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Review: IRT models

Framework for
estimating latent traits (ability levels) θ
by means of manifest (observable) variables (item responses)
and appropriate psychometric (statistical) model

Notes:
Ability θ is often treated as random variable (but see further)
Items: dichotomous, polytomous, multiple-choice, ...
IRT model: describes probability of (correct) answer as function of

ability level and
item parameters

This function is called:
Item response function (IRF)
Item characteristic curve (ICC)
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Review: Introduction to IRT models

Use of IRT models
To calibrate items (i.e. to estimate difficulty, discrimination, guessing,...)
To assess respondents’ latent trait (ability, satisfaction, anxiety,...)
To describe test properties (standard error, test information,...)
Test linking and equating, computerized adaptive testing, etc.

IRT model assumptions
1 Model definition (functional form, usually monotonic ICC)

e.g. 2PL IRT model: P (Yij = 1|θi, aj , bj) = πij = e
aj(θi−bj)

1+e
aj(θi−bj)

2 Unidimensionality of latent variable θ
3 Local independence (conditional independence)

e.g. P (Yi1 = 1, Yi2 = 1|θi, aj , bj) = πi1 · πi2

e.g. P (Yi1 = 1, Yi2 = 0|θi, aj , bj) = πi1 · (1− πi2)

4 Invariance of parameters
5 Independence of respondents
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Rasch Model

πij = P (Yij = 1|θi, bj) =
exp(θi − bj)

1 + exp(θi − bj)
(1)

θi ability of person i, for i = 1, . . . , I
bj difficulty of item j (location of inflection point) for j = 1, . . . , J

Item Characteristic Curve (ICC)

Note: Originally, Rasch model denoted as πij = τi
τi+ξj

.

To get to (1), consider θi = log(τi), and bj = log(ξj) for τi > 0, ξj > 0
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Logistic vs. Probit model (Note on Scaling parameter D)

Rasch model is sometimes defined as:

πij = P (Yij = 1|θi, bj) =
exp(D[θi − bj ])

1 + exp(D[θi − bj ])

D = 1.702 is scaling parameter introduced in order to match logistic and probit
metrics very closely (Lord and Novick, 1968)

Note: Probit (normal-ogive) model: πij = Φ(θi − bj), where Φ(x) is a
cumulative distribution function for the standard normal distribution.
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Item-Person Map (Wright Map)

IRT models allow us to put items and persons on the same scale

Note: See an example of „32-item test of body height“ (van der Linden, 2017),
compare to Figure 2.4
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1PL IRT Model

πij = P (Yij = 1|θi, a, bj) =
exp[a(θi − bj)]

1 + exp[a(θi − bj)]

θi ability of person i for i = 1, . . . , I
bj difficulty of item j (location of inflection point) for j = 1, . . . , J
a discrimination common for all items (slope at inflection point)
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2PL IRT Model

πij = P (Yij = 1|θi, aj , bj) =
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

θi ability of person i for i = 1, . . . , I
bj difficulty of item j (location of inflection point)
aj discrimination of item j (slope at inflection point) for j = 1, . . . , J
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3PL IRT Model

πij = P (Yij = 1|θi, aj , bj , cj) = cj + (1− cj)
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

θi ability of person i for i = 1, . . . , I
bj difficulty of item j (location of inflection point)
aj discrimination of item j (slope at inflection point)
cj pseudo-guessing parameter of item j (lower/left asymptote), j = 1, . . . , J
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4PL IRT Model

πij = P (Yij = 1|θi, aj , bj , cj , dj) = cj + (dj − cj)
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

θi ability of person i for i = 1, . . . , I
bj difficulty of item j (location of inflection point)
aj discrimination of item j (slope at inflection point)
cj pseudo-guessing parameter of item j (lower/left asymptote)
dj inattention parameter of item j (upper/right asymptote), for j = 1, . . . , J
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Information Function

