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GENERIC REPRESENTATIONS OF COUNTABLE GROUPS

MICHAL DOUCHA AND MACIEJ MALICKI

Abstract. The paper is devoted to a study of generic representations
(homomorphisms) of discrete countable groups Γ in Polish groups G,
i.e. those elements in the Polish space Rep(Γ, G) of all representations
of Γ in G, whose orbit under the conjugation action of G on Rep(Γ, G)
is comeager. We investigate finite approximability, a strictly related no-
tion, for actions on countable structures such as tournaments, triangle-
free graphs, and, more generally, Kn-free graphs, and we show how it
is related to the Ribes-Zalesski-like properties of the acting groups. We
prove that every finitely generated abelian group has a generic repre-
sentation in the automorphism group of the random tournament; in
particular, that there is a comeager conjugacy class in this group. We
also provide a simpler proof of a recent result of Glasner, Kitroser and
Melleray characterizing groups having a generic permutation represen-
tation.

Then we investigate representations of infinite groups Γ in automor-
phism groups of metric structures such as the isometry group Iso(U) of
the Urysohn space, isometry group Iso(U1) of the Urysohn sphere, or the
linear isometry group LIso(G) of the Gurarii space. We show that the
conjugation action of Iso(U) on Rep(Γ, Iso(U)) is generically turbulent.

Introduction

A representation of a countable, discrete group Γ in a Polish (i.e., separa-
ble and completely metrizable) topological group G is a homomorphism of
Γ into G. The most frequently studied representations are finite-dimensional
representations, i.e. homomorphisms into the matrix groups GL(n,K), where
n ∈ N and K ∈ {R,C}, and then unitary representations, i.e., homomor-
phisms into the unitary group U(H) of separable Hilbert spaces H.

Especially within descriptive set theory, other interesting cases have been
recently considered as well, e.g., representations in the isometry group Iso(U)
of the Urysohn space (see [18]) or representations in the symmetric group
S∞ of a countable set (see [6].) As a matter of fact, representations in au-
tomorphism groups of certain structures are nothing but actions on these
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2 MICHAL DOUCHA AND MACIEJ MALICKI

structures, as is the case with the above mentioned examples, where rep-
resentations are actions on finite-dimensional vector spaces, Hilbert spaces,
the Urysohn space U or a countable set (with no structure.)

Instead of a single representation, one can also investigate the space of
all representations Rep(Γ, G), which can be equipped with a natural Polish
topology. The action of G on Rep(Γ, G) by conjugation leads to the concept
of generic representation, i.e., a representation whose orbit is comeager in
Rep(Γ, G). As it turns out, such a global approach can provide insight both
into the structure of Γ and the structure of G, and it reveals interesting
connections between the theory of countable groups, the theory of Polish
groups, and model theory.

An example of such a connection is the notion of ample generics. A Pol-
ish group G has ample generics if every free group Fn on n generators has
a generic representation in G. Groups with ample generics satisfy certain
very strong properties, e.g., the automatic continuity property, which means
that all (abstract) group homomorphisms from these groups into separable
groups are continuous. On the other hand, ample generics are related to
the Hrushovski property that has been extensively studied in the context of
Fräıssé theory. Recall that a Fräıssé class of structures K has the Hrushovski
property if for every A ∈ K there is B ∈ K containing A, and such that ev-
ery partial automorphism of A can be extended to an automorphism of B.
It turns out that for a Fräıssé class K with sufficiently free amalgamation,
the Hrushovski property implies the existence of ample generics in the auto-
morphism group Aut(M) of its limit M , i.e., implies that Fn has a generic
representation in Aut(M) for every n ≥ 1.

Another aspect of this phenomenon has been revealed in the works of
Herwig and Lascar [9] who showed that the Hrushovski property is strictly
related to the Ribes-Zalesskii property for free groups, which, in turn, is
tied up with the pro-finite structure of countable groups. Later Rosendal
[22] proved that a countable group Γ has the Ribes-Zalesskii property if and
only if every action of Γ on a metric space is finitely approximable, i.e., every
action of Γ on a metric space X can be approximated by actions of Γ on
finite metric spaces. It is not hard to see that for free groups the latter
statement is equivalent to the Hrushovski property for metric spaces.

