ON THE INTERSECTION OF TWO DISTINCT *k*-GENERALIZED FIBONACCI SEQUENCES

DIEGO MARQUES, Brasilia

(Received January 31, 2011)

Abstract. Let $k \ge 2$ and define $F^{(k)} := (F_n^{(k)})_{n\ge 0}$, the k-generalized Fibonacci sequence whose terms satisfy the recurrence relation $F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \ldots + F_{n-k}^{(k)}$, with initial conditions $0, 0, \ldots, 0, 1$ (k terms) and such that the first nonzero term is $F_1^{(k)} = 1$. The sequences $F := F^{(2)}$ and $T := F^{(3)}$ are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation $F_n^{(k)} = F_m^{(l)}$. In this note, we use transcendental tools to provide a general method for finding the intersections $F^{(k)} \cap F^{(m)}$ which gives evidence supporting the Noe-Post conjecture. In particular, we prove that $F \cap T = \{0, 1, 2, 13\}$.

 $\mathit{Keywords}:\ k\text{-generalized}$ Fibonacci numbers, linear forms in logarithms, reduction method

MSC 2010: 11B39, 11D61, 11J86

1. INTRODUCTION

Several problems in number theory are actually questions about the intersection of two known sequences (or sets). Before giving examples, let us recall some terminology: let $F := (F_n)_{n \ge 0}$ be the *Fibonacci sequence*, $\mathbb{P} := \{p: p \text{ prime}\}$, $\mathcal{P} := \{y^t: y, t \in \mathbb{Z}, t > 1\}$ (the perfect powers), $\mathcal{F} := \{n!: n \in \mathbb{Z}, n \ge 0\}$, $\mathcal{R} := \{a(10^n - 1)/9: 1 \le a \le 9, n \in \mathbb{Z}, n > 0\}$ (the *repdigits* or *unidigital numbers*). Below, we cite some results about the intersection of these sets:

- \triangleright Erdös and Selfridge [8] proved that $\mathcal{F} \cap \mathcal{P} = \{1\}$.
- \triangleright In 2000, Luca [25] proved that $F \cap \mathcal{R} = \{0, 1, 2, 3, 5, 8, 55\}.$
- \triangleright Luca [26] also proved that $F \cap \mathcal{F} = \{1, 2\}$.
- ▷ In 2003, Bugeaud et al [4] showed that $F \cap \mathcal{P} = \{0, 1, 8, 144\}$ (see [28] for a generalization).

 \triangleright Let $(a_n)_{n \ge 1}$ be the tower given by $a_1 = 1$ and $a_n = n^{a_{n-1}}$, for $n \ge 2$. Luca and the author [27] proved that $\{a_1 + \ldots + a_n : n \ge 1\} \cap \mathcal{P} = \{1\}.$

However, some related questions are still open problems, as for instance the sets $\mathbb{P} \cap F$ and $\mathbb{P} \cap \mathcal{R}$ are unknown.

Let $k \ge 2$ and denote $F^{(k)} := (F_n^{(k)})_{n \ge 0}$, the k-generalized Fibonacci sequence whose terms satisfy the recurrence relation

(1.1)
$$F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \dots + F_{n-k}^{(k)}$$

with initial conditions $0, 0, \ldots, 0, 1$ (k terms) and such that the first nonzero term is $F_1^{(k)} = 1$.

The above sequence is one among the several generalizations of Fibonacci numbers. Such a sequence is also called *k*-step Fibonacci numbers, the Fibonacci *k*-sequence, or *k*-bonacci numbers. Clearly, for k = 2 we obtain the well-known Fibonacci numbers and for k = 3, Tribonacci numbers.

Recall that Tribonacci numbers have a long history. For the first time, they were studied in 1914 by Agronomoff [1] and subsequently by many others. The name Tribonacci was coined in 1963 by Feinberg [9]. The basic properties of Tribonacci numbers can be found in [18], [24], [36], [38]. For recent papers, we refer the reader to [3], [19], [20], [33] and to the collection [21], [22], [23].

