COMPOSITION OPERATORS ON MUSIELAK-ORLICZ SPACES OF BOCHNER TYPE

KULDIP RAJ, SUNIL K. SHARMA,

(Received April 6, 2011)

Abstract. The invertible, closed range, compact, Fredholm and isometric composition operators on Musielak-Orlicz spaces of Bochner type are characterized in the paper.

Keywords: Orlicz space, Musielak-Orlicz space, Musielak-Orlicz space of Bochner type, composition operator, invertible operator, compact operator, closed range, isometry and Fredholm operator

MSC 2010: 47B38

1. Introduction and preliminaries

Let \mathbb{R} , \mathbb{R}_+ and \mathbb{N} denote the set of reals, non-negative reals and the set of natural numbers respectively. Let (G, Σ, μ) be a σ -finite measure space. Denote by $L^0 = L^0(G)$ the set of all μ -equivalence classes of complex-valued measurasble functions defined on G. A function $M \colon G \times \mathbb{R} \to [0, \infty)$ is said to be a Musielak-Orlicz function if $M(\cdot, u)$ is measurable for each $u \in \mathbb{R}$, M(t, u) = 0 if and only if u = 0 and $M(t, \cdot)$ is convex, even, not identically equal to zero and $M(t, u)/u \to 0$ as $u \to 0$ for μ -a.e. $t \in G$. Define on L^0 a convex modular ϱ_M by

$$\varrho_M(f) = \int_G M(t, f(t)) \,\mathrm{d}\mu$$

for every $f \in L^0$. By the Musielak-Orlicz space L_M we mean

$$L_M = \{ f \in L^0 : \varrho_M(\lambda f) < \infty \text{ for some } \lambda > 0 \}.$$

Its subspace E_M is defined as

$$E_M = \{ f \in L^0 : \varrho_M(\lambda f) < \infty \text{ for any } \lambda > 0 \}.$$

The space L_M equipped with the Luxemberg norm

$$||f||_M = \inf\{\lambda > 0: \varrho_M(f/\lambda) \leqslant 1\}$$

is a Banach space (see [14], [15]). For every Musielak-Orlicz function M we define the complementary function $M^*(t, v)$ as

$$M^*(t,v)=\sup_{u>0}\{u|v|-M(t,u)\colon\, v\geqslant 0\text{ and }t\in G\text{ a.e.}\}.$$

It is easy to see that $M^*(t,v)$ is also a Musielak-Orlicz function. We say that a Musielak-Orlicz function M satisfies the Δ_2 -conditions (write $M \in \Delta_2$) if there exists a constant k>2 and a measurable non-negative function f such that $\varrho_M(f)<\infty$ and

$$M(t, 2u) \leqslant kM(t, u)$$

for every $u \ge f(t)$ and for $t \in G$ a.e. For more details see ([1], [6], [12], [18]). Throughout this paper we assume that M satisfies the Δ_2 -conditions.

We now define the types of spaces considered in this paper. For a Banach space $(X, \|\cdot\|_X)$, denote by $L^0(X)$ the family of strongly measurable functions $f \colon G \to X$, identifying functions which are equal μ -almost everywhere in G. Define a new modular $\tilde{\varrho}_M$ on $L^0(X)$ by

$$\tilde{\varrho}_M(f) = \int_G M(t, ||f(t)||) \,\mathrm{d}\mu.$$

Let

$$L_M(G,X) = \{ f \in L^0(X) \colon ||f(t)|| = ||f(t)||_X \in L_M \}.$$

Then $L_M(G,X)$ becomes a Banach space with the norm

$$||f|| = \left| ||f(t)||_X \right||_M = \inf\{\lambda \colon \ \tilde{\varrho}_M(f/\lambda) \leqslant 1\}$$

and it is called a Musielak-Orlicz space of Bochner type, see [4].