In the present paper, we continue this line of research. Although we
work with representations in automorphism groups of structures from several
areas of mathematics such as graphs, metric spaces, Banach spaces, etc.,
the paper is not just a collection of separate results. There is a unified
methodology behind all our results. That is, whenever we construct some
generic representation of some countable group Γ, it is a Fräıssé limit of
some ‘simple actions’ of Γ. On the other hand, whenever we show that
some group Γ does not have a generic representation in an automorphism
group of a structure of a given type, it is essentially by showing that there
are too many actions of Γ on structures of this given type, i.e. one cannot
construct a Fräıssé limit of actions which would be dense. It is possible that
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this approach could be formalized and we partially do so for generic actions
with finite orbits in the second section.

Let us present the main results of the paper. First of all, we study finite
approximability for several classes of countable structures, namely tourna-
ments, and Kn-free graphs. We prove (Theorem 1.1) that all actions of
finitely generated abelian groups on tournaments are finitely approximable.
We also formulate a property closely related to the Ribes-Zalesskii property
(Definition 1.7), and prove (Theorem 1.8) that it implies finite approxima-
bility for tournaments. We leave it open whether finitely generated free
groups have this property, which would imply the Hrushovski property for
tournaments and ample generics for the automorphism group of the ran-
dom tournament. Then we turn to triangle-free, and more generally Kn-
free graphs, n ≥ 3. We show (Theorem 1.11, and Theorem 1.10) that the
2-Ribes-Zalesskii property, and the 3-Ribes-Zalesskii property, which are
weak versions of the Ribes-Zalesskii property, form the lower and the upper
‘group-theoretic bounds’ for finite approximability of actions on triangle-free
graphs (resp. Kn-free graphs).

We also give in that section a simpler Fräıssé -theoretic proof of the main
result from [6] that says that a countable, discrete group Γ has a generic
representation in S∞ if and only if it is solitary.

In the next section, we generalize known results relating, for finitely gen-
erated groups, finite approximability and generic representations with finite
orbits. We prove (Theorem 2.1) that for every sufficiently regular Fräıssé
class K (to be more specific, for every Fräıssé class with amalgamation allow-
ing for amalgamating partial automorphisms), with Fräıssé limit M , every
action of a finitely generated group Γ on M is finitely approximable if and
only if Γ has a generic representation in Aut(M) with finite orbits. In partic-
ular, this theorem, combined with our results on tournaments, implies that
there is a comeager conjugacy class in the automorphism group Aut(T ) of
the random tournament T .

We also study generic representations in the automorphism groups of sev-
eral metric structures, namely the Urysohn space U, the Urysohn sphere U1

and the Gurarij space G. We show that no countably infinite discrete group
has a generic representation in Aut(X), where X ∈ {U,U1,G}. After the
first version of this paper was written, we were informed by Julien Melleray
that he had already proved the last result for the Urysohn space and sphere
in his habilation thesis, published in [19]. The result for the sphere is how-
ever stated without a proof there, so we decided to publish it here (as well
as the result for the whole Urysohn space, which is simpler). This allows us
to only sketch the proof for the Gurarij space as it is analogous to that one
for the sphere. This answers a question of Melleray from [19]. We more-
over show additionally that the conjugation action of Iso(U) on Rep(Γ,U)
is generically turbulent, for any infinite Γ. The same ideas also work for the
Urysohn sphere and the Gurarij space.
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Terminology and basic facts