Recently, Alekseyev [2] described how to compute the intersection of two Lucas sequences including the sequences of Fibonacci, Pell, Lucas and Lucas-Pell numbers. In general, we refer the reader to [34], [35], [37] for results on the intersection of two recurrence sequences.

In a very recent paper, Togbé and the author [29] proved that only finitely many terms of a linear recurrence sequence whose characteristic polynomial has a dominant root can be repdigits. As an application, since the characteristic polynomial of the recurrence in (1.1), namely $x^k - x^{k-1} - \ldots - x - 1$, has just one root α such that $|\alpha| > 1$ (see for instance [39]), hence $F^{(k)} \cap \mathcal{R}$ is a finite set, for all $k \ge 2$. See also the article [32] for some results on the set $F^{(k)} \cap \mathbb{P}$ and a conjecture on the intersection $F^{(k)} \cap F^{(m)}$. We point out that this last intersection is, to the best of our knowledge, not known even in the easiest case (k, m) = (2, 3), that is, for numbers that are both Fibonacci and Tribonacci. A possible way to find this intersection is to look at the Fibonacci and Tribonacci sequences modulo p^t , where p is a prime number. We refer the reader to [5], [13], [16], [17] for results of this nature. However, this approach seems to be hard to work in practice. This observation prompted the author to look for a more interesting and constructive approach which could be useful in the general case.

It is important to notice that Mignotte (see [31]) showed that if $(u_n)_{n\geq 0}$ and $(v_n)_{n\geq 0}$ are two linearly recurrence sequences then, under some weak technical as-

sumptions, the equation

$$u_n = v_m$$

has only finitely many solutions in positive integers m, n. Moreover, all such solutions are effectively computable. Therefore, it seems reasonable to think that $F^{(k)} \cap F^{(m)}$ is a finite set for all $k \neq m$.

The goal of this paper is to apply transcendental tools to provide a method for studying the intersection $F^{(k)} \cap F^{(m)}$, for integers $2 \leq k < m$ and determine completely this set for (k, m) = (2, 3) (confirming the expectation). More precisely, our result is the following.

Theorem 1. The only solution of the Diophantine equation

(1.2)
$$F_n = T_m$$

in positive integer numbers m and n with n > 3, is (n, m) = (7, 6). Hence, $F \cap T = \{0, 1, 2, 13\}$.

We organize this paper as follows. In Section 2, we will recall some useful properties such as a result of Matveev on linear forms in three logarithms and the reduction method of Baker-Davenport that we will use in the proof of Theorem 1. In Section 3, we first use Baker's method to obtain a bound for n, then we completely prove Theorem 1 by means of the Baker-Davenport reduction method.

2. AUXILIARY RESULTS

We recall the well-known Binet's formula:

(2.1)
$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}} \quad \text{for all } n \ge 0,$$

where $\varphi = (1 + \sqrt{5})/2$. It is almost unnecessary to stress that this is a very helpful formula which moreover allows to deduce that

$$\varphi^{n-2} < F_n < \varphi^{n-1}$$
 for all $n \ge 1$.

In 1982, Spickerman [36] found the following "Binet-style" formula for the Tribonacci sequence:

(2.2)
$$T_n = \frac{\alpha^n}{-\alpha^2 + 4\alpha - 1} + \frac{\beta^n}{-\beta^2 + 4\beta - 1} + \frac{\gamma^n}{-\gamma^2 + 4\gamma - 1} \quad \text{for all } n \ge 0,$$

405

where α, β, γ are the roots of $x^3 - x^2 - x - 1 = 0$. Explicitly, we have

$$\begin{aligned} \alpha &= \frac{1}{3} + \frac{1}{3} \left(19 - 3\sqrt{33} \right)^{1/3} + \frac{1}{3} \left(19 + 3\sqrt{33} \right)^{1/3}, \\ \beta &= \frac{1}{3} - \frac{1}{6} \left(1 + i\sqrt{3} \right) \left(19 - 3\sqrt{33} \right)^{1/3} - \frac{1}{6} \left(1 - i\sqrt{3} \right) \left(19 + 3\sqrt{33} \right)^{1/3}, \\ \gamma &= \frac{1}{3} - \frac{1}{6} \left(1 - i\sqrt{3} \right) \left(19 - 3\sqrt{33} \right)^{1/3} - \frac{1}{6} \left(1 + i\sqrt{3} \right) \left(19 + 3\sqrt{33} \right)^{1/3}. \end{aligned}$$

Another interesting formula due to Spickermann is

$$T_n = \operatorname{Round}\left[\frac{\alpha}{(\alpha - \beta)(\alpha - \gamma)}\alpha^n\right],$$

where, as usual, $\operatorname{Round}[x]$ is the nearest integer to x.

