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Abstract. We consider the Fourier transform in the space of Henstock-Kurzweil integrable
functions. We prove that the classical results related to the Riemann-Lebesgue lemma,
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1. Introduction

Given a function f : R → R, its Fourier transform at s ∈ R is defined by f̂(s) =
∫ ∞

−∞
e−ixsf(x) dx. Here the integral is the Henstock-Kurzweil integral, which is equi-

valent to the Denjoy and Perron integrals.

The study of the Fourier transform in the space of the Henstock-Kurzweil inte-

grable functions has been recently developed by E.Talvila [3]. He has shown some

theorems on existence and continuity for the Fourier transform in certain subspaces.

In general, neither existence nor continuity nor the Riemann-Lebesgue lemma are

valid in the space of the Henstock-Kurzweil integrable functions.

These facts motivate us to look at a subspace of the Henstock-Kurzweil integrable

functions that is not contained in the space of Lebesgue integrable functions and on

which these classical properties are valid.

Notation 1.1. Let I be a finite or infinite closed interval. We work on the

following subspaces:
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• HK(I) = {f ; f is Henstock-Kurzweil integrable on I}.
• HKloc(R) = {f ; f ∈ HK(I) for each finite closed interval I}.
• BV(I) = {f ; f is of bounded variation on I}.
If f ∈ BV(I), VIf is the total variation of f on I.

• BV([±∞]) = {f ; f ∈ BV([a,∞]) ∩ BV([−∞, b]) for some a, b ∈ R}.
• BV0([±∞]) = {f ∈ BV([±∞]) ; lim

|x|→∞
f(x) = 0}.

• L(I) = {f ; f is Lebesgue integrable on I}.

Main results 1.2. Our main results are the following:

(i) HK(R) ∩ BV(R) ⊆ HK(R) ∩ BV([±∞]) and HK(R) ∩ BV(R) 6⊆ L(R).

(ii) An existence theorem for f̂ on R when f is in HK(R) ∩ BV([±∞]).

(iii) Continuity of f̂ on R \ {0} for functions f ∈ HK(R) ∩ BV([±∞]).

(iv) A Riemann-Lebesgue lemma in HK(R) ∩ BV(R).

In the following sections we prove these results.

2. The HK(I) ∩ BV(I) subspace

If I is a compact interval, we know that

BV(I) ⊂ L(I) ⊂ HK(I),

and consequently HK(I) ∩ BV(I) ⊂ L(I).

Now, if I is unbounded, the first two observations which we have are

(2.1) BV(I) * L(I)

and

(2.2) L(I) * HK(I) ∩ BV(I).

Really, it is easy to demonstrate that the function f(x) = 1/x defined in [1,∞] is

of bounded variation with

V[1,∞]f = 1

and
∫ ∞

1

1

x
dx = ∞.

This implies that (2.1) is true.
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To verify (2.2), we consider the function f : [0,∞] → R defined by

f(x) =

{√
x sin(1/x) if x ∈ (0, 1],

0 if x = 0, x ∈ (1,∞]

which is in L([0,∞]) \ BV([0,∞]).

Next, we will prove that HK(I) ∩ BV(I) * L(I).

Proposition 2.1. Let ϕ : [a,∞] → R be a non-negative function which is de-

creasing to zero when x → ∞. If ϕ /∈ HK([a,∞]), then the functions ϕ(t) sin t and

ϕ(t) cos t are in HK([a,∞]) \ L([a,∞]).

P r o o f. We will demonstrate that ϕ(t) sin t /∈ L([a,∞]). The proof that

ϕ(t) cos t /∈ L([a,∞]) can be done in a similar way.

Suppose that n0 is the first natural number for which a < (1 + 4n0)π/4. For

t ∈ [a,∞] we have

|sin t| >
1√
2
if and only if t ∈

∞
⋃

k=n0

[(1 + 4k)π/4, (3 + 4k)π/4].

Let n ∈ N with n > n0. Since (3 + 4n)π/4 < (1 + n)π, we have

(2.3)

∫ (1+n)p
a

ϕ(t)|sin t| dt >
1√
2

n
∑

k=n0

∫ (3+4k)p/4

(1+4k)p/4

ϕ(t) dt

>
1√
2

n
∑

k=n0

∫ (3+4k)p/4

(1+4k)p/4

ϕ((3 + 4k)π/4) dt

=
π

2
√

2

n
∑

k=n0

ϕ((3 + 4k)π/4)

>
π

2
√

2

n
∑

k=n0

ϕ((1 + k)π).

On the other hand,

(2.4)

∫ (1+n)p
a

ϕ(t) dt =

∫ n0p
a

ϕ(t) dt +

∫ (1+n)p
n0p ϕ(t) dt

=

∫ n0p
a

ϕ(t) dt +

n
∑

k=n0

∫ (1+k)p
kp ϕ(t) dt

6

∫ n0p
a

ϕ(t) dt + π

n
∑

k=n0

ϕ(kπ).
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Since ϕ /∈ HK([a,∞]), we have
∫ ∞

a
ϕ(t) dt = ∞ and (2.4) implies

(2.5)
∞
∑

k=n0

ϕ(kπ) = ∞.

