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0. INTRODUCTION

The relations dealt with in the paper are considered in the general sense as systems
of maps. More precisely, by a relation we understand a subset R C G¥, where G, H
are sets and G¥ denotes the set of all maps of H into G. G and H are called
the carrier and the index set of R, respectively. Relations with well-ordered index
sets, the so-called relations of type «, are studied in [8], while relations with general
index sets are studied in [9], [10], [5], [6] and [11]. In this paper, the fundamental
concepts concerning binary and ternary relations are extended to general relations
and discussed.

We denote by N the set of all positive integers, for any n € N we denote (n] =
{m € N; m < n}. In the case of a finite set H of cardinality k¥ we will not distinguish
between maps of the set H into the set G and k-tuples of elements of the set G. For
any n € N we denote by S, the set of all permutations of the set (n]; id denotes the
identical permutation of the set (n].

For any map f: H — G and any subset K C H, we denote by f|x the restriction
of f to K. The abbreviation w.r.t. will be written instead of the phrase “with respect

k2
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1. OPERATIONS WITH RELATIONS

1.1. Definition. Let n € N, let H be a set. Then the pair K = ({K; ?jll,
{@i}"= 1) is called an n-decomposition of the set H if {K;}7H! is a sequence of n 41
sets satisfying

n+1

(1) U Ki=H,

i=1

(2) KinK;j =0 forall 4,5 € (n+1],i#j,

(3) card K; = card K; forall i,j € (n], and {¢;}7=}" is a sequence of n — 1
bijections such that ;: K; — K;41 for all ¢ € (n — 1].

1.2. Remark. The concept of an n-decomposition is used here and in [5] in

different meanings.

1.3. Definition. Let G,H be sets, let K = ({K;}', {p:}7"=') be an n-
decomposition of the set H. Then the relation

Ex={feG"; f

Ki:f

Kip 0@ forallie (n—1]}

is called the diagonal w.r.t. K.

14. Remark. Let K = ({K;}", {p:}7") be an n-decomposition of the set .

1=1>

If K,.1 = H or n = 1, then, obviously, Ex = G*.

1.5. Definition. Let R C G be a relation, let K = ({K;}7}!, {0:}7=') be an
n-decomposition of the set H, 1) € S,,. Then we define the relation Rx , C GH by
R}cﬂp:{fEGH; JgeR:

fle, = 9lk;, fie(n], i=¢@E)ori=n+1,

flx, = g|K¢(i) O Pyp(i)—1 O -+ O i,
9K, :f|Ku:(i) O<Pw(i)71°~-~o</7i if i€ (’I’L],Z<¢(Z),
f|Ku;(i) =9|K; ©¥i—-10...0 9%(07

9|K¢(z‘) = flg, opi—10...0pyu if i€ (n],i> (i)}

Then Ri y is called the (K, ¢)-modification of the relation R.

1.6. Remark. Let R C G be a relation, let K = ({K;}™, {¢:}7') be an
n-decomposition of the set H, ¢ € S,,. Clearly, then
(1) R]C,id = Ra

(2) (Z);c,w = 0.
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1.7. Example. Let R C GY be a relation, H = {1,2} (i.e. R is binary),
K = ({Ki}3 1, {e1}), K1 = {1}, K2 = {2}, let ¥ be the permutation of the set
(2] defined by v(1) = 2,%(2) = 1. Then Rk, = R~'. Hence, in this case, the
(K, 9)-modification of a binary relation coincides with its standard inverse.

1.8. Definition. Let Ry,..., R, C G be relations, K = ({K;}!"}!, {03}
be an n-decomposition of the set H. Then we define the relation (Ry ... R,)x C GH
by (Ri...R)k={fe€G”; 3 f,€R; forall ic (n]such that

flx, = filk, forall € (n],

f|Kn+1 = fi Kpi1

filk, opj—10...0p; = fj|lk, forall i,j€(n],i<j}.

for all i€ (n],

(R;...Ry)k is called the composition of Ry, ..., R, w.r.t. K.

1.9. Definition. Let R C G be a relation, let X be an n-decomposition of
the set H. Then we put Rx! = R, Rx?2 = (R...R)x, Rc™ = (Rc™ 'R...R)x U
(RRc™'R...R)cU...U(R...R Rc™ ) for any m € Nym > 3. R is called
the m-th power of R w.r.t. IC.