Since $\alpha^{-2} < \alpha/(\alpha - \beta)(\alpha - \gamma) = 0.33622... < \alpha$, the above identity yields the bounds

$$\alpha^{n-3} < T_n < \alpha^{n+2} \quad \text{for all } n \ge 1.$$

The Fibonacci and Tribonacci numbers can also be computed using the generating functions

(2.3)
$$\frac{z}{1-z-z^2} = 1+z+2z^2+3z^3+5z^4+8z^5+13z^6+21z^7+34z^8+\dots,$$

(2.4)
$$\frac{z}{1-z-z^2-z^3} = 1+z+2z^2+4z^3+7z^4+13z^5+24z^6+44z^7+81z^8+\dots$$

In order to prove Theorem 1, we will use a lower bound for a linear form in three logarithms $\dot{a} \ la \ Baker$ and such a bound was given by the following result of Matveev [30].

Lemma 1. Let $\alpha_1, \alpha_2, \alpha_3$ be real algebraic numbers and let b_1, b_2, b_3 be nonzero rational numbers. Define

$$\Lambda = b_1 \log \alpha_1 + b_2 \log \alpha_2 + b_3 \log \alpha_3.$$

Let D be the degree of the number field $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ over \mathbb{Q} and let A_1, A_2, A_3 be positive real numbers which satisfy

$$A_j \ge \max\{Dh(\alpha_j), |\log \alpha_j|, 0.16\}$$
 for $j = 1, 2, 3$.

Assume that

$$B \ge \max\left\{1, \max\{|b_j|A_j/A_1; \ 1 \le j \le 3\}\right\}.$$

406

Define also

$$C = 6750000 \cdot e^4 (20.2 + \log(3^{5.5}D^2 \log(eD))).$$

If $\Lambda \neq 0$, then

$$\log |\Lambda| \ge -CD^2 A_1 A_2 A_3 \log(1.5 eDB \log(eD)).$$

As usual, in the above statement, the *logarithmic height* of an s-degree algebraic number α is defined as

$$h(\alpha) = \frac{1}{s} \left(\log |a| + \sum_{j=1}^{s} \log \max\{1, |\alpha^{(j)}|\} \right),$$

where a is the leading coefficient of the minimal polynomial of α (over \mathbb{Z}), $(\alpha^{(j)})_{1 \leq j \leq s}$ are the conjugates of α and, as usual, the absolute value of the complex number z = a + bi is $|z| = \sqrt{a^2 + b^2}$.

After finding an upper bound on n which is generally too large, the next step is to reduce it. For that, we need a variant of the famous Baker-Davenport lemma, which is due to Dujella and Pethö [6]. For a real number x, we use $||x|| = \min\{|x-n|: n \in \mathbb{N}\} = |x-\text{Round}[x]|$ for the distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive integer. Let p/q be a convergent of the continued fraction expansion of γ such that q > 6M and let $\varepsilon = \|\mu q\| - M \|\gamma q\|$, where μ is a real number. If $\varepsilon > 0$, then there is no solution to the inequality

$$0 < m\gamma - n + \mu < AB^{-m}$$

in positive integers m, n with

$$\frac{\log(Aq/\varepsilon)}{\log B} \leqslant m < M.$$

See Lemma 5, a) in [6]. Now, we are ready to deal with the proofs of our results.