If T is a non-singular measurable transformation, then the measure μT^{-1} is absolutely continuous with respect to the measure μ . Hence by the Radon-Nikodym derivative theorem there exists a positive measurable function f_0 such

that $\mu(T^{-1}(E)) = \int_E f_0 d\mu$ for every $E \in \Sigma$. The function f_0 is called the Radon-Nikodym derivative of the measure μT^{-1} with respect to the measure μ . It is denoted by $f_0 = \mathrm{d}\mu T^{-1}/\mathrm{d}\mu$.

Associated with each σ -finite subalgebra $\Sigma_0 \subset \Sigma$ there exists an operator $E = E^{\Sigma_0}$, which is called the conditional expectation operator, on the set of all non-negative measurable functions f or for each $f \in L^0(G, \Sigma, \mu)$, and is uniquely determined by the following conditions:

- (1) E(f) is Σ_0 -measurable, and
- (2) if A is any Σ_0 -measurable set for which $\int_A f d\mu$ exists, we have $\int_A f d\mu = \int_A E(f) d\mu$.

The transfromation E has the following properties:

- $\triangleright E(f \cdot g \circ T) = E(f) \cdot (g \circ T);$
- \triangleright if $f \geqslant g$ almost everywhere, then $E(f) \geqslant E(g)$ almost everywhere;
- $\triangleright E(1) = 1;$
- $\triangleright E(f)$ has the form $E(f) = g \circ T$ for exactly one σ -measurable function g. In particular, $g = E(f) \circ T^{-1}$ is a well defined measurable function.
- $|E(fg)|^2 \le (E|f|^2)(E|g|^2)$. This is the Cauchy-Schwartz inequality for conditional expectation.
- \triangleright For f > 0 almost everywhere, E(f) > 0 almost everywhere.
- \triangleright If φ is a convex function, then $\varphi(E(f)) \leqslant E(\varphi(f))\mu$ -almost everywhere. For deeper study of properties of E see [11].

Let $T\colon G\to G$ be a non-singular measurable transformation. Then we can define a composition transformation

$$C_T \colon L_M(G,X) \to L_M(G,X)$$

by

$$(C_T f)(t) = f(T(t)), \quad \forall t \in G.$$

If C_T is continuous, we call it a composition operator induced by T. In the early 1930's the composition operators were used to study problems in mathematical physics and especially classical mechanics, see Koopman [5]. In those days these operators were known as substitution operators. The systematic study of composition operators has relatively a very short history. It was started by Nordgren in 1968 in his paper [17]. After this, the study of composition operators has been extended in several directions by several mathematicians. For more details on these operators we refer to ([7], [13], [16], [19], [20]). In particular, for the study of composition operators on Orlicz and Orlicz-Lorentz spaces one can refer to ([2], [3], [8], [9], [10]) and references therein.

2. Composition operators

In this section we characterize invertibility, closed range, Fredholmness and compactness of composition operators on Musielak-Orlicz spaces of Bochner type.

Theorem 2.1. Let $T: G \to G$ be a measurable transformation. Then $C_T: L_M(G,X) \to L_M(G,X)$ is bounded if and only if there exists k > 0 such that

$$E[M(I \circ T^{-1}(t), x)]f_0(t) \leqslant M(t, kx)$$

for every $x \in X$ and for μ -almost all $t \in G$.

Proof. Let $f \in L_M(G,X)$. Then

$$\int_{G} M\left(t, \frac{\|(f \circ T)(t)\|}{k\|f\|}\right) d\mu = \int_{G} E\left[M\left(I \circ T^{-1}(t), \frac{\|f(t)\|}{k\|f\|}\right)\right] f_{0}(t) d\mu
\leq \int_{G} M\left(t, \frac{\|f(t)\|}{\|f\|}\right) d\mu \leq 1.$$

Therefore $||C_T f|| \leq k||f||$ for all $f \in L_M(G, X)$. Hence C_T is bounded.