Let K be a countable, up to isomorphism, class of finite structures in a
given language L. We say that K is a Fräıssé class if it has the hereditary
property HP (for every A ∈ K, if B can be embedded in A, then B ∈
K), the joint embedding property JEP (for any A,B ∈ K there is C ∈ K
which embeds both A and B), and the amalgamation property AP (for any
A,B1, B2 ∈ K and any embeddings φi : A → Bi, i = 1, 2, there are C ∈ K
and embeddings ψi : Bi → C, i = 1, 2, such that ψ1 ◦ φ1 = ψ2 ◦ φ2). By a
theorem due to Fräıssé , for every Fräıssé family K, there is a unique up to
isomorphism countable ultrahomogeneous structure M (i.e., isomorphisms
between finite substructures of M extend to automorphisms of M) which
embeds every member of K, and K = Age(M), where Age(M) is the class
of all finite structures that can be embedded in M . In that case, we call
M the Fräıssé limit of K, see [11, Section 7.1]. As a matter fact, M can
be also characterized by its extension property : a locally finite countable
structure X with Age(X) ⊆ K is the Fräıssé limit of K if and only if for any
A,B ∈ K, and embeddings φ : A→ X, i : A→ B there exists an embedding
ψ : B → X such that ψ ◦ i = φ.

A locally finite structure X such that Age(X) ⊆ K, for some class of
finite structures K, is called a chain from K. Suppose that α is an action by
automorphisms of a group Γ on a chain X from a class K. We will say that
α is finitely approximable (by structures from K) if for every finite F ⊆ Γ,
and X0 ⊆ X there exists Y ∈ K, an action by automorphisms β of Γ on Y ,
and an injection e : α[F ×X0] → Y that embeds α restricted to F and X0

into β, i.e.,

β(f, e(x)) = e(α(f, x))

for f ∈ F , and x ∈ X0. Note that when Γ is the free group on finitely many
generators then this corresponds to the well-studied problem when a tuple
of finite partial automorphisms extends to a tuple of finite automorphisms.
This was first proved by Hrushovski in [12] for graphs and it is open till
today for tournaments.

Denote by A the class of all chains from K. We say that a Fräıssé class K
has the Katětov functor if for any X ∈ A there are embeddings φX : X ↪→M
and ψX : Aut(X) ↪→ Aut(M), where M is the Fräıssé limit of K, such that
for every f ∈ Aut(X) and x ∈ X we have

φX ◦ f(x) = ψX(f) ◦ φX(x).

Note that a prototypical example is the metric Fräıssé class of metric spaces
where it follows from the result of Uspenskij in [24] that this class has a
Katětov functor. See [16] for a reference on this topic.

Let Γ be a countable discrete group, and let G be a Polish grpup. The
space Rep(Γ, G) of all representations of Γ in G (i.e., homomorphisms of
Γ into G) can be naturally endowed with a Polish topology by regarding
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it as a (closed) subspace of GΓ. When G is the automorphism group of
some structure X, we usually write Rep(Γ, X) instead of the more precise
Rep(Γ,Aut(X)). We will say that α ∈ Rep(Γ, G) is a generic representation
if the orbit of α under the conjugation action of G on Rep(Γ, G) is comeager
in Rep(Γ, G). Note that in most cases we encounter the topological 0-1 law
for representations is valid, i.e. either there is a generic representation in
Rep(Γ, G), or all the conjugacy classes are meager. This is the case e.g.
when there is a dense conjugacy class in Rep(Γ, G) (see Theorem 8.46 in
[13]).

1. Finite approximability

We recall that if Γ is a discrete group, the profinite topology on Γ is the
group topology on Γ generated by the basic open sets gK, where g ∈ Γ, and
K is a finite index normal subgroup of Γ. Thus, a subset S ⊆ Γ is closed
in the profinite topology on Γ if for any g ∈ Γ \ S, there is a finite index
normal subgroup K ≤ Γ such that g 6∈ SK. Since this is a group topology,
i.e., the group operations are continuous, Γ is Hausdorff if and only if {1} is
closed, i.e., if for any g 6= 1 there is a finite index normal subgroup K not
containing g. In other words, Γ is Hausdorff if and only if it is residually
finite. A stronger notion than residual finiteness is subgroup separability or
being LERF (locally extended residually finite). Here a group Γ is subgroup
separable, or LERF, if any finitely generated subgroup H ≤ Γ is closed in
the profinite topology on Γ. An even stronger notion is what we shall call
the n-Ribes-Zalesskii property, where n ∈ N, or n-RZ property for brevity.
Namely, for a fixed n ∈ N, a group Γ is said to have the n-RZ property
if any product H1H2 . . . Hn of finitely generated subgroups of Γ is closed
in the profinite topology on Γ. Finally, Γ has the RZ property if it has the
n-RZ property for every n. We refer to the paper [21] of Ribes and Zalesskii,
where they prove that free groups have the RZ property.