1.10. Example. Let Ry, Ry C G be relations, H = {1,2} (i.e. Ry, Ry are
binary), K = ({K;}3_1, {¥1}), K1 = {1}, K2 = {2}. Then (R1 R2)x = R1R». Hence,
in this case, the composition w.r.t. K coincides with the standard composition of

binary relations.

1.11. Remark. Let Ry,..., R, C G¥ be relations, let K = ({K;}""}, {¢}'})
be an n-decomposition of the set H. If K,, 11 = H, (R; ... R,)x # 0, then, evidently,

n
there exists an f € [ R;.
i=1

1.12. Notation. Let H be a set, let K = ({K;}", {p:}7') be an n-
decomposition of the set H. Then K* = ({ K}, {17 1) is the n-decomposition
of the set H defined by

Kiy1 forall i€ (n-—1)
K'=¢ K, for i=n,

7

Kpy1 for i=n+1,

. { Vi1 forall i€ (n—2],
¥ =

orlo...opt for i=n—1.
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Further, for any ¢ € S,,, ¥* denotes the permutation of (n] defined by

Yi+1)—1 if ie(n—1],9G+1)#1,
(i) = ¥(1) -1 if i=n9(1)#1

n otherwise.

1.13. Proposition. Let R, R1,..., R, C G be relations, K an n-decomposition
of H, let ¢ € S,,,m € N. Then
n\tlrfn/es
(2) Ex = Ex~.
(3) RIC o = RIC* -
(4) (R1...Ry)c = (R2... RpRa)-
(5) R,C = Ri"..

2

Proof is obvious.

1.14. Definition. Let R C G¥ be a relation, let /C be an n-decomposition of the
set H,1p € S,,. Then we put Ry ,, = Ry, RE ;= (R%;pl),C » forany m € N,m > 2.

1.15. Remark. If R C G¥ is a relation, K = ({K; ;fll,{npi}?:_ll) an n-
decomposition of the set H, ¢, x € S,, then (Ri ) N Ry oy need not hold in
general.

If, for example, n = 3,K; = {1,2}, Ko = {3,4},K3 = {5,6},K4 = 0, G =
{z.y,2} @1(1) = 3, 91(2) = 4, ¥2(3) = 5, v2(4) = 6, ¥(1) = 1, ¥(2) = 3,
PE3) =2, x(1) =2, x(2) =3, xB) = 1, R = {(z,y,2,2,9,2)}, then Ry =
{(x,y,y,2,2,2)}, (Rew)i, = 0, while Re yoy = {(y, 2, 2,2, 2,9)}.

1.16. Proposition. Let J be a nonempty set, let R, R1,..., R, R},,..., R, T,T;
for all j € J be relations with the carrier G and the index set H. Let K be an n-
decomposition of the set H, i) € S,,. Let k € (n],m € N. Then

(1) Bx = (Ex)xy = (B

(2) (Bx...ExRE.. 'E’C)IC CR.

T k-th place
(3) If R C Ex, then (2) becomes the equality.
(4) R C T implies Ry C Tic -
(5) (U Tj);c,w = U (Tj);c,w'
JjeJ JjEJ
©) (N Tew = N (T
JjeJ JjEJ
(7) R; C R} foralli e (n] imply (Ry...Ry) € (Ry...R},)i-
(8) R C T implies R C T
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Proof. The assertions follow directly from the definitions of the operations.
For example, let us prove (2) and (3). Suppose that K = ({KC;}77, {@i} 7).

(2) Let f € (Ex ... ExREx ... Ex). Then there exist f; € FEx for all i € (n],i #
T k-th place

k, and an fr € R such that

f|Kn+l = fl

fi|KjOg0j_1O...Og0i:fj|Ki for all Z,]E(?’l],Z<]

k; forall i€ (n],

K, forall ie(n],

We have f|k, = fk|Kk,f|Kn+1 = fk|Kn+1~ Let i € (n],7 < k. Then flk, = f;
filk, © ok—10...09; = fr|lk,. Let i € (n],i > k. Then f|x, = f;
flr;0pi—10...opk = filk, 0pi—10...00k = filk, = fulk, 0pi—10...0¢k. Thus,
again, f|k, = fx|k,- We obtain f = fi € R.