Conversely, suppose that the condition is not fulfilled. Then for every positive integer k there exists $x_k \in X$ and a measurable subset E_k such that

$$E[M(I \circ T^{-1}(t), x_k)]f_0(t) > M(t, kx_k)$$

for almost every $t \in E_k$. Choose a measurable subset F_k of E_k such that $\chi_{F_k} \in L_M(G,X)$. Let $f_k = x_k \chi_{F_k}$. Then

$$\int_{G} M\left(t, \frac{k\|f_{k}(t)\|}{\|C_{T}f_{k}\|}\right) d\mu = \int_{F_{k}} M\left(t, \frac{\|kx_{k}\|}{\|C_{T}f_{k}\|}\right) d\mu
\leq \int_{G} E\left[M\left(I \circ T^{-1}(t), \frac{\|x_{k}\chi_{F_{k}}(t)\|}{\|C_{T}f_{k}\|}\right)\right] f_{0}(t) d\mu
= \int_{G} M\left(t, \frac{\|(C_{T}f_{k})(t)\|}{\|C_{T}f_{k}\|}\right) d\mu \leq 1.$$

This shows that $||C_T f_k|| \ge k||f_k||$, which contradicts the boundedness of C_T . Hence the condition of the theorem is fulfilled.

Theorem 2.2. Let $T: G \to G$ be a measurable transformation. Then $C_T: L_M(G,X) \to L_M(G,X)$ has closed range if and only if

$$E[M(I \circ T^{-1}(t), x)]f_0(t) \geqslant M(t, \delta x)$$

for μ -almost all $t \in G \setminus T(G)$ and $\delta > 0$.

Proof. Suppose that the condition of the theorem is fulfilled. Let $f \in \overline{\operatorname{ran} C_T}$. Then there exists a sequence $\{g_n\}$ in ran C_T such that $g_n \to f$. Write $g_n = C_T f_n$. Then $C_T f_n \to f$. It follows that $\{C_T f_n\}$ is a Cauchy sequence. Then there exists a positive integer n_0 such that $\|C_T f_n - C_T f_m\| < \varepsilon$, for all $m, n \ge n_0$. Hence

$$\int_{G} M\left(t, \frac{\delta \|f_{n}(t) - f_{m}(t)\|}{\|g_{n} - g_{m}\|}\right) d\mu \leqslant \int_{G} E\left[M\left(I \circ T^{-1}(t), \frac{\|f_{n}(t) - f_{m}(t)\|}{\|g_{n} - g_{m}\|}\right)\right] f_{0}(t) d\mu$$

$$= \int_{G} \left(t, \frac{\|f_{n}(T(t)) - f_{m}(T(t))\|}{\|g_{n} - g_{m}\|}\right) d\mu$$

$$= \int_{G} M\left(t, \frac{\|g_{n}(t) - g_{m}(t)\|}{\|g_{n} - g_{m}\|}\right) d\mu \leqslant 1.$$

This prove that

$$\delta ||f_n - f_m|| \le ||g_n - g_m||, \ \forall m, n \ge n_0.$$

Hence $\{f_n\}$ is a Cauchy sequence in $L_M(G,X)$. In view of completeness there exists $g \in L_M(G,X)$ such that $f_n \to g$. Thus $C_T f_n \to C_T g$, that is $g_n \to C_T f$ so that $f = C_T g \in \operatorname{ran} C_T$. This proves that $\operatorname{ran} C_T$ is closed.

Conversely, suppose C_T has closed range. If the condition of the theorem is not satisfied, then for every positive integer k there exist a measurable subset E_k and $x_k \in X$ such that

$$E[M(I \circ T^{-1}(t), x_k)]f_0(t) < M(t, x_k/k)$$

for μ -almost all $t \in E_k$. Choose a measurable subset F_k of E_k such that $\chi_{F_k} \in L_M(G,X)$ and $f_k = k\chi_{F_k}$. Now

$$\int_{G} M\left(t, \frac{k\|(C_{T}f_{k})(t)\|}{\|f_{k}\|}\right) d\mu \leqslant \int_{F_{k}} E\left[M\left(I \circ T^{-1}(t), \frac{\|kx_{k}\|}{\|f_{k}\|}\right)\right] f_{0}(t) d\mu
= \int_{G} M\left(t, \frac{\|f_{k}(t)\|}{\|f_{k}\|}\right) d\mu \leqslant 1.$$

This proves that

$$||C_T f_k|| \leqslant \frac{1}{k} ||f_k||$$

so that C_T is not bounded away from zero. Hence the condition of the theorem must be satisfied.