In [22], Rosendal used the RZ property and its variants to characterize
finite approximability of actions on metric spaces or graphs. In the follow-
ing sections, we show that that this concept turns out to be useful also in
studying Kn-free graphs (where Kn is a clique on n elements), and tourna-
ments (recall that a tournament is a directed graph (X,R) such that for any
x, y ∈ X exactly one of the arrows (x, y), (y, x) is in R.)

1.1. Tournaments.

Theorem 1.1. Let Γ be a finitely generated abelian group. Then every
action of Γ on a tournament is finitely approximable.

Proof. Fix an action α of Γ on a tournament (X,R). Fix a finite, symmetric
F ⊆ Γ, and A ⊆ X. By possibly enlarging F , we can assume that no two
elements of A are in the same orbit under α.
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For x ∈ A, let Hx ≤ Γ be the stabilizer of x under α. Find subgroups
H ′x ≤ Γ, x ∈ A, such that, for Lx = Hx + H ′x the following conditions are
satisfied:

(1) the order of Mx is finite, and an odd number,
(2) the quotient mapping F/Hx 7→ (F/Hx)/H ′x ⊆ Γ/Lx is injective.

In order to see that it is always possible to find such H ′x, observe (or see
Lemma 1.4 below) that, for no x ∈ X, there exists an element of even order
in Γ/Hx. Indeed, if some g ∈ Γ/Hx had even order, there would exist h ∈ Γ
such that h2.x = x. But then, by invariance of the relation R under α,
we would get that both R(x, h.x) and R(h.x, x) hold, which is impossible.
Now, as Γ is finitely generated, each Γ/Hx is also finitely generated, and so
it can be written as a direct sum

⊕
iKi of cyclic groups Ki. Moreover, by

the above observation, each Ki with finite order has in fact order which is
an odd number. Now it is straightforward to choose H ′x as required.

We define a binary relation S on Y =
⊔
x∈A Γ/Lx in the following way.

Fix a linear ordering � on A. Fix x � y ∈ A. Let By, Cy ⊆ Γ/Ly be a
partition of My such that

(a) g + Ly ∈ B iff −g + Ly ∈ Cy,
(b) for g ∈ F , g + Ly ∈ Cy iff R(x, g.y).

Condition (a) can be met because of (1) (which implies there are no
elements of order 2 in My), while (b) is satisfiable because of (2), and our
assumption that F is symmetric. Then, for f, g ∈ Γ, we define

S(f + Lx, g + Ly) iff (g − f) + Ly ∈ Cy,

S(g + Ly, f + Lx) iff (g − f) + Ly ∈ By.
Observe that S defines a tournament on Y . Indeed, suppose that both

S(f + Lx, g + Ly) and S(g + Ly, f + Lx) hold for some f, g ∈ Γ and x �
y ∈ A. But then, by the definition of S, we have that (g − f) + Ly ∈ Cy,
(g − f) + Ly ∈ By, which is impossible because By ∩ Cy = ∅. Similarly,
if S(f + Lx, g + Ly) does not hold, then (g − f) + Ly 6∈ Cy. But then
(g − f) + Ly ∈ By because By ∪ Cy = Γ/Ly, so S(g + Ly, f + Lx) holds.

Clearly, (Y, S) is invariant under the action β of Γ on Y by left-translation.
Moreover, (b) implies that the mapping f.x 7→ f +Lx , f ∈ F , x ∈ A, is an
embedding of α into β, when α is restricted to F on Γ, and A on X.

�

As a matter of fact, there exists a general algebraic condition on a group
Γ, which implies finite approximability for tournaments. We start with the
following definition.

Definition 1.2. Let Γ be a countable group and let H ≤ Γ. We say H is
good if there are no g ∈ Γ \H and h1, h2 ∈ H such that g · h1 · g · h2 ∈ H.

