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1. Introduction and preliminaries

Let R, R+ and N denote the set of reals, non-negative reals and the set of natural

numbers respectively. Let (G, Σ, µ) be a σ-finite measure space. Denote by L0 =

L0(G) the set of all µ-equivalence classes of complex-valued measurasble functions

defined on G. A functionM : G×R → [0,∞) is said to be a Musielak-Orlicz function

if M(·, u) is measurable for each u ∈ R, M(t, u) = 0 if and only if u = 0 and M(t, ·)

is convex, even, not identically equal to zero and M(t, u)/u → 0 as u → 0 for µ-a.e.

t ∈ G. Define on L0 a convex modular ̺M by

̺M (f) =

∫

G

M(t, f(t)) dµ

for every f ∈ L0. By the Musielak-Orlicz space LM we mean

LM = {f ∈ L0 : ̺M (λf) < ∞ for some λ > 0}.
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Its subspace EM is defined as

EM = {f ∈ L0 : ̺M (λf) < ∞ for any λ > 0}.

The space LM equipped with the Luxemberg norm

‖f‖M = inf{λ > 0: ̺M (f/λ) 6 1}

is a Banach space (see [14], [15]). For every Musielak-Orlicz function M we define

the complementary function M∗(t, v) as

M∗(t, v) = sup
u>0

{u|v| − M(t, u) : v > 0 and t ∈ G a.e.}.

It is easy to see that M∗(t, v) is also a Musielak-Orlicz function. We say that a

Musielak-Orlicz functionM satisfies the ∆2-conditions (writeM ∈ ∆2) if there exists

a constant k > 2 and a measurable non-negative function f such that ̺M (f) < ∞

and

M(t, 2u) 6 kM(t, u)

for every u > f(t) and for t ∈ G a.e. For more details see ([1], [6], [12], [18]).

Throughout this paper we assume that M satisfies the ∆2-conditions.

We now define the types of spaces considered in this paper. For a Banach space

(X, ‖ · ‖X), denote by L0(X) the family of strongly measurable functions f : G →

X , identifying functions which are equal µ-almost everywhere in G. Define a new

modular ˜̺M on L0(X) by

˜̺M (f) =

∫

G

M(t, ‖f(t)‖) dµ.

Let

LM (G, X) = {f ∈ L0(X) : ‖f(t)‖ = ‖f(t)‖X ∈ LM}.

Then LM (G, X) becomes a Banach space with the norm

‖f‖ =
∥

∥‖f(t)‖X

∥

∥

M
= inf{λ : ˜̺M (f/λ) 6 1}

and it is called a Musielak-Orlicz space of Bochner type, see [4].

If T is a non-singular measurable transformation, then the measure µT−1 is

absolutely continuous with respect to the measure µ. Hence by the Radon-

Nikodym derivative theorem there exists a positive measurable function f0 such
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that µ(T−1(E)) =
∫

E
f0 dµ for every E ∈ Σ. The function f0 is called the Radon-

Nikodym derivative of the measure µT−1 with respect to the measure µ. It is

denoted by f0 = dµT−1/dµ.

Associated with each σ-finite subalgebraΣ0 ⊂ Σ there exists an operatorE = EΣ0 ,

which is called the conditional expectation operator, on the set of all non-negative

measurable functions f or for each f ∈ L0(G, Σ, µ), and is uniquely determined by

the following conditions:

(1) E(f) is Σ0-measurable, and

(2) if A is any Σ0-measurable set for which
∫

A
f dµ exists, we have

∫

A
f dµ =

∫

A
E(f) dµ.

The transfromation E has the following properties:

⊲ E(f · g ◦ T ) = E(f) · (g ◦ T );

⊲ if f > g almost everywhere, then E(f) > E(g) almost everywhere;

⊲ E(1) = 1;

⊲ E(f) has the form E(f) = g ◦ T for exactly one σ-measurable function g.

In particular, g = E(f) ◦ T−1 is a well defined measurable function.

⊲ |E(fg)|2 6 (E|f |2)(E|g|2). This is the Cauchy-Schwartz inequality for condi-

tional expectation.