Theorem 2.3. Suppose $C_T \in B(L_M(G,X))$. Then C_T is invertible if and only if

- (i) T is invertible a.e.;
- (ii) there exists $\delta > 0$ such that $M(T(t), x) \leq M(t, \delta x)$ a.e.

Proof. Suppose that C_T is invertible. We show that T is invertible. If T is not surjective a.e., then choose a measurable subset $E \subset G \setminus T(G)$ such that $\chi_E \in L_M(G,X)$. Then $C_T\chi_E = 0$ which indicates that C_T has a non-trivial kernel. Hence T is surjective. If C_T is onto, then C_T has closed range. Therefore the condition (ii) is satisfied as T(G) = G. We next show that $T^{-1}(\Sigma) = \Sigma$. Clearly $T^{-1}(\Sigma) \subset \Sigma$. For the reverse inclusion, let $E \in \Sigma$. Since C_T is onto, there exists $g \in L_M(G,X)$ such that $C_Tg = \chi_E$, and it follows that there exists a measurable subset F such that $g = \chi_F$. Hence $C_T\chi_F = \chi_E$ or $T^{-1}(F) = E$ a.e. Then $E \in T^{-1}(\Sigma)$. Therefore $T^{-1}(\Sigma) = \Sigma$ which proves that T is invertible.

Conversely, suppose that the conditions of the theorem are satisfied. Let T^{-1} be the inverse of T. The condition (ii) implies that $C_{T^{-1}}$ is a bounded operator as

$$C_T C_{T^{-1}} = C_{T^{-1}} C_T = I.$$

Hence C_T is invertible.

Theorem 2.4. Let (G, Σ, μ) be a non-atomic measure space. Then no composition operator C_T on $L_M(G, X)$ is compact.

Proof. Let for some $\varepsilon > 0$, the set

$$E_{\varepsilon} = \{ t \in G \colon E[M(I \circ T^{-1}(t), x)] f_0(t) \geqslant M(t, \varepsilon x) \}$$

be of positive measure. Since μ is non-atomic, we can find measurable subsets $E_{n+1} \subset E_n \subset E \subset E_{\varepsilon}$ such that $\mu(E_{\varepsilon}) < \infty$ and $\mu(E_{n+1}) = \frac{1}{2}\mu(E_n)$. Let $e_n(t) = \|\chi_{E_n}(t)\|/\|\chi_{E_n}\|$. Then $\|e_n\| = 1$. Therefore the sequence $\{e_n\}$ is a bounded sequence. Consider

$$\int_{G} M\left(t, \frac{\|\varepsilon e_{n}(t)\|}{\|C_{T}e_{n}\|}\right) d\mu \leqslant \int_{E_{n}} M\left(t, \frac{\varepsilon}{\|\chi_{E_{n}}\| \|C_{T}e_{n}\|}\right) d\mu$$

$$\leqslant \int_{E_{n}} E\left[M\left(I \circ T^{-1}(t), \frac{1}{\|\chi_{E_{n}}\| \|C_{\varphi}e_{n}\|}\right)\right] f_{0}(t) d\mu$$

$$= \int_{G} M\left(t, \frac{\|(C_{T}e_{n})(t)\|}{\|C_{T}e_{n}\|}\right) d\mu \leqslant 1.$$

Hence $||C_T e_n|| \ge \varepsilon$. This proves that C_T cannot be compact. Hence $\mu(E_{\varepsilon}) = 0$, i.e.