(3) Let f € RC Ex. Put fr = f, filk, = f
Further, put

fi|Kj = {;

Then f; € Ex for all i € (n] and f; € R. For any i,j € (n],7 < j, we have

K,, hence

Ki’fi|Kn+l = f|Kn+1 for all ¢ € (n]

K, ©Pi—10...0; for all 4,5 € (n],i > j,

K, 0@ to...opty forall i,j€ (n]i<j.

filk,0@0j—10...00; = flk, = flx; opj_10...00i = fj|Kk;,
so that

fe (EIC~-~EICREIC~-~EIC);C-
T k-th place

1.17. Remark. In 1.16, part (2), the inclusion cannot be replaced by the equality
unless R C Ex. If, for example, n = 3, K1 = {1,2}, Ko = {3,4}, K3 = {5,6}, K4 =
0, G = {2y}, p1(1) = 3, 1(2) = 4, ¢2(3) = 5, ¢2(4) = 6, R = {(z,2,2,2,,2)},
then (z,z,z,2,y,2) ¢ (ExR Ex)-

1.18. Definition. Let R C G¥ be a relation, K an n-decomposition of the set
H, let ¢ € S, be the permutation defined by

_ i+1 forall ie(n-1],
(i) =
1 for i=n.

Then we define 'Rx = R, "R = (" 'Ri) for any m € N, m > 2. ™Ry is
called the m-th cyclic transposition of R w.r.t. K.
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1.19. Proposition. Let R C G be a relation, K an n-decomposition of the set
H. Then

(1) 'R = 'Ry~
(2) Ex ='(Ex)x-
Proof. (1) follows from the fact that 7* = 7. (2) follows from 1.16 (1). O

1.20. Proposition. Let J be a nonempty set, R, T, T; for all j € J relations
with the carrier G and the index set H. Let KC be an n-decomposition of the set H.
Then
(1) RCT implies 'Ri C'Tx.

@) (U T)e = UMD
jeJ icJ

JE
3) "N T = N (T
j€J jed
Proof. The assertions follow from 1.16 (4), (5), and (6). O

2. PROPERTIES OF RELATIONS

2.1. Definition. Let R C G be a relation, £ = ({K;}""}!, {p:}"=}!) an n-
decomposition of the set H, 1) € S,,. Then R is called

(1) reflexive (irreflexive) w.r.t. K if Ex C R (RN Ex = 0),

(2) symmetric (assymmetric, antisymmetric) w.r.t. K and ¢ if R € R (RN
Ry = 0, RN Ric,y C E;C),

(3) transitive (atransitive) w.r.t. K if RZ C R (RN R =0 for any m € N,m > 2),

(4) complete w.r.t. K if f € GH, f|k, # flr;0pj—10...0¢;foralli,je (n],i<j
imply the existence of a x € S,, such that f € Ry .

2.2. Proposition. Let J be a nonempty set, jo € J. Let R,Ry,...,R,,T;
for all j € J be relations with the carrier G and the index set H. Let K be an
n-decomposition of the set H, v € S,,. Then

(1) IfT}, is reflexive w.r.t. IC, then |J T} is reflexive w.r.t. K.
jeJ
(2) If R,Ry,...,R,, and Tj for all j € J are reflexive w.r.t. KC, then (\ T}, R,y
JjeJ
and (Ry ... Ry), are reflexive w.r.t. K.

(3) If R and T for all j € J are irreflexive (symmetric) w.r.t. I (and 1), then

T;, T; and Ri , have the same property.
J J P
jeJ = jeJ
4) IfT; for all j € J are transitive w.r.t. K, then T; is transitive w.r.t. K.
J VL
J
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(5) If T}, is atransitive (assymmetric, antisymmetric) w.r.t. K (and 1), then () T}
JjeJ

has the same property.

(6) If R is asymmetric (antisymmetric) w.r.t. K and v, then Rx , has the same
property.

(7) IfTj, is complete w.r.t. K, then |J T} is complete w.r.t. K.

jEJ
Proof. The assertion (1) is evident, the others follow from 1.6 (2), 1.16 (1),
(4)—(6), and (8). O

2.3. Remark. Let R C G¥ be a relation, K an n-decomposition of H, let
1 € S,. It can be easily obtained from 2.2 (3) by induction that if R is symmetric
w.r.t. K and ¢, then R{'H! C Ry, for any m € N,

2.4. Proposition. Let R C G be a relation, K an n-decomposition of the set
H, let ¢ € S,,. Then:
(1) If R is reflexive (irreflexive, transitive, atransitive, complete) w.r.t. K, then it
has the same property w.r.t. K*.
(2) If R is symmetric (asymmetric, antisymmetric) w.r.t. C and v, then it has the
same property w.r.t. K* and ¢*.