3. The proof of Theorem 1

3.1. Finding a bound on n. By Binet's formulae (2.1) and (2.2) we get

$$\frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}} = \frac{\alpha^m}{\alpha'} + \frac{\beta^m}{\beta'} + \frac{\gamma^m}{\gamma'}.$$

Let us denote by α' , β' , γ' the values of $Q(x) = -x^2 + 4x - 1$ at $x = \alpha, \beta, \gamma$, respectively. By (2.2) and equation (1.2), we have

$$\frac{\varphi^n}{\sqrt{5}} - \frac{\alpha^m}{\alpha'} = \frac{(-1)^n \varphi^{-n}}{\sqrt{5}} + \frac{\beta^m}{\beta'} + \frac{\gamma^m}{\gamma'}, \ m, n \ge 1.$$

More precisely,

(3.1)
$$\left|\frac{\varphi^n}{\sqrt{5}} - \frac{\alpha^m}{\alpha'}\right| \leqslant \left|\frac{\varphi^{-1}}{\sqrt{5}}\right| + 2\left|\frac{\beta}{\beta'}\right| < 0.67 \text{ for any } m, n \ge 1$$

where in the last inequality we have used $|\beta| = |\gamma| = 0.73735...$ and $|\beta'| = |\gamma'| = 3.84631...$

Define

$$\Lambda = \Lambda(m, n) = m \log \alpha - n \log \varphi + \log \left(\frac{\sqrt{5}}{\alpha'}\right).$$

Then

$$\Lambda = \log\left(\frac{\alpha^m \varphi^{-n} \sqrt{5}}{\alpha'}\right),\,$$

which yields

$$|\mathbf{e}^{\Lambda} - 1| = \left| \frac{\alpha^m \varphi^{-n} \sqrt{5}}{\alpha'} - 1 \right|.$$

On the other hand, from (3.1) we get

$$\left|\varphi^n - \frac{\alpha^m \sqrt{5}}{\alpha'}\right| < 0.67 \cdot \sqrt{5} < 1.5.$$

Hence

$$|\mathbf{e}^{\Lambda} - 1| = \frac{1}{\varphi^n} \left| \varphi^n - \frac{\alpha^m \sqrt{5}}{\alpha'} \right| < \frac{1.5}{\varphi^n}.$$

Since $\varphi = 1.61803...$, we have $1.5/\varphi^n < \varphi^{-n+1}$ and then

$$|\mathbf{e}^{\Lambda} - 1| < \varphi^{-n+1}.$$

408

We claim that $\Lambda \neq 0$. In fact, towards a contradiction, suppose that $\Lambda = 0$ and thus $\alpha^m \sqrt{5}/\alpha' = \varphi^n$. Therefore α^{2m}/α'^2 is a quadratic algebraic number. However $\alpha^{2m}/\alpha'^2 \in \mathbb{Q}(\alpha)$ which is absurd, because α is a 3-degree algebraic number.

If $\Lambda > 0$, then $\Lambda < e^{\Lambda} - 1 < \varphi^{-n+2}$ (see (3.2)). If $\Lambda < 0$, then $1 - e^{-|\Lambda|} = |e^{\Lambda} - 1| < \varphi^{-n+2}$. Thus, for $\Lambda < 0$, we get

$$|\Lambda| < e^{|\Lambda|} - 1 < \frac{\varphi^{-n+1}}{1 - \varphi^{-n+1}} < \varphi^{-n+2},$$

where we have used the fact that $1 - \varphi^{-n+1} > 1/\varphi$ for all n > 3.

Hence, we have $|\Lambda| < \varphi^{-n+2}$ for any $\Lambda \neq 0$, which yields

$$\log |\Lambda| < -(n-2)\log \varphi.$$

Now, we will apply Lemma 1. Take

$$\alpha_1 = \alpha, \ \alpha_2 = \varphi, \ \alpha_3 = \sqrt{5}/\alpha', \ b_1 = m, \ b_2 = -n, \ b_3 = 1.$$

Then $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) = \mathbb{Q}(\alpha, \varphi)$, D = 6 and $C < 1.2 \cdot 10^{10}$.