Using (2.5) and letting n → ∞ in (2.3), we conclude that ϕ(t) sin t /∈ L([a,∞]).

For any x ∈ [a,∞),

∣

∣

∣

∣

∫ x

a

sin t dt

∣

∣

∣

∣

6 2 and

∣

∣

∣

∣

∫ x

a

cos t dt

∣

∣

∣

∣

6 2.

Hence according to [1, Theorem 16.10] (Chartier-Dirichlet) we have that ϕ(t) sin t

and ϕ(t) cos t are in HK[a,∞]. �

E x am p l e 2.2. For any a > 0,

sin t

t
∈ HK([a,∞]) \ L([a,∞]).

Proposition 2.3. Let 1 > α > 0. The function fα : [π1/α,∞] → R defined as

fα(t) =
sin(tα)

t

satisfies

(a) fα ∈ HK[π1/α,∞] \ L([π1/α,∞]),

(b) fα ∈ BV([π1/α,∞]).

P r o o f. (a) This is a consequence of [3, Lemma 23].

(b) Let x ∈ (π1/α,∞). We know that f ′
α ∈ HK([π1/α, x]). Now since

f ′
α(t) =

α cos(tα)

t2−α
− sin(tα)

t2
,

we have that

(2.6) |f ′
α(t)| 6

α

t2−α
+

1

t2
.

The function g(t) = α/t2−α + 1/t2 satisfies g ∈ HK([π1/α, x]), hence by (2.6) and [1,

Theorem 7.7] we conclude that f ′
α ∈ L([π1/α, x]) and

∫ xp1/α

|f ′
α| 6

∫ xp1/α

( α

t2−α
+

1

t2

)

dt

=
( 1

α − 1

)

[xα−1 − π
(α−1)/α] − 1

x
+

1

π
1/α

.
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Consequently, by [1, Theorem 7.5],

V[p1/α,x]fα 6

( 1

α − 1

)

[xα−1 − π
(α−1)/α] − 1

x
+

1

π
1/α

.

Therefore, as 1 − α > 0, we have that

V[p1/α,∞]fα 6
1

(1 − α)π(1−α)/α
+

1

π
1/α

.

Thus, fα ∈ BV([π1/α,∞]). �

Similarly, we can prove that for 1 > α > 0, the function gα : [−∞,−π
1/α] → R

defined as

gα(t) =
sin(−t)α

−t

belongs to HK([−∞,−π
1/α]) ∩ BV([−∞,−π

1/α]) \ L([−∞,−π
1/α]).

Let h ∈ BV([−π
1/α, π

1/α]). For 1 > α > 0, the function f : R → R defined by

f(x) =







h(x) if x ∈ (−π
1/α, π

1/α),

sin |t|α
|t| if x ∈ (−∞,−π

1/α] ∪ [π1/α,∞)

is in HK(R) ∩ BV(R) \ L(R). With this example and Proposition 2.3 we have the

following theorem.

Theorem 2.4. There exists a function f in HK(R) ∩ BV(R) \ L(R).

Now, since BV(R) ⊂ BV([±∞]), we have immediately the next corollary.

Corollary 2.5. HK(R) ∩ BV([±∞]) 6⊆ L(R).

We observe that BV(R) ⊂ BV([±∞]) properly, because instead of the function h

in BV([−π
1/α, π

1/α]) we can take a function inHK([−π
1/α, π

1/α])\BV([−π
1/α, π

1/α]).
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3. An existence theorem for f̂(s) in HK(R) ∩ BV([±∞])

A part from Proposition 2.1(b) in [3] by E.Talvila tells us that, if f ∈ HKloc(R)∩
BV0([±∞]), then f̂(s) exists for all s ∈ R. If s 6= 0, then the result is true. However,

under these conditions, it is not necessarily true for f̂(0). For example, the function

f : R → R defined by

f(x) =

{

1 if x ∈ (−1, 1),

1/x if x ∈ (−∞,−1] ∪ [1,∞)

is in HKloc(R) ∩ BV0([±∞]) but f̂(0) does not exist.

In order to have the existence of f̂(0), we need that f ∈ HK(R).

We will demonstrate that the Fourier transform exists in HK(R) ∩ BV([±∞]) for

every s ∈ R.

Theorem 3.1. If f ∈ HK(R) ∩ BV([±∞]), then f̂(s) exists for all s ∈ R.