Proof. The assertions follow from 1.13 (2), (3), and (5). O

2.5. Definition. Let R C G¥ be a relation, X an n-decomposition of the set H.
Then R is called

(1) cyclic (acyclic, anticyclic) w.r.t. K if it is symmetric (asymmetric, antisymmet-
ric) w.r.t. K and 7,

(2) symmetric (asymmetric, antisymmetric) w.r.t. K if it is symmetric w.r.t. X and
¢ for any ¢ € S, (asymmetric, antisymmetric w.r.t. K and ¢ for any odd
permutation i € S,,).

2.6. Proposition. Let J be a nonempty set, jo € J. Let R, T; for all j € J be
relations with the carrier G and the index set H. Let K be an n-decomposition of
the set H, 1) € S,,. Then:

(1) If R and Tj for all j € J are cyclic w.r.t. K, then |J T;, () Tj and 'Rx are
je€s T jed
cyclic w.r.t. K.
(2) IfT; for all j € J are symmetric w.r.t. K, then |J Tj and () T; are symmetric

jeJ jeJ
w.r.t. IC.
(3) If R and T}, are acyclic (anticyclic) w.r.t. K, then () T; and * R have the same
JET
property.
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(4) IfT}, is asymmetric (antisymmetric) w.r.t. K, then (1 T; has the same property.
JjeJ
(5) If R is complete w.r.t. KC, then ' Rx is complete w.r.t. K.

Proof. The assertions follow from 2.2 (3), (5), and (6). O

2.7. Remark. Let R C G¥ be a relation, K an n-decomposition of the set H.
Putting 1) = 7 in 2.3, we obtain that if R is cyclic w.r.t. K, then ™! R C ™Ry for
any m € N.

2.8. Proposition. Let R C G be a relation, K an n-decomposition of the set H.
If R has any of the properties defined in 2.5 w.r.t. JC, then it has the same property
w.r.t. K*.

Proof. The proposition follows from 2.4 (2) and from the facts that 7* = 7
and {v*; Y € S,} = S,. O

3. HULLS OF RELATIONS

3.1. Definition. Let R C G be a relation, K an n-decomposition of the set H,
¥ € S,. Let (p) be any of the properties defined in 2.1 or 2.5. A relation Q C G¥
is called the (p)-hull of R w.r.t. K (and o) if

(1) RCQ,

(2) @ has the property (p),

(3) if T C GH is any relation having the property (p) and such that R C T, then
QCT.

3.2. Remark. Let R C G be a relation, K an n-decomposition of the set H,
1 € S,. Let (p) be any of the properties defined in 2.1 or 2.5. Obviously, then R
has the property (p) w.r.t. K (and ¢) if and only if the (p)-hull @ of R w.r.t. £ (and
1) exists and R = Q.

3.3. Proposition. Let R,T C G¥ be relations, K an n-decomposition of the set
H, ¢ € S,. Let (p) be any of the properties defined in 2.1 or 2.5, R ) (T(p) ))

K(w) UK(w

the (p)-hull of R(T) w.r.t. K (and ). Then R C T implies R} ., C T .
Proof. Let RCT. Wehave 7' C T . Thus RC T . As T | has the

property (p), we obtain R,(é)(),w) - T’(C]E),w)' O

3.4. Definition. Let R C G¥ be a relation, X an n-decomposition of the set H.
Then we define 1Rx = R, R =m-1 R U (m,lR;g),?C for any m € Nym > 2.
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3.5. Remark. Let R C G¥ be a relation, K an n-decomposition of the set H.
Clearly, then ,, R C 41 R for any m € N.

3.6. Proposition. Let R C G¥ be a relation, K an n-decomposition of the set
H. Let ¢ € S,,. Then the fo]lowing relations exist:
(1) the reflexive hull R ") of R w.r.t. K and we have R " = RU Ex,

(2) the symmetric hull R(S)w of R w.r.t. K and ¢ and we have R,(é)w =RU U R b

(3) the transitive hull R®) of R w.r.t. K and we have R,(é) U iRic.