$$E[M(I \circ T^{-1}(t), x)]f_0(t) < M(t, \varepsilon x)$$

for every μ -almost $t \in T$ and for all $x \in X$. Then

$$\int_{G} M\left(t, \frac{\|(C_{T}\chi_{E})(t)\|}{\varepsilon \|\chi_{E}\|}\right) d\mu = \int_{G} E\left[M\left(I \circ T^{-1}(t), \frac{\|\chi_{E}(t)\|}{\varepsilon \|\chi_{E}\|}\right)\right] f_{0}(t) d\mu$$

$$< \int_{G} M\left(t, \frac{\|\chi_{E}(t)\|}{\|\chi_{E}\|}\right) d\mu \leqslant 1$$

and therefore $||C_T\chi_E|| \leq \varepsilon ||\chi_E||$. Since ε is arbitrary, we have $||C_T\chi_E|| = 0$. In other words $C_T\chi_E = 0$. Since simple functions are dense in $L_M(G,X)$ it follows that $C_T = 0$, which is again a contradiction. Hence no composition operator C_T on $L_M(G,X)$ is compact.

Corollary 2.5. If T is non-atomic, then no non-zero composition operator is compact.

Theorem 2.6. Let $C_T \in B(L_M(G,X))$. Then C_T is Fredholm if and only if C_T is invertible.

Proof. Suppose C_T is Fredholm. Then C_T has closed range. Therefore, there exists $\varepsilon > 0$ such that

(1)
$$E[M(I \circ T^{-1}(t), x)] f_0(t) \geqslant M(t, \varepsilon x)$$

for μ -almost all $t \in T(G)$ and for all $x \in X$. If $T(G) \neq G$ a.e., then there exists $E \in \Sigma$ such that $E \subset G \setminus T(G)$. Therefore $C_T \chi_E = 0$ a.e. Hence $\ker C_T$ is infinite dimensional because for every subset $F \subset E$, we have $C_T \chi_E = 0$. This is a contradiction as $\ker C_T$ is assumed to be finite dimensional. Hence T(G) = G a.e., i.e. T is surjective. Next, if T is injective, then $T^{-1}(\Sigma) \neq \Sigma$, so that the range C_T is not dense. Hence by the Hahn Banach theorem there exists a bounded linear functional $g^* \in L_M^*(G, X)$ such that $g^*(\operatorname{ran} C_T) = 0$. Let $E = \operatorname{supp} g^*$. Partition E into a sequence of disjoint measurable subsets E_n such that $E = \bigcup_{n=1}^{\infty} E_n$. Let $G_n^* = G_n^* \chi_{E_n}$. Then again $G_n^* \chi_{E_n}(\operatorname{ran} C_T) = 0$. But $\operatorname{ker} C_T^* = (\operatorname{ran} C_T)^{\perp}$. This proves that $\operatorname{ker} C_T^*$ is infinite dimensional, which is again a contradiction. Therefore $\operatorname{ran} C_T = L_M(G, X)$. We can conclude that C_T is bounded away from zero and therefore C_T is invertible.

Theorem 2.7. Suppose $M(t,x) = M_1(t)M_2(x)$. Then C_T is an isometry if and only if

$$E[M_1(T^{-1}(t))]f_0(t) = M_1(t).$$

Proof. Suppose that the condition of the theorem is fulfilled. Then for $f \neq 0$ in $L_M(G,X)$,

$$\int_{G} M\left(t, \frac{\|f(T(t))\|}{\|f\|}\right) d\mu = \int_{G} M_{1}(t) M_{2}\left(\frac{\|f(T(t))\|}{\|f\|}\right) d\mu
= \int_{G} E\left[M_{1}(I \circ T^{-1}(t)) M_{2}\left(\frac{\|f(t)\|}{\|f\|}\right)\right] f_{0}(t) d\mu
= \int M\left(t, \frac{\|f(t)\|}{\|f\|}\right) d\mu \leqslant 1.$$

Therefore $||C_T f|| \le ||f||$. In the same way we can easily prove $||f|| \le ||C_T f||$. Hence $||C_T f|| = ||f||$, i.e. C_T is an isometry.