It is easy to verify that $1/\alpha'$ is a root of $44x^3 - 2x - 1$ and that $\sqrt{5}/\alpha'$ is a root of $1936x^6 - 880x^4 + 100x^2 - 125$. Since $\sqrt{5}/\alpha'$ is a 6-degree algebraic number, its minimal polynomial (over \mathbb{Z}) is $1936x^6 - 880x^4 + 100x^2 - 125$. Using direct calculation, we verify that the absolute value of every root of the minimal polynomial is less than 1. Hence $h(\alpha_3) < (\log 1936)/6 < 1.262$. Next, we have $h(\alpha_1) = (\log \alpha)/3 = 0.204$ and $h(\alpha_2) = (\log \varphi)/2 < 0.241$. We then take $A_1 = 1.22$, $A_2 = 1.45$ and $A_3 = 7.58$. Since (1.2) implies n > m, we have

$$\max\left\{1, \max\{|b_j|A_j/A_1; \ 1 \le j \le 3\}\right\} = \max\{m, 1.2n\} = 1.2n =: B.$$

Hence, Lemma 1 yields

(3.4)
$$\log |\Lambda| > -6.8 \cdot 10^{12} \log(82n).$$

Combining the estimates (3.3) and (3.4), we get

$$6.8 \cdot 10^{12} \log(82n) > (n-2) \log \varphi,$$

and this inequality implies $n < 6 \cdot 10^{14}$ and, by the trivial estimate m < n, we have $m < 6 \cdot 10^{14}$. In order to improve the estimates, we use the bounds on F_n and T_m together with Equation (1.2) to obtain $\alpha^{m-3} < T_m = F_n < \varphi^{n-1}$, which yields

m < 0.8n+2.2. Hence, $m < 4.8 \cdot 10^{14}.$ Similarly, $\varphi^{n-2} < F_n = T_m < \alpha^{m+2}$ yields n < 1.3m+4.6.

3.2. Reducing the bound. The next goal is to reduce the bound on m. For that, let us suppose, without loss of generality, that $\Lambda > 0$ (the other case can be handled in a similar way by considering $0 < \Lambda' = -\Lambda$).

We know that $0 < \Lambda < \varphi^{-n+2}$ and therefore

$$0 < m \log \alpha - n \log \varphi + \log \left(\frac{\sqrt{5}}{\alpha'}\right) < \varphi^{-m+2}.$$

Dividing by $\log \varphi$, we get

$$(3.5) \qquad \qquad 0 < m\widehat{\gamma} - n + \mu < 5.45 \cdot \varphi^{-m}$$

with $\widehat{\gamma} = \log \alpha / \log \varphi$ and $\mu = \log(\sqrt{5}/\alpha') / \log \varphi$.

Surely $\hat{\gamma}$ is an irrational number (actually, this number is transcendental by the Gelfond-Schneider theorem: if α and β are algebraic numbers with $\alpha \neq 0$ or 1, and β is irrational, then α^{β} is transcendental). So, let us denote by p_n/q_n the *n*th convergent of its continued fraction.

In order to reduce our bound on m, we will use Lemma 2. For that, taking $M = 4.8 \cdot 10^{14}$, we have that

$$\frac{p_{33}}{q_{33}} = \frac{53739149317980067}{42436582738078750},$$

and then $q_{33} > 6M$. Moreover, we get

$$\|\mu q_{33}\| - M\|\widehat{\gamma} q_{33}\| > 0.028 =: \varepsilon.$$

Thus all the hypotheses of Lemma 2 are satisfied and we take A = 5.45 and $B = \varphi$. It follows from Lemma 2 that there is no solution of the inequality in (3.5) (and then for the Diophantine equation (1.2)) in the range

$$\left[\left\lfloor\frac{\log(Aq_{33}/\varepsilon)}{\log B}\right\rfloor + 1, M\right] = [91, 4.8 \cdot 10^{14}].$$

Therefore $m \leq 90$ and then $n \leq 120$. To conclude, we use the formulas in (2.3) and (2.4) together with the Mathematica command

$$\label{eq:coefficientList} \begin{split} \texttt{Intersection} \, [\texttt{CoefficientList} \, [\texttt{Series}[x/(1-x-x^2),x,0,120],x] \, \texttt{,} \\ \texttt{CoefficientList} \, [\texttt{Series}[x/(1-x-x^2-x^3),x,0,90],x]] \end{split}$$

to find the possible solutions. Fastly, Mathematica returns us the set $\{0, 1, 2, 13\}$ as its answer. This completes the proof.

