i=2, \ldots, k
$$

The strict convexity or strict concavity of f_{i} implies that $a_{i} \neq 0$ for $i=2, \ldots, k$, which completes the proof of the implication (i) \Longrightarrow (ii).

Since the converse implication is easy to verify, the proof is complete.
Remark. At the beginning of the proof of Theorem 2 we have observed that all the derivatives $f_{1}^{\prime}, \ldots, f_{k}^{\prime}$ are continuous and strictly monotonic. Therefore, in the proof of the implication (i) \Longrightarrow (ii) one could apply the following

Lemma 1. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and such that f^{\prime} and g^{\prime} are continuous and strictly monotonic. Then $M_{g}=M_{f}$ if, and only if, there are $a, b, c \in \mathbb{R}$, $a \neq 0$, such that

$$
h(x)=a f(x)+b x+c, \quad x \in I
$$

This lemma is a consequence of a result due to Berrone and Moro (cf. Corollary 7 in [1]).

2. The counterparts of Theorems 1 and 2

In [3] the following counterpart of the Lagrange mean-value theorem has been proved. If a real function f defined on an interval $I \subset \mathbb{R}$ is differentiable, and f^{\prime} is one-to-one, then there exists a unique mean function $M: f^{\prime}(I) \times f^{\prime}(I) \rightarrow f^{\prime}(I)$ such that

$$
\frac{f(x)-f(y)}{x-y}=M\left(f^{\prime}(x), f^{\prime}(y)\right), \quad x, y \in I, x \neq y
$$

Obviously, this result can also be extended to functions $f: I \rightarrow \mathbb{R}^{k}$. We have the following

Theorem 3. Let $k \in \mathbb{N}$. If $\mathbf{f}: I \rightarrow \mathbb{R}^{k}$, $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right)$ is differentiable in an interval I and $f_{1}^{\prime}, \ldots, f_{k}^{\prime}$ are one-to-one, then there exists a unique vector of means $\mathbf{M}=\left(M_{1}, \ldots, M_{k}\right), M_{i}: f_{i}^{\prime}(I) \times f_{i}^{\prime}(I) \rightarrow f_{i}^{\prime}(I), i=1, \ldots, k$, such that

$$
\mathbf{f}(x)-\mathbf{f}(y)=(x-y)\left(M_{1}\left(f_{1}^{\prime}(x), f_{1}^{\prime}(y)\right), \ldots, M_{k}\left(f_{k}^{\prime}(x), f_{k}^{\prime}(y)\right)\right), \quad x, y \in I
$$

Moreover, $\mathbf{M}=\mathbf{M}_{\mathbf{f}}$ is continuous for each $i=1, \ldots, k$, the mean $M_{i}=M_{f_{i}}$ is symmetric, strictly increasing, and

$$
M_{i}(u, v)=\frac{f_{i}\left(\left(f_{i}^{\prime}\right)^{-1}(u)\right)-f_{i}\left(\left(f_{i}^{\prime}\right)^{-1}(v)\right)}{\left(f_{i}^{\prime}\right)^{-1}(u)-\left(f_{i}^{\prime}\right)^{-1}(v)}, \quad u, v \in f_{i}^{\prime}(I), u \neq v .
$$

To answer the question when the means $M_{i}, i=1, \ldots, k$, are equal, we need

Lemma 2. Let $I \subset \mathbb{R}$ be an interval and let $F, g, h: I \rightarrow \mathbb{R}$. Suppose that h and, for any $y \in I$, the function

$$
(I \backslash\{y\}) \ni x \mapsto \frac{g(x)-g(y)}{x-y}
$$

are one-to-one. If

$$
\begin{equation*}
\frac{F(x)-F(y)}{h(x)-h(y)}=\frac{g(x)-g(y)}{x-y}, \quad x, y \in I, x \neq y \tag{2.1}
\end{equation*}
$$

then there are $a, b, c \in \mathbb{R}, a \neq 0$ such that

$$
h(x)=a x+b, \quad F(x)=a g(x)+c, \quad x \in I .
$$

Proof. Without any loss of generality we can assume that $0 \in I$ and that $g(0)=h(0)=0$. From 2.1 we have

$$
F(x)-F(y)=\frac{g(x)-g(y)}{x-y}[h(x)-h(y)], \quad x, y \in I, x \neq y .
$$

Since $F(x)-F(y)=[F(x)-F(z)]+[F(z)-F(y)]$, we get

$$
\frac{g(x)-g(y)}{x-y}[h(x)-h(y)]=\frac{g(x)-g(z)}{x-z}[h(x)-h(z)]+\frac{g(z)-g(y)}{z-y}[h(z)-h(y)]
$$

for all $x, y, z \in I, x \neq y \neq z \neq x$, whence, after simple calculations,

$$
g(x) K(x, y, z)=L(x, y, z), \quad x, y, z \in I, x \neq y \neq z \neq x
$$

where

$$
K(x, y, z):=h(x)(y-z)+h(z)(x-y)+[h(y) z-h(z) y]
$$

and

$$
\begin{aligned}
L(x, y, z):= & x h(x)[g(y)-g(z)]+h(x)[g(z) y-g(y) z]+x[g(z) h(z)-g(y) h(y)] \\
& +\frac{g(z)-g(y)}{z-y}[h(z)-h(y)](x-y)(x-z)+[g(y) h(y) z-g(z) h(z) y] .
\end{aligned}
$$