Remark 1.3. Clearly, if Γ is abelian, then H ≤ Γ is good if and only if Γ/H
does not have elements of order 2.
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The motivation for this definition comes from the following lemma.

Lemma 1.4. Let Γ be a countable group and let H ≤ Γ. Then H is good if
and only if H is a point-stabilizer for some action of Γ on a tournament.

Proof. Suppose Γ acts on a tournament (X,R) and H is the stabilizer of
some x ∈ X. Suppose there are g ∈ Γ \ H and h1, h2 ∈ H such that
gh1gh2 ∈ H. Without loss of generality, assume that we have R(x, g.x).
Since gh1gh2 ∈ H, and the action of Γ preserves the tournament relation R,
we have

R(x, g.x)⇔ R(gh1gh2.x, g.x)⇔

R(h1gh2.x, x)⇔ R(g.x, x);

a contradiction.

Conversely, assume that H is good. We define a tournament structure
on Γ/H, on which Γ will act canonically. Using Zorn’s lemma find a max-
imal subset F ⊆ Γ satisfying that for no f, g ∈ F there are h1, h2 ∈ H
such that fh1gh2 ∈ H. Next we set R(fH, gH) if and only if there are
h1, h2 ∈ H and g′ ∈ F such that f−1g = h1g

′h2. Clearly, the action of
Γ preserves the relation R, so we must check that it is a tournament rela-
tion. Suppose there is g ∈ Γ \ H such that both R(H, gH) and R(gH,H)
hold true. Then also R(H, g−1H) holds, so there are h1, h2, h3, h4 ∈ H such
that h1gh2, h3g

−1h4 ∈ F . This clearly violates the condition imposed on
F . So suppose now that there is g ∈ Γ \ H such that neither R(H, gH)
nor R(H, g−1H) hold true. Then we claim we may add g into F contra-
dicting the maximality of F . Indeed, suppose that by adding g into F we
violate the condition imposed on F . Since H is good, we cannot have that
gh1gh2 ∈ H for some h1, h2 ∈ Γ. So there are f ∈ F and h1, h2 ∈ H such
that gh1fh2 ∈ H or fh1gh2 ∈ H. Assume the former case, the latter one
is dealt with analogously. Then we have gh1fh2 = h for some h ∈ H, so
g−1 = h1fh2h

−1, so R(H, g−1H); a contradiction. �

We record some basic properties of good subgroups.

Lemma 1.5. Let Γ be a countable group. We have

(1) If (Hi)i∈I is a collection of good subgroups of Γ, then
⋂
i∈I Hi is also

good.
(2) If H ≤ Γ is a good subgroup, then the maximal normal subgroup of

Γ contained in H is also good. In particular, if H is a good subgroup
of finite index, then there is a good normal subgroup of finite index.

Proof. (1) Suppose (Hi)i≤I ≤ Γ are good. Set H =
⋂
i∈I Hi and take some

g ∈ Γ \ H such that there are h1, h2 ∈ H with gh1gh2 ∈ H. There exist
i ∈ I such that g /∈ Hi. Then however gh1gh2 ∈ H ≤ Hi which violates that
Hi is good.
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(2): Suppose that H ≤ Γ is a good subgroup. The maximal normal
subgroup of Γ contained in H is equal to

⋂
g∈Γ g

−1Hg, so we are done by

(1). �

Question 1.6. We do not know whether for every countable group Γ if
H ≤ Γ is a good subgroup and N ≤ Γ is a good normal subgroup, then the
subgroup HN is good.

The aim of the next definition is to isolated a Ribes-Zalesskii-like property
of groups that would guarantee finite approximability of tournaments - in the
same way as the 2-Ribes-Zalesskii property guarantees finite approximability
for graphs. We shall call it tournament 2-Ribes-Zalesskii property as it
is apparently very similar to the 2-Ribes-Zalesskii property, however not
obviously equivalent, or weaker or stronger.