4. FINAL REMARKS AND A CONJECTURE

We point out that the method in proof of Theorem 1 is quite general and that it can be used to work on the intersection of two arbitrary k-generalized Fibonacci sequences. In fact, in a similar fashion, we found the set $F^{(k)} \cap F^{(m)}$ for $4 \leq k < m \leq 10$. These cases suggest that the following statement (which is Conjecture 1 in [32]) should be true.

Conjecture 1. Let k < m be positive integer numbers. Then

$$F^{(k)} \cap F^{(m)} = \begin{cases} \{0, 1, 2, 13\}, & \text{if } (k, m) = (2, 3), \\ \{0, 1, 2, 4, 504\}, & \text{if } (k, m) = (3, 7), \\ \{0, 1, 2, 8\}, & \text{if } k = 2 \text{ and } m > 3, \\ \{0, 1, 2, \dots, 2^{k-1}\}, & \text{otherwise.} \end{cases}$$

When working on these cases it may be helpful that the polynomials $\psi_k(x) := x^k - x^{k-1} - \ldots - x - 1$ are irreducible over $\mathbb{Q}[x]$ with just one zero outside the unit circle. That single zero is located between $2(1 - 2^{-k})$ and 2 (as seen in [39]). Also, in a recent paper, G. Dresden [7, Theorem 1] gave a simplified "Binet-like" formula for $F_n^{(k)}$:

$$F_n^{(k)} = \sum_{i=1}^k \frac{\alpha_i - 1}{2 + (k+1)(\alpha_i - 2)} \,\alpha_i^{n-1}$$

for $\alpha_1, \ldots, \alpha_k$ being the roots of $\psi_k(x) = 0$. There are many other ways of representing these k-generalized Fibonacci numbers, as can be seen in [10], [11], [12], [14], [15]. Also, it was proved in [7, Theorem 2] that

$$F_n^{(k)} = \operatorname{Round}\left[\frac{\alpha - 1}{2 + (k+1)(\alpha - 2)} \alpha^{n-1}\right],$$

where α is the dominant root of $\psi_k(x)$.

A c k n o w l e d g e m e n t. The author would like to express his gratitude to the anonymous referee for carefully examining this paper and providing a number of important comments and suggestions. He is also grateful to Gregory Dresden for nice talks on the subject. The author is financially supported by CNPq and FEMAT.

References

- [1] M. Agronomof: Sur une suite récurrente. Mathesis 4 (1914), 125–126. (In French.)
- [2] M. A. Alekseyev: On the intersections of Fibonacci, Pell, and Lucas numbers. Integers 11 (2011), 239–259.
- [3] G. Back, M. Caragiu: The greatest prime factor and recurrent sequences. Fibonacci Q. 48 (2010), 358–362.
 zbl
- [4] Y. Bugeaud, M. Mignotte, S. Siksek: Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers. Ann. Math. 163 (2006), 969–1018.
- [5] D. Carroll, E. T. Jacobson, L. Somer: Distribution of two-term recurrence sequences mod p^e. Fibonacci Q. 32 (1994), 260–265.
- [6] A. Dujella, A. Pethö: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II Ser. 49 (1998), 291–306.
- [7] G. P. Dresden: A simplified Binet formula for k-generalized Fibonacci numbers. Preprint, arXiv:0905.0304v1.
- [8] P. Erdös, J. L. Selfridge: The product of consecutive integers is never a power. Illinois J. Math. 19 (1975), 292–301.
- [9] M. Feinberg: Fibonacci-Tribonacci. Fibonacci Q. 1 (1963), 71–74.
- [10] D. E. Ferguson: An expression for generalized Fibonacci numbers. Fibonacci Q. 4 (1966), 270–273.
- [11] I. Flores: Direct calculation of k-generalized Fibonacci numbers. Fibonacci Q. 5 (1967), 259–266.