Setting in this equality $x=0$ we obtain

$$
\frac{g(z)-g(y)}{z-y}[h(z)-h(y)] y z+[g(y) h(y) z-g(z) h(z) y]=0, \quad y, z \in I, y \neq z,
$$

whence, after simple calculations,

$$
\left(\frac{g(y)}{y}-\frac{g(z)}{z}\right)\left(\frac{h(y)}{y}-\frac{h(z)}{z}\right)=0, \quad y, z \in I \backslash\{0\}, y \neq z .
$$

This equality and the injectivity assumption of the function

$$
I \backslash\{0\} \ni \frac{g(x)}{x} \rightarrow \mathbb{R}
$$

imply that there is $a \in \mathbb{R}$ such that $h(x) / x=a$ for all $x \in I \backslash\{0\}$. As $h(0)=0$, we get $h(x)=a x$ for all $x \in I$. Since the remaining results are obvious, the proof is complete.

Using the idea of the proof of this lemma we prove
Remark 1. Let $I \subset \mathbb{R}$ be an interval. Suppose that the functions $F, g, h: I \rightarrow \mathbb{R}$ are one-to-one. Then

$$
\begin{equation*}
\frac{F(x)-F(y)}{x-y}=g(x)+h(y), \quad x, y \in I, x \neq y \tag{2.2}
\end{equation*}
$$

if, and only if, there are $a, b, c, d \in \mathbb{R}$ such that

$$
F(x)=a x^{2}+2 b x+d, \quad g(x)=a x+b-c, \quad h(x)=a x+b+c, \quad x \in I .
$$

Proof. Suppose that the functions $F, g, h: I \rightarrow \mathbb{R}$ satisfy equation 2.2. Interchanging x and y in 2.2 we conclude that $g(x)+h(y)=g(y)+h(x)$, i.e.

$$
h(x)-g(x)=h(y)-g(y), \quad x \in I,
$$

whence, for some $c \in \mathbb{R}$,

$$
\begin{equation*}
h(x)=g(x)+2 c, \quad x \in I . \tag{2.3}
\end{equation*}
$$

Hence, setting

$$
\begin{equation*}
G(x):=g(x)+c, \quad x \in I, \tag{2.4}
\end{equation*}
$$

we can write equation 2.2 in the form

$$
\frac{F(x)-F(y)}{x-y}=G(x)+G(y), \quad x, y \in I, x \neq y
$$

or, equivalently,

$$
F(x)-F(y)=[G(x)+G(y)](x-y), \quad x, y \in I, x \neq y .
$$

Since $F(x)-F(y)=[F(x)-F(z)]+[F(z)-F(y)]$, we get

$$
[G(x)+G(y)](x-y)=[G(x)+G(z)](x-z)+[G(z)+G(y)](z-y)
$$

for all $x, y, z \in I, x \neq y \neq z \neq x$. Taking here $z:=(1-t) x+t y$, after a simplification we obtain

$$
G((1-t) x+t y)=t G(x)+(1-t) G(y), \quad x, y \in I, x \neq y, t \in(0,1)
$$

that is, G is an affine function. Consequently, there are $a, b \in \mathbb{R}$, such that $G(x)=$ $a x+b$ for all $x \in I$. From 2.4 and 2.3 we get

$$
g(x)=a x+b-c, \quad h(x)=a x+b+c, \quad x \in I .
$$

Substituting these functions into 2.2 we get

$$
\frac{F(x)-F(y)}{x-y}=a(x+y)+2 b, \quad x, y \in I, x \neq y
$$

whence

$$
F(x)-a x^{2}-2 b x=F(y)-a y^{2}-2 b y, \quad x, y \in I, x \neq y .
$$

It follows that, for some $d \in \mathbb{R}$,

$$
F(x)=a x^{2}+2 b x+d, \quad x \in I .
$$

Since the converse implication is obvious, the proof is complete.