Definition 1.7. Γ has the tournament 2-RZ property if for any gi ∈ Γ,
i ≤ n, finitely generated good subgroups Ki, Hi ≤ Γ, i ≤ n, such that
gi 6∈ KiHi, and any finitely generated good subgroups Mj ≤ Γ, j ≤ m, there
exists a finite index normal subgroup N ≤ Γ such that

• gi 6∈ KiHiN for each i ≤ n (thus, in particular, Γ has the 2-RZ
property),
• MjN is good for each j ≤ m.

Theorem 1.8. Suppose that Γ is a finitely generated group with the tour-
nament 2-RZ property. Then every action of Γ on a tournament is finitely
approximable.

Conversely, if every action of Γ on a tournament is finitely approximable,
and, moreover, Question 1.6 has a positive answer for Γ, then Γ has the
tournament 2-RZ property.

Proof. Suppose that Γ acts on a tournament (X,R). Take now some finite
partial subaction of Γ on X. We may suppose it is given by the following
data:

• finitely many orbits O1, . . . , Om, each Oj with some base point xj
and a finitely generated stabilizer Mj of xj ;
• for each j ≤ m a finite subset Fj ⊆ Γ such that for each f ∈ Fj we

have R(xj , f.xj);
• for every i 6= j ≤ m we have a finite subset Fi,j ⊆ Γ such that for

every f ∈ Fi,j we have R(xi, f.xj).

Notice that for every j ≤ m and any two elements f, g ∈ Fj we have

fMjgMj ∩Mj = ∅.

Indeed, suppose that fh1gh2 = h3, for some h1, h2, h3 ∈Mj , i.e. g = hf−1h′,
for some h, h′ ∈ Mj . We have R(xj , g.xj) and R(f−1.xj , xj), thus, since h
and h′ fix xj , R(hf−1h′.xj , xj) and R(g.xj , xj), which is a contradiction.

We can now find a finite index subgroup N satisfying:
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(1) for every j ≤ m and every f, g ∈ Fj we have

fMjNgMjN ∩MjN = ∅;

(2) for every i 6= j ≤ m and every f ∈ Fi,j and g ∈ Fj,i we have

MifMjN ∩Mig
−1MjN = ∅

(note that this is equivalent to gf /∈ (gMig
−1)MjN);

(3) for every j ≤ m, MjN is good.

Indeed, by Lemma 1.4 all the subgroups involved are good, so the tour-
nament 2-RZ property applies.

Now we define a finite tournament extending this finite fragment. The
underlying set is

Y = Γ/(M1N) t . . . t Γ/(MmN).

For every j ≤ m, let F ′j ⊆ Γ be a finite subset satisfying

• Fj ⊆ F ′j (extension);

• for every f, g ∈ F ′j we have

fMjNgMjN ∩MjN = ∅ (consistency);

• for every f ∈ Γ\(F ′jMjN) there exist g ∈ F ′j and h1, h2 ∈MjN such

that either fh1gh2 ∈MjN or gh1fh2 ∈MjN (maximality).

It is possible to find such a set by (1) and (3). Indeed, by (1) we have that
that for every f, g ∈ Fj ,

fMjNgMjN ∩MjN = ∅.

We want to extend Fj as much as possible still satisfying this consistency
property. Suppose that F ′j is a maximal subset containing Fj and satisfying

that for every f, g ∈ F ′j we have

fMjNgMjN ∩MjN = ∅.

Suppose the third condition is not satisfied, i.e. there is f ∈ Γ \ (F ′jMjN)

such that for every g ∈ F ′j and h1, h2 ∈ MjN neither fh1gh2 ∈ MjN , nor

gh1fh2 ∈ MjN . Then we claim we may extend F ′j by f contradicting its
maximality. Suppose that not. Then necessarily fh1fh2 ∈ MjN , for some
h1, h2 ∈MjN , which however contradicts (3). Clearly, F ′j is finite.