⊲ For f > 0 almost everywhere, E(f) > 0 almost everywhere.

⊲ If ϕ is a convex function, then ϕ(E(f)) 6 E(ϕ(f))µ-almost everywhere. For

deeper study of properties of E see [11].

Let T : G → G be a non-singular measurable transformation. Then we can define

a composition transformation

CT : LM (G, X) → LM (G, X)

by

(CT f)(t) = f(T (t)), ∀ t ∈ G.

If CT is continuous, we call it a composition operator induced by T . In the early

1930’s the composition operators were used to study problems in mathematical

physics and especially classical mechanics, see Koopman [5]. In those days these

operators were known as substitution operators. The systematic study of composi-

tion operators has relatively a very short history. It was started by Nordgren in 1968

in his paper [17]. After this, the study of composition operators has been extended

in several directions by several mathematicians. For more details on these operators

we refer to ([7], [13], [16], [19], [20]). In particular, for the study of composition

operators on Orlicz and Orlicz-Lorentz spaces one can refer to ([2], [3], [8], [9], [10])

and references therein.
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2. Composition operators

In this section we characterize invertibility, closed range, Fredholmness and com-

pactness of composition operators on Musielak-Orlicz spaces of Bochner type.

Theorem 2.1. Let T : G → G be a measurable transformation. Then CT :

LM (G, X) → LM (G, X) is bounded if and only if there exists k > 0 such that

E[M(I ◦ T−1(t), x)]f0(t) 6 M(t, kx)

for every x ∈ X and for µ-almost all t ∈ G.

P r o o f. Let f ∈ LM (G, X). Then

∫

G

M
(

t,
‖(f ◦ T )(t)‖

k‖f‖

)

dµ =

∫

G

E
[

M
(

I ◦ T−1(t),
‖f(t)‖

k‖f‖

)]

f0(t) dµ

6

∫

G

M
(

t,
‖f(t)‖

‖f‖

)

dµ 6 1.

Therefore ‖CT f‖ 6 k‖f‖ for all f ∈ LM (G, X). Hence CT is bounded.

Conversely, suppose that the condition is not fulfilled. Then for every positive

integer k there exists xk ∈ X and a measurable subset Ek such that

E[M(I ◦ T−1(t), xk)]f0(t) > M(t, kxk)

for almost every t ∈ Ek. Choose a measurable subset Fk of Ek such that χFk
∈

LM (G, X). Let fk = xkχFk
. Then

∫

G

M
(

t,
k‖fk(t)‖

‖CT fk‖

)

dµ =

∫

Fk

M
(

t,
‖kxk‖

‖CT fk‖

)

dµ

6

∫

G

E
[

M
(

I ◦ T−1(t),
‖xkχFk

(t)‖

‖CT fk‖

)]

f0(t) dµ

=

∫

G

M
(

t,
‖(CT fk)(t)‖

‖CT fk‖

)

dµ 6 1.

This shows that ‖CT fk‖ > k‖fk‖, which contradicts the boundedness of CT . Hence

the condition of the theorem is fulfilled.

452



Theorem 2.2. Let T : G → G be a measurable transformation. Then CT :

LM (G, X) → LM (G, X) has closed range if and only if

E[M(I ◦ T−1(t), x)]f0(t) > M(t, δx)

for µ-almost all t ∈ G \ T (G) and δ > 0.

P r o o f. Suppose that the condition of the theorem is fulfilled. Let f ∈ ranCT .

Then there exists a sequence {gn} in ran CT such that gn → f . Write gn = CT fn.

Then CT fn → f . It follows that {CT fn} is a Cauchy sequence. Then there exists a

positive integer n0 such that ‖CT fn − CT fm‖ < ε, for all m, n > n0. Hence

∫

G

M
(

t,
δ‖fn(t) − fm(t)‖

‖gn − gm‖

)

dµ 6

∫

G

E
[

M
(

I ◦ T−1(t),
‖fn(t) − fm(t)‖

‖gn − gm‖

)]

f0(t) dµ

=

∫

G

(

t,
‖fn(T (t)) − fm(T (t))‖

‖gn − gm‖

)

dµ

=

∫

G

M
(

t,
‖gn(t) − gm(t)‖

‖gn − gm‖

)

dµ 6 1.