P r o o f. The result is true for s = 0 because f ∈ HK(R). Now let s 6= 0; since

HK(R) ∩ BV([±∞]) ⊂ HKloc(R) ∩ BV0([±∞]), by [3, Proposition 2.1 (b)] it follows

that f̂(s) exists. �

4. Continuity of f̂

We know that the continuity of the Lebesgue-Fourier transform on R is a con-

sequence of the dominated convergence theorem and that the Lebesgue integral is

absolute. Now to prove the continuity of the Henstock-Kurzweil Fourier transform

we can not use the same arguments, because the Henstock-Kurzweil integral is not

absolute. Two results about this are given in the following theorems. The first of

them is an immediate consequence of [3, Theorem 5].

Theorem 4.1. Let f be a function with support in a compact interval such that

f ∈ HK(R). Then f̂ is continuous on R.

Theorem 4.2. If f ∈ HK(R) ∩ BV([±∞]), then f̂ is continuous on R \ {0}.

P r o o f. Let t0 ∈ R\{0} and consider a < 0 and b > 0 such that f ∈ BV(−∞, a]∩
BV[b,∞). If we show thatŸfχ(−∞,a],÷fχ[a,b] and◊fχ[b,∞) are continuous at t0, then

f̂ is continuous at t0, because

f̂(t) =Ÿfχ(−∞,a](t) +÷fχ[a,b](t) +◊fχ[b,∞)(t) for all t ∈ R.
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By Theorem 4.1, ÷fχ[a,b] is continuous at t0. To prove thatŸfχ(−∞,a] and ◊fχ[b,∞)

are continuous at t0 we will use [3, Proposition 6(a)]. The conditions f is Henstock-

Kurzweil integrable on R and f is of bounded variation on (−∞, a] ∪ [b,∞) imply

that lim
|x|→∞

f(x) = 0. Now since t0 6= 0, there exist K > 0 and δ > 0 such that if

|t − t0| < δ, then 1/|t| < K. Thus for all |t − t0| < δ,

∣

∣

∣

∣

∫ v

u

e−ixt dx

∣

∣

∣

∣

6
2

|t| < 2K for all [u, v] ⊆ R.

Therefore, by [3, Proposition 6(a)],Ÿfχ(−∞,a] and◊fχ[b,∞) are continuous at t0. �

5. The Riemann-Lebesgue lemma

First we give a corollary proved by Talvila in [2].

Corollary 5.1. If |
∫ x

a
gn| 6 M for all n > 1 and all x ∈ [a, b), if each fn is

of bounded variation, if lim
x→b−

fn(x) = 0 uniformly in n, if fn → 0 on [a, b] and if

V (fn) → 0, then
∫ b

a
gnfn → 0.

Theorem 5.2. If f ∈ HK(R) ∩ BV(R), then lim
|t|→∞

f̂(t) = 0.

P r o o f. First we will prove that for every sequence {tn}n∈N ⊆ [0,∞) such that

n 6 tn for all n ∈ N it is true that lim
n→∞

f̂(tn) = 0.

Let {tn}n∈N ⊆ [0,∞) be a sequence such that n 6 tn for all n ∈ N. For every n ∈
N, define fn(x) = n−1f(x), gn(x) = ne−ixtn on [0,∞) and fn(∞) = 0, gn(∞) = 0.

For all n ∈ N and all s ∈ [0,∞),

∣

∣

∣

∣

∫ s

0

gn(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

n

∫ s

0

e−ixtn dx

∣

∣

∣

∣

6
2n

tn
6 2.

Since f ∈ BV([0,∞]) ∩ HK([0,∞]), we have that each fn is in BV([0,∞]) ∩
HK([0,∞]) and

lim
n→∞

V[0,∞]fn = lim
n→∞

1

n
V[0,∞]f = 0.

We observe too that lim
n→∞

fn(x) = lim
n→∞

n−1f(x) = 0 for all x ∈ [0,∞].

Thus according to Corollary 5.1,

lim
n→∞

∫ ∞

0

f(x)e−ixtn dx = lim
n→∞

∫ ∞

0

fn(x)gn(x) dx = 0.
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Using Corollary 5.1 for intervals of the type (a, b] we can prove too that

lim
n→∞

∫ 0

−∞

f(x)e−ixtn dx = 0.

Thus lim
n→∞

f̂(tn) = 0.

We now prove that lim
t→∞

f̂(t) = 0. Suppose that it is not true, then there exists

ε > 0 such that for all n ∈ N there exists tn > n such that |f̂(tn)| > ε. The sequence

{tn}n∈N satisfies {tn}n∈N ⊆ [0,∞) and n 6 tn for all n ∈ N, hence by the first part

of this proof we have lim
n→∞

f̂(tn) = 0. Thus there exists n0 ∈ N such that |f̂(tn)| < ε

for all n > n0. If we take n1 > n0 then ε 6 |f̂(tn1
)| < ε, which is a contradiction.

The proof of lim
t→−∞

f̂(t) = 0 is analogous. �
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