Analogously, for each i 6= j ≤ m, let F ′i,j ⊆ Γ be a finite subset satisfying

• Fi,j ⊆ F ′i,j (extension);

• for every i 6= j ≤ m and every f ∈ F ′i,j and g ∈ F ′j,i we have

MifMjN ∩Mig
−1MjN = ∅ (consistency);

• for every f ∈ Γ there are hi ∈ Mi and hj ∈ Mj such that either
hifhj ∈ Fi,j or hjf

−1hi ∈ Fj,i (maximality).
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It is possible to find such sets F ′i,j as follows. By (2) we have that Fi,j satis-
fies the consistency condition above, so we again want to extend Fi,j as much
as possible. Suppose that j > i then we set F ′j,i = Fj,i. So suppose that

i < j. Then for each double coset (MiN\Γ/MjN) \ ((
⋃
f∈Fi,j

MiNfMjN)∪
(
⋃
g∈Fj,i

MiNg
−1MjN)) we choose some representative and put it into F ′i,j .

Now we define the tournament relation S on Y . For any j ≤ m and any
f, g ∈ Γ we set S(fMjN, gMjN) if and only if for some h ∈ MjN we have
f−1gh ∈ F ′j . We claim that exactly one of the options S(fMjN, gMjN) and

S(gMjN, fMjN) happens. To simplify the notation, we show that for any
f ∈ Γ either S(MjN, fMjN) or S(fMjN,MjN) happens. First we show
that at least one of the options happens, then that at most one of them
happens.

If f ∈ F ′jMjN , then S(MjN, fMjN) by definition. So suppose that

f ∈ Γ \ (F ′jMjN). Then by the maximality condition there exist g ∈ F ′j and
h1, h2 ∈ MjN such that either fh1gh2 ∈ MjN or gh1fh2 ∈ MjN . Suppose
the former. Then we have

S(MjN, gMjN)⇔ S(MjN, gh2MjN)⇔

S(fh1MjN, fh1gh2MjN)⇔ S(fMjN,MjN).

The latter condition is treated analogously.
Now we show that at most one of the conditions happens. Suppose on

the contrary that both S(MjN, fMjN) and S(fMjN,MjN) hold. Then
however S(MjN, f

−1MjN) holds, therefore there are h1, h2 ∈ MjN such
that fh1, f

−1h2 ∈ F ′j . This violates the consistency condition though as we
have

fh1MjNf
−1h2MjN = MjN.

Now for i 6= j ≤ m we set S(fMiN, gMjN) if there are hi ∈Mi, hj ∈Mj

and g′ ∈ F ′i,j such that f−1g = hig
′hj . We again claim that exactly one

of the options S(fMiN, gMjN) and S(gMjN, fMiN) happens. Again it
suffices to check that for f ∈ Γ exactly one of the options S(MiN, fMjN)
and S(fMjN,MiN) happens. First we show that if at least one of the
options happens, then that at most one of them happens.

By the maximality condition there are hi ∈ Mi and hj ∈ Mj such
that either hifhj ∈ Fi,j or hjf

−1hi ∈ Fj,i. In the first case we clearly
have that S(MiN, fMjN) holds true, while in the latter case we have
S(MjN, f

−1MiN), therefore S(fMjN,MiN).
Suppose now that both S(MiN, fMjN) and S(fMjN,MiN) hold true.

Then there are hi, hj , h
′
i, h
′
j such that hifhj ∈ F ′i,j and h′jf

−1h′i ∈ F ′j,i. Then
it clearly violates the consistency condition above since

MihifhjMj ∩Mi(h
′)−1
i f(h′)−1

j MjN 6= ∅.
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Now we suppose that we have the Γ-approximability for tournaments and
that Question 1.6 has a positive answer for Γ. We show that Γ has the
tournament 2-RZ property.

Take some finite number of triples (g1,K1, H1),. . . , (gn,Kn, Hn) where
gi /∈ KiHi and Ki and Hi are finitely generated good subgroups, for i ≤ n,
and some finite number of finitely generated good subgroups M1, . . . ,Mm.
We define an action of Γ on a tournament (X,R). The underlying set X
will be the disjoint union (of orbits)

(
⊔
i≤n

Γ/Ki t Γ/Hi) t
⊔
j≤m

Γ/Mj ,

and the action of Γ is the canonical one. On each orbit of X we define
a tournament structure using Lemma 1.4