P (θ, aj , bj , cj , dj) = cj + (dj − cj)
exp[aj(θ − bj)]

1 + exp[aj(θ − bj)]
,

Ij(θ, aj , bj , cj , dj) =
bP

δθ
= aj(dj − cj)

exp[aj(θ − bj)]
{1 + exp[aj(θ − bj)]}2
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Test Information and Reliability

I(θ) =
∑
j

Ij(θ, aj , bj , cj , dj)

Note: Standard error SE(θ̂|θ) = 1/

√
I(θ̂|θ)

Reliability SE(θ̂|θ) = σ

√
(1− rxx(θ̂|θ))
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Maximum Likelihood Estimation

Once the data have been collected, we can ask: „Which (item/person)
parameters would most likely produce these results?“

Estimating ability parameters:
Assume five items with known item parameters
Assume response pattern 11000
Student with what ability is most likely to produce these responses?

Estimating item parameters:
Assume 20 students with known abilities θ1, ..., θ20
Assume responses to the first item 11000011110101001110
Item with what difficulty b is most likely to lead to these student responses?
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Estimating ability parameter θ

Problem
Assume five items (obeying Rasch model) with known item parameters
b1 = −1.90, b2 = −0.60, b3 = −0.25, b4 = 0.30, b5 = 0.45.
Assume response pattern 11000.
How likely is average student (θ = 0) to produce these responses?
How likely is weaker student (θ = −1) to produce these responses?
Which student is more likely to produce these responses?

Solution
1 calculate probability for each response in the pattern
2 calculate probability of the response pattern

use assumption of conditional independence:
product of probabilities of individual responses in the pattern
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Estimating ability parameter θ

Solution
P (Y1 = 1|θ = 0) = e(0−(−1.9))

1+e(0−(−1.9)) , ...

P (Y = 11000|θ = 0) =
e1.9

1+e1.9 ·
e0.6

1+e0.6 ·
(

1− e0.25

1+e0.25

)
·
(

1− e−0.3

1+e−0.3

)
·
(

1− e−0.45

1+e−0.45

)
=

= 0.87 · 0.65 · 0.44 · 0.57 · 0.61 = 0.086

P (Y = 11000|θ = −1) = 0.71 · 0.40 · 0.68 · 0.79 · 0.81 = 0.123
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Estimating ability parameter θ

Problem
Student with what ability θ is most likely to produce responses 11000?

Solution
1 calculate probability for each response in the pattern (as function of θ)
2 calculate probability of the response pattern (as function of θ)

this function is known as likelihood function L
use assumption of conditional independence:
P (11000|θ) = L(11000|θ) = p1 · p2 · (1− p3) · (1− p4) · (1− p5)

3 find the maximum value of the likelihood function
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Estimating ability parameter θ

Problem
Student with what ability θ is most likely to produce responses 11000?

Solution
P (Y = 11000|θ) =
eθ+1.9

1+eθ+1.9 · eθ+0.6

1+eθ+0.6 ·
(

1− eθ+0.25

1+eθ+0.25

)
·
(

1− eθ−0.3

1+eθ−0.3

)
·
(

1− eθ−0.45

1+eθ−0.45

)

For which θ is the likelihood the highest?
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Estimating ability parameter θ

Log-likelihood
Reaches maximum for the same θ as likelihood
Easier to handle
log P (Y = 11000|θ) = log eθ+1.9

1+eθ+1.9 + log eθ+0.6

1+eθ+0.6 + log
(

1− eθ+0.25

1+eθ+0.25

)
+

log
(

1− eθ−0.3

1+eθ−0.3

)
+ log

(
1− eθ−0.45

1+eθ−0.45

)
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Maximum Likelihood Estimation - Technical details

For which θ is the likelihood the highest?
Empirical MLE

method of brackets
does not provide with standard error of estimate

Newton-Rhapson
looks for logL′ = 0 (zero derivative of logL)
uses second derivative logL′′ to find it quickly: θnew = θold − logL′

logL′′

derivatives can be further used for estimation of item information and
standard error
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Estimation of item parameters

Problem (Estimating item difficulty b)
Assuming that person abilities are known, item with what difficulty b is
most likely to produce student responses 110010011000?