Conversely, suppose C_T is an isometry. Let $F \in \Sigma$ be such that $\chi_F \in L_M(G, X)$. Then

$$||C_T \chi_F|| = ||\chi_F||$$

implies that

$$\frac{1}{M_2^{-1} \left[1/\int_{T^{-1}(F)} M_1(t) \, \mathrm{d} \mu \right]} = \frac{1}{M_2^{-1} \left[1/\int_F M_1(t) \, \mathrm{d} \mu \right]},$$

which further implies that

$$\int_{T^{-1}(F)} M_1(t) \, \mathrm{d}\mu = \int_F M_1(t) \, \mathrm{d}\mu$$

or

$$\int_{F} E[M_{1}(T^{-1}(t))] f_{0}(t) d\mu = \int_{F} M_{1}(t) d\mu.$$

This is true for every F such that $\chi_F \in L_M(G,X)$. Hence we can conclude that

$$E[M_1(T^{-1}(t))]f_0(t) = M_1(t)$$

for μ -almost all $t \in G$.

Acknowledgement. The authors thank the referee for his valuable suggestions that improved the presentation of the paper.

References

[1]	S. Chen: Geometry of Orlicz Spaces. Dissertationes Mathematicae 356. Polish Academy
	of Sciences, Warsaw, 1996.
[2]	Y. Cui, H. Hudzik, R. Kumar, L. Maligranda: Composition operators in Orlicz spaces. J.
	Aust. Math. Soc. 76 (2004), 189–206.
[3]	H. Hudzik, M. Krbec: On non-effective weights in Orlicz spaces. Indag. Math., New Ser.
	18 (2007), 215–231. zbl
[4]	P. Kolwicz, R. Płuciennik: P-convexity of Musielak-Orlicz function spaces of Bochner
	type. Rev. Mat. Complut. 11 (1998), 43–57.
[5]	B. O. Koopman: Hamiltonian systems and transformations in Hilbert spaces. Proc. Natl.
	Acad. Sci. USA 17 (1931), 315–318.
[6]	M. A. Krasnosel'skij, Ya. B. Rutitskij: Convex Functions and Orlicz spaces (English. Rus-
	sian original). P. Noordhoff Ltd., Groningen-The Netherlands IX, 1961.
[7]	A. Kumar: Fredholm composition operators. Proc. Am. Math. Soc. 79 (1980), 233–236. zbl
[8]	R. Kumar, R. Kumar: Compact composition operators on Lorentz spaces. Mat. Vesnik
	<i>57</i> (2005), 109–112.
[9]	R. Kumar, R. Kumar: Composition operators on Orlicz-Lorentz spaces. Integral Equa-
	tions Oper. Theory 60 (2008), 79–88.
[10]	R. Kumar: Composition operators on Orlicz spaces. Integral Equations Oper. Theory
	29 (1997), 17–22. zbl
[11]	A. Lambert: Hypernormal composition operators. Bull. Lond. Math. Soc. 18 (1986),
	395–400. zbl
	W. A. J. Luxemberg: Banach Function Spaces. Thesis, Delft, 1955.
[13]	B. D. Macculer: Fredholm composition operators. Proc. Amer. Math. Soc. 125 (1997),
fa 41	1963–1966.
[14]	J. Musielak: Orlicz Spaces and Modular Spaces. Lect. Notes Math. 1034, Springer,
[4 =]	Berlin, 1983. Zbl
	J. Musielak, W. Orlicz On modular spaces. Stud. Math. 18 (1959), 49–65.
[16]	E. A. Nordgren: Composition Operators on Hilbert Spaces. Lect. Notes Math. 693,
[17]	Springer, New York, 1978, pp. 37–63.
	E. A. Nordgren: Composition operators. Canad. J. Math. 20 (1968), 442–449.
[18]	M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Pure and Applied Mathematics 146,
[10]	Marcel Dekker, New York, 1991.
	W. C. Ridge: Composition Operators. Thesis, Indiana University, 1969.
[20]	R. K. Singh, J. S. Manhas: Composition Operators on Function Spaces. North-Holland
	Mathematics Studies 179, North-Holland, Amsterdam, 1993.

Authors' addresses: Kuldip Raj, Sunil K. Sharma, School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India, e-mail: kuldeepraj68@rediffmail.com; e-mail: sunilksharma42@yahoo.co.in.