Theorem 4. Let $k \in \mathbb{N}$, $k \geqslant 2$, be fixed. Suppose that $\mathbf{f}: I \rightarrow \mathbb{R}^{k}, \mathbf{f}=\left(f_{1}, \ldots, f_{k}\right)$ is differentiable in an interval I and $f_{1}^{\prime}, \ldots, f_{k}^{\prime}$ are one-to-one. Then the following conditions are equivalent:
(i) there is a unique mean M such that

$$
\mathbf{f}(x)-\mathbf{f}(y)=(x-y)\left(M\left(f_{1}^{\prime}(x), f_{1}^{\prime}(y)\right), \ldots, M\left(f_{k}^{\prime}(x), f_{k}^{\prime}(y)\right)\right), \quad x, y \in I ;
$$

(ii) there are $c_{1}, \ldots, c_{k} \in \mathbb{R}$, and a differentiable function $g: I \rightarrow \mathbb{R}$ with one-to-one derivative such that

$$
f_{i}(x)=g(x)+c_{i}, \quad x \in I, i=1, \ldots, k,
$$

and

$$
M(u, v)=\frac{g\left(\left(g^{\prime}\right)^{-1}(u)\right)-g\left(\left(g^{\prime}\right)^{-1}(v)\right)}{\left(g^{\prime}\right)^{-1}(u)-\left(g^{\prime}\right)^{-1}(v)}, \quad u, v \in g^{\prime}(I), u \neq v
$$

Proof. Assume (i). Then

$$
\frac{f_{i}(x)-f_{i}(y)}{x-y}=M\left(f_{i}^{\prime}(x), f_{i}^{\prime}(y)\right), \quad x, y \in I, x \neq y, i=1, \ldots, k
$$

whence, for each $i=1, \ldots, k$,

$$
M(u, v)=\frac{f_{i}\left(\left(f_{i}^{\prime}\right)^{-1}(u)\right)-f_{i}\left(\left(f_{i}^{\prime}\right)^{-1}(v)\right)}{\left(f_{i}^{\prime}\right)^{-1}(u)-\left(f_{i}^{\prime}\right)^{-1}(v)}, \quad u, v \in f_{i}^{\prime}(I), u \neq v
$$

Taking $g:=f_{1}$ we get, for each $i=1, \ldots, k$,

$$
\frac{f_{i}\left(\left(f_{i}^{\prime}\right)^{-1}(u)\right)-f_{i}\left(\left(f_{i}^{\prime}\right)^{-1}(v)\right)}{\left(f_{i}^{\prime}\right)^{-1}(u)-\left(f_{i}^{\prime}\right)^{-1}(v)}=\frac{g\left(\left(g^{\prime}\right)^{-1}(u)\right)-g\left(\left(g^{\prime}\right)^{-1}(v)\right)}{\left(g^{\prime}\right)^{-1}(u)-\left(g^{\prime}\right)^{-1}(v)}, \quad u, v \in f_{i}^{\prime}(I), u \neq v
$$

Let us fix arbitrary $i \in\{2,3, \ldots, k\}$ and put

$$
h_{i}:=\left(f_{i}^{\prime}\right)^{-1} \circ g^{\prime}, \quad F_{i}:=f_{i} \circ\left(f_{i}^{\prime}\right)^{-1} \circ g^{\prime}
$$

Hence, taking arbitrary $x, y \in I, x \neq y$, and setting $u:=g^{\prime}(x), v:=g^{\prime}(y)$ in the above equality, we obtain

$$
\frac{F_{i}(x)-F_{i}(y)}{h_{i}(x)-h_{i}(y)}=\frac{g(x)-g(y)}{x-y}, \quad x, y \in I, x \neq y
$$

By Lemma 2 , there are $a_{i}, b_{i}, c_{i} \in \mathbb{R}, a_{i} \neq 0$ such that

$$
\begin{equation*}
h_{i}(x)=a_{i} x+b_{i}, \quad F_{i}(x)=a_{i} g(x)+c_{i}, \quad x \in I \tag{2.5}
\end{equation*}
$$

By the definition of h_{i}, we get

$$
f_{i}^{\prime}\left(a_{i} x+b_{i}\right)=g^{\prime}(x), \quad x \in I, i=1, \ldots, k
$$

Since the domains of all functions f_{i} are the same, it follows that $a_{i}=1, b_{i}=0$, and $f_{i}^{\prime}=g^{\prime}$ for each $i=2, \ldots, k$. Now from the latter of formulas 2.5, we obtain $f_{i}=g+c_{i}$ for each $i=2, \ldots, k$, which completes the proof of the implication (i) \Longrightarrow (ii). Since the converse implication is obvious, the proof is complete.

Acknowledgement. The author thanks the anonymous referee for his valuable comments.

References

[1] L. R. Berrone, J. Moro: Lagrangian means. Aequationes Math. 55 (1998), 217-226. Zbl
[2] J. Matkowski: Mean value property and associated functional equation. Aequationes Math. 58 (1999), 46-59.
[3] J. Matkowski: A mean-value theorem and its applications. J. Math. Anal. Appl. 373 (2011), 227-234.

Author's address: Janusz Matkowski, Faculty of Mathematics Computer Science and Econometric, University of Zielona Góra, ul. Szafrana 4a, PL-65-516 Zielona Góra, Poland, e-mail: J.Matkowski@wmie.uz.zgora.pl.