Solution
1 calculate probability of student response pattern (as function of b)

this function is again known as likelihood function L
use assumption of conditional independence

2 find the maximum value of the likelihood function

Note: For 2PL models likelihood-function is 2-dimensional!
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Three types of ML Estimates in IRT models

Usually, both person and item parameters need to be estimated.
Joint Maximum Likelihood

Used in Winsteps
Ping-pong between person and item MLE
With increasing number of examinees, number of parameters to be
estimated increases
May lead to inconsistent, biased estimates

Marginal Maximum Likelihood
Used in IRTPRO, ltm, mirt
Assumes prior ability distribution (usually N(0, 1))
Ability is „integrated out“ to get ML estimates of item parameters
Expected a posteriori estimates of abilities

Conditional Maximum Likelihood
Used in eRm
Only applicable in 1PL (Rasch) models, where:

Total score is sufficient statistics for ability
Percent correct is sufficient statistics for difficulty
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Joint Maximum Likelihood

Mathematical and technical details:

L = P (Y |θ,a, b) =

I∏
i=1

J∏
j=1

π
yij
ij (1− πij)(1−yij)

logarithm simplifies the above expression to sum:

lnL =

I∑
i=1

J∑
j=1

yij · ln(πij) + (1− yij) · ln(1− πij)

maximization incorporates computation of partial derivatives
indeterminacy of parameter estimates in the origin and unit

person centering
item centering
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Marginal Maximum Likelihood

Mathematical and technical details:
marginal likelihood (θ is integrated out)

L = P (Y ) =

∫ ∞
−∞

P (x|θ,a, b) · g(θ|a, b)dθ

g(θ|a, b) is so called prior distribution (usually assumed N(0,1))
integration solved using Gauss-Hermite quadrature (numerical integration)

Can be understood as weighted sum: at each theta
interval, the likelihood of response pattern rectangle
is weighted by that rectangle’s probability of being
observed

L does not depend on θ and can be maximized with respect to a, b
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Assessing Ability Levels

Once the item parameters are known (estimated)

Maximum likelihood estimator (MLE)
Weighted likelihood
Bayes model estimator (BME), maximum a posteriori (MAP)
Expected a posteriori (EAP)
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MLE - iterative process

1 Select set of starting values
randomly or intelligently
the closer the starting values are to the actual values the better

2 Maximize the likelihood - get new estimates
3 Check the stopping rule - stop if:

maximal number of runs is reached
likelihood does not change too much
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Model selection

Log-likelihood - the bigger the better
AIC (Akaike information criterion), BIC (Bayesian information criterion) -
the smaller the better
LRT (likelihood ratio test): if significant (p < 0.05) - submodel is rejected,
use model with more parameters

3PL model: possibly problems with local maxima, problems to distinguish
between models
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Item and Person Fit Assessment

Ames & Penfield (2015)
Comparing ICC of the fitted model to observed proportion of correct
responses
Detection of improbable response patterns
Comparing number of respondents with given response pattern to what is
expected by the model (X2 test)
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Further Topics

Further models
Polytomous IRT models (ordinal/nominal)
Multidimensional IRT models
Hierarchical IRT models, etc.
Accounting for Differential item functioning, etc.

Applications
Test equating
Computerized adaptive testing, etc.
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Vocabulary

Rasch model, 1PL, 2PL, 3PL, 4PL IRT models
Item Characteristic Curve (ICC)
Item Response Function (IRF)
Item Information Function (IIF)
Test Information Function (TIF)
Likelihood function
Parameter estimation: JML, CML, MML
Model fit, Item fit, Person fit
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