 \mathbf{zbl}

 $^{\mathrm{zbl}}$

 \mathbf{zbl}

- [12] H. Gabai: Generalized Fibonacci k-sequences. Fibonacci Q. 8 (1970), 31–38.
- [13] E. T. Jacobson: Distribution of the Fibonacci numbers mod 2^k. Fibonacci Q. 30 (1992), 211–215.
- [14] D. Kalman: Generalized Fibonacci numbers by matrix methods. Fibonacci Q. 20 (1982), 73–76.
- [15] D. Kessler, J. Schiff: A combinatoric proof and generalization of Ferguson's formula for k-generalized Fibonacci numbers. Fibonacci Q. 42 (2004), 266–273.
- [16] J. Klaška: Tribonacci modulo p^t. Math. Bohem. 133 (2008), 267–288.
- [17] J. Klaška: Tribonacci modulo 2^t and 11^t . Math. Bohem. 133 (2008), 377–387.
- [18] J. Klaška: A search for Tribonacci-Wieferich primes. Acta Math. Univ. Ostrav. 16 (2008), 15–20.
 zbl
- [19] J. Klaška: On Tribonacci-Wieferich primes. Fibonacci Q. 46/47 (2008/09), 290–297.
- [20] J. Klaška: Tribonacci partition formulas modulo m. Acta Math. Sin. (Engl. Ser.) 26 (2010), 465–476.
 zbl
- [21] J. Klaška, L. Skula: The cubic character of the Tribonacci roots. Fibonacci Q. 48 (2010), 21–28.
- [22] J. Klaška, L. Skula: Periods of the Tribonacci sequence modulo a prime $p \equiv 1 \pmod{3}$. Fibonacci Q. 48 (2010), 228–235.
- [23] J. Klaška, L. Skula: A note on the cubic characters of Tribonacci roots. Fibonacci Q. 48 (2010), 324–326.
 zbl
- [24] P. Y. Lin: De Moivre-type identities for the Tribonacci numbers. Fibonacci Q. 26 (1988), 131–134.
- [25] F. Luca: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2000), 243–254.
 zbl
- [26] F. Luca: Products of factorials in binary recurrence sequences. Rocky Mountain J. Math. 29 (1999), 1387–1411.

[27]	F. Luca, D. Marques: Perfect powers in the summatory function of the power tower. J.
	Théor. Nombres Bordx. 22 (2010), 703–718. Zbl
[28]	D. Marques, A. Togbé: Perfect powers among C-nomial coefficients. C. R. Acad. Sci.
	Paris I 348 (2010), 717–720.
[29]	D. Marques, A. Togbé: On terms of linear recurrence sequences with only one distinct
	block of digits. Colloq. Math. 124 (2011), 145–155.
[30]	E. M. Matveev: An explicit lower bound for a homogeneous rational linear form in loga-
	rithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217–1269; translation from Izv.
	Ross. Akad. Nauk, Ser. Mat. 64 (2000), 1217–1269.
[31]	
	Comput. Sci. 7 (1978), 117–121. (In French.) zbl
[32]	T. D. Noe, J. V. Post: Primes in Fibonacci n-step and Lucas n-step sequences. J. Integer
	Seq. 8 (2005).
[33]	A. Pethö: Fifteen problems in number theory. Acta Univ. Sapientiae Math. 2 (2010),
	72–83.
[34]	H. P. Schlickewei, W. M. Schmidt: Linear equations in members of recurrence sequences.
	Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 20 (1993), 219–246.
[35]	H. P. Schlickewei, W. M. Schmidt: The intersection of recurrence sequences. Acta Arith.
	72 (1995), 1–44. zbl
[36]	W. R. Spickerman: Binet's formula for the Tribonacci sequence. Fibonacci Q. 20 (1982),
	118–120. Zbl
[37]	S. K. Stein: The intersection of Fibonacci sequences. Michigan Math. J. 9 (1962),
	399–402.
[38]	E. M. Waddill: Some properties of a generalized Fibonacci sequence modulo m. Fi-
	bonacci Q. 16 (1978), 344–353.
[39]	•
[00]	129–145. zbl

Author's address: Diego Marques, University of Brasilia, CEP: 70910-900, Brasilia, Brazil, e-mail: diego@mat.unb.br.