Proof. (1) is evident.
(2) Put @ = RU U R;cw- Clearly, then R C . We have Qx,y = (RU

U chw) Ko = Ricp U U R;gr}p = U Ricw C @ by 1.16 (5) and @ is symmetric
w.r.t. K and ¢. Further, let TCGH be symmetric w.r.t. IC and ¢ and let R CT. By
virtue of 1.16 (4) and using induction we obtain @ = RU U R, C TUiL:Jl TeywCT
due to 2.3.

(3) Put Q = U iRic. Clearly R= 1R C Q. Let f € Q,C Then there exists an

fi € Q for eachze( ] (n], flKner = filk,y, for

each i € (n], filx;, opj—10...00; = f; (n],i < j. For each i € (n]

there exists a j; € N such that f; € ;, Rc. Hence it follows that f € (j, Ri .. .;, Ric) -

Denote jo = max{ji,...,jn} By 3.5, we have jiR;g Cj, Ry for all ¢ € (n]. By 1.16

(7), f € GoRi - - -jo Rc)xe =jo RE C jo+1Rk C U iR = Q. Thus Q% C Q and Q is
=1

transitive w.r.t. K. Let T C G be transitive w.r.t. JC and such that R C T. It is easy

to prove by induction that ;Rx C T for any ¢ € N. Hence Q= | ;R C U T =T

i=1 i=1

and we have R( ) = =Q. O

3.7. Proposition. Let R C G be a relation, K an n-decomposition of the set
H,y €S,. Then:
(1) If R is complete (symmetric, antisymmetric) w.r.t. K (and ), then R,(g) has
the same property.

(2) If n < 2 and R is transitive w.r.t. K, then R;c is transitive w.r.t. K.
(3) IfR isreflexive (irreflexive, complete) w.r.t. K, then R,(é)w has the same property.

(4) If R is reflexive (complete) w.r.t. KC, then R,(é) has the same property.

Proof. (1) follows from 1.16 (1), (5), 2.2 (3), (7), and 3.6 (1).
(2) Let n < 2 and let R be transitive w.r.t. K. Then R C R. The case of n =1
is trivial. Let n = 2. Let f € (R(r)),C = (RUE;C) (by 3.6 (1)). Then there exist
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f1, f2 € RU Ex such that f|x, = filk,, flk, = faolrs, flxs = filks = falks, filk, ©
¢1 = folk, If f1,fo € R, then f € (RR) = R2 C R C R, If f1, f» € Fx,
then, by 1.16 (1), f € (ExEx)c = (Bx)s = Br C R". If i € R, f, € Ex,
then flx, = filk:, flxs = folks = folky 007" = filkss flks = filk,. Hence
f=fieRC R(T The case of f; € Ex, fo € R is analogous. Thus (R(T)) C R(r
and ch) is transitive w.r.t. K.

(3) and (4) follow from 1.14, 1.16 (1), (2), (4), (6), 3.1 (1), 3.4, and 3.6 (2), (3). O

3.8. Corollary. Let R C G be a relation, K an n-decomposition of the set H,
Y € Sp,. Then
(1) (BN = (R
@ RO < (RO,
(3) Ifn < 2, then (R = (RIHY).

Proof. (1) As R C R,(CS) we have, by 3.3, R(r) c (RY );5, and again

; K,
by 3.3, (R(T )i S) - ((R,(Cs)w)(r ) :;} . By 3.7 (1), (Rl(cw) T symmeltprlc w.r.t. K and
1, consequently, by 3.2, ((R(S) )(T))(S (R,(éw)(r . Thus (R ) Ko (R(S ) )
As R C R, we have, by 3.3, RY), C (R{){,, and again by 3.3, (ngfw);g) -
((R,(CT))ES) )g) By 3.7 (3), (Rg))gé?w is reflexive w.r.t. K, consequently, by 3.2,
((R,(CT))S) )rc (R )ICw Thus (R,(é)w)(r (R(T )i S) . Combining the two re-
sults, we obtain (R,(CT))ECS)w = (R(S) )(T)

(2) and (3) follow analogously from 3.3, 3.7 (4), (2), and 3.2. O

3.9. Remark. The inclusion in 3.8 (2) cannot, in general, be replaced by equal-
ity. If, for example, n = 3, K; = {1,2}, Ky = {3,4}, K3 = {5,6}, Ky = 0,
G =A{zy}, 01(1) =3, 1(2) = 4, p2(3) = 5, ¥2(4) = 6, R = {(2,y,2,2,2,9),
(x,y,x,y,y,2)}, then (x,y,z,y,2,y) € Ex C R,(CT), (z,y,xz,xz,2,y) € R C R,(CT),
(z,y,z,y,y,2) € R C R;CT), hence (z,y,z,z,y,x) € (R;CT))2 C (R;g))g), but R =0,
consequently RY — R, and (z,y,x,2,y,2) ¢ RU Ex = R,CT) = (R,(Ct))gé).