This prove that

δ‖fn − fm‖ 6 ‖gn − gm‖, ∀m, n > n0.

Hence {fn} is a Cauchy sequence in LM (G, X). In view of completeness there exists

g ∈ LM (G, X) such that fn → g. Thus CT fn → CT g, that is gn → CT f so that

f = CT g ∈ ranCT . This proves that ranCT is closed.

Conversely, suppose CT has closed range. If the condition of the theorem is not

satisfied, then for every positive integer k there exist a measurable subset Ek and

xk ∈ X such that

E[M(I ◦ T−1(t), xk)]f0(t) < M(t, xk/k)

for µ-almost all t ∈ Ek. Choose a measurable subset Fk of Ek such that χFk
∈

LM (G, X) and fk = kχFk
. Now

∫

G

M
(

t,
k‖(CT fk)(t)‖

‖fk‖

)

dµ 6

∫

Fk

E
[

M
(

I ◦ T−1(t),
‖kxk‖

‖fk‖

)]

f0(t) dµ

=

∫

G

M
(

t,
‖fk(t)‖

‖fk‖

)

dµ 6 1.

This proves that

‖CT fk‖ 6
1

k
‖fk‖

so that CT is not bounded away from zero. Hence the condition of the theorem must

be satisfied.

453



Theorem 2.3. Suppose CT ∈ B(LM (G, X)). Then CT is invertible if and only if

(i) T is invertible a.e.;

(ii) there exists δ > 0 such that M(T (t), x) 6 M(t, δx) a.e.

P r o o f. Suppose that CT is invertible. We show that T is invertible. If T is

not surjective a.e., then choose a measurable subset E ⊂ G \ T (G) such that χE ∈

LM (G, X). Then CT χE = 0 which indicates that CT has a non-trivial kernel. Hence

T is surjective. If CT is onto, then CT has closed range. Therefore the condition (ii)

is satisfied as T (G) = G. We next show that T−1(Σ) = Σ. Clearly T−1(Σ) ⊂ Σ.

For the reverse inclusion, let E ∈ Σ. Since CT is onto, there exists g ∈ LM (G, X)

such that CT g = χE , and it follows that there exists a measurable subset F such

that g = χF . Hence CT χF = χE or T−1(F ) = E a.e. Then E ∈ T−1(Σ). Therefore

T−1(Σ) = Σ which proves that T is invertible.

Conversely, suppose that the conditions of the theorem are satisfied. Let T−1 be

the inverse of T . The condition (ii) implies that CT−1 is a bounded operator as

CT CT−1 = CT−1CT = I.

Hence CT is invertible.

Theorem 2.4. Let
(

G, Σ, µ
)

be a non-atomic measure space. Then no composi-

tion operator CT on LM (G, X) is compact.

P r o o f. Let for some ε > 0, the set

Eε = {t ∈ G : E[M(I ◦ T−1(t), x)]f0(t) > M(t, εx)}

be of positive measure. Since µ is non-atomic, we can find measurable subsets

En+1 ⊂ En ⊂ E ⊂ Eε such that µ(Eε) < ∞ and µ(En+1) = 1
2µ(En). Let

en(t) = ‖χEn
(t)‖/‖χEn

‖. Then ‖en‖ = 1. Therefore the sequence {en} is a bounded

sequence. Consider

∫

G

M
(

t,
‖εen(t)‖

‖CT en‖

)

dµ 6

∫

En

M
(

t,
ε

‖χEn
‖ ‖CT en‖

)

dµ

6

∫

En

E
[

M
(

I ◦ T−1(t),
1

‖χEn
‖ ‖Cϕen‖

)]

f0(t) dµ

=

∫

G

M
(

t,
‖(CT en)(t)‖

‖CT en‖

)

dµ 6 1.

Hence ‖CT en‖ > ε. This proves that CT cannot be compact. Hence µ(Eε) = 0, i.e.

E[M(I ◦ T−1(t), x)]f0(t) < M(t, εx)
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for every µ-almost t ∈ T and for all x ∈ X . Then

∫

G

M
(

t,
‖(CT χE)(t)‖

ε‖χE‖

)

dµ =

∫

G

E
[

M
(

I ◦ T−1(t),
‖χE(t)‖

ε‖χE‖

)]

f0(t) dµ

<

∫

G

M
(

t,
‖χE(t)‖

‖χE‖

)

dµ 6 1

and therefore ‖CT χE‖ 6 ε‖χE‖. Since ε is arbitrary, we have ‖CT χE‖ = 0. In

other words CT χE = 0. Since simple functions are dense in LM (G, X) it follows

that CT = 0, which is again a contradiction. Hence no composition operator CT on

LM (G, X) is compact.

Corollary 2.5. If T is non-atomic, then no non-zero composition operator is

compact.

Theorem 2.6. Let CT ∈ B(LM (G, X)). Then CT is Fredholm if and only if CT

is invertible.

P r o o f. Suppose CT is Fredholm. Then CT has closed range. Therefore, there

exists ε > 0 such that

(1) E[M(I ◦ T−1(t), x)]f0(t) > M(t, εx)

for µ-almost all t ∈ T (G) and for all x ∈ X . If T (G) 6= G a.e., then there exists

E ∈ Σ such that E ⊂ G \ T (G). Therefore CT χE = 0 a.e. Hence kerCT is infi-

nite dimensional because for every subset F ⊂ E, we have CT χE = 0. This is a

contradiction as kerCT is assumed to be finite dimensional. Hence T (G) = G a.e.,

i.e. T is surjective. Next, if T is injective, then T−1(Σ) 6= Σ, so that the range

CT is not dense. Hence by the Hahn Banach theorem there exists a bounded linear

functional g∗ ∈ L∗

M (G, X) such that g∗(ranCT ) = 0. Let E = supp g∗. Partition

E into a sequence of disjoint measurable subsets En such that E =
∞
⋃

n=1
En. Let

g∗n = g∗χEn
. Then again (g∗χEn

)(ranCT ) = 0. But kerC∗

T = (ranCT )⊥. This

proves that kerC∗

T is infinite dimensional, which is again a contradiction. Therefore

ranCT = LM (G, X). We can conclude that CT is bounded away from zero and

therefore CT is invertible.

Theorem 2.7. Suppose M(t, x) = M1(t)M2(x). Then CT is an isometry if and

only if

E[M1(T
−1(t))]f0(t) = M1(t).
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P r o o f. Suppose that the condition of the theorem is fulfilled. Then for f 6= 0

in LM (G, X),

∫

G

M
(

t,
‖f(T (t))‖

‖f‖

)

dµ =

∫

G

M1(t)M2

(‖f(T (t))‖

‖f‖

)

dµ

=

∫

G

E
[

M1(I ◦ T−1(t))M2

(‖f(t)‖

‖f‖

)]

f0(t) dµ

=

∫

M
(

t,
‖f(t)‖

‖f‖

)

dµ 6 1.

Therefore ‖CT f‖ 6 ‖f‖. In the same way we can easily prove ‖f‖ 6 ‖CT f‖. Hence

‖CT f‖ = ‖f‖, i.e. CT is an isometry.

Conversely, suppose CT is an isometry. Let F ∈ Σ be such that χF ∈ LM (G, X).

Then

‖CT χF ‖ = ‖χF ‖

implies that

1

M−1
2

[

1/
∫

T−1(F )
M1(t) dµ

] =
1

M−1
2

[

1/
∫

F
M1(t) dµ

] ,

which further implies that

∫

T−1(F )

M1(t) dµ =

∫

F

M1(t) dµ

or
∫

F

E
[

M1(T
−1(t))

]

f0(t) dµ =

∫

F

M1(t) dµ.

This is true for every F such that χF ∈ LM (G, X). Hence we can conclude that

E
[

M1(T
−1(t))

]

f0(t) = M1(t)

for µ-almost all t ∈ G.
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