3.10. Corollary. Let R C G¥ be a relation, K an n-decomposition of the set H.
Then (RY) = (R

Proof. Similarly as in the proof of 3.8 (1) we get (R );C - ((Rg))gg))%)
By 3.8 (2), (R(t))(r) C (R,(g))gc), consequently, by 3.3 and 3.2, ((R,(é))gé))gé) C
(R = (B s, (R = (RO :

3.11. Proposition. Let R C G¥ be a relation, K an n-decomposition of the set
H. Then the following relations exist:
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(1) the cyclic hull R;é) of R w.r.t. K and we have R,(CC) =RUU ‘R,
i=1

1=

(2) the symmetric hull R;Cd) of R w.r.t. I and we have

oo

d
RI(C) — U U ( .. (RK7¢1)K,¢2 . ')’de’i'
i=111,Y2,...,90;ESn

Proof. (1) As R;CC) = R,(é)ﬂ, we have, by 3.6 (2), RSCC) =RrRUU R;C,‘fr =
i=1

1=

RUU ‘Rg.
i=1
(2) Put Q = U U ("'(RKﬂZJl)’C,d& "')’Cﬂl)i' By 1.6 (1), we have

i=1 41,92, i €Sy
R = Rii C Q. Let £ € 5,,.
oo

By Proposition 1.16 (5), Qx.e = ( U U (... (R’Cﬂbl)lc,du .. ')’C7¢i)IC =
i=141,932,..,0;€Sn ’

(- (R ) - - )i )ke © Q, and @ is symmetric w.r.t. K.
i=111,92,.. 9 €Sn
Now, let R C T where T is symmetric w.r.t. K. Then, by 1.16 (4),

oo

Q

|
3

@
Il
-

U (- (Bicpn ) n - - )i
1111 :w27~~~,wiesn

(o (T )k - e €T

IN
3

.
Il

1 1,9, i €S

Hence @ is the symmetric hull of R w.r.t. K. O

3.12. Proposition. Let R C G be a relation, let K be an n-decomposition of
the set H.
(1) If R is reflexive (irreflexive, complete) w.r.t. K, then R,(Cc) and R,(Cd) have the
same property.
(2) If R is symmetric (antisymmetric) w.r.t. KC, then R;CT) has the same property.

Proof. Let R be reflexive w.r.t. . Then Ex C R. But R C R%),R - R;éi),
hence Ex C R, B C R,(g), and both R,(CC) and R,(Cd) are reflexive w.r.t. K. Let R
be irreflexive w.r.t. K. By 2.2 (3), 1R = Ri  is irreflexive w.r.t. K. It follows by

induction that Ry is irreflexive w.r.t. K for all i € N. By 3.11 (1), R,(CC) = U ‘Rgk.
i=1

Hence, again by 2.2 (3), R,(é) is irreflexive w.r.t. K. The other properties can be
easily verified with the aid of 2.2 (3), 3.11 (2),3.3 (1), and 3.7 (1). O
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3.13. Corollary. Let R C G be a relation, K an n-decomposition of the set H,

(r)y(e) (e)y(r)
g; Eg'&);'ﬁ) ((];'5)))@)

K /K /K -
(3) (BN = (R = 7.
(4) (B = (B = B

Proof. (1) follows from 3.8 (1) for ¢ = .

(2) As R C R,(CT), we have, by 3.3, R;Cd) C (R;g))gg), and again by 3.3, (R,(Cd))gg) -
((R%))%))g). By 3.12 (1), R,(CT))%) is reflexive w.r.t. IC, consequently, by 3.2,
(RUNDYD = (RNYD - Thus (R < (RUND . Similarly, using 3.3, 3.12 (2)
and 3.2, we obtain (R;g))gg) C (R;g))gg), which proves the assertion.

(3) follows from 3.3 and 3.2.

(4) is a special case of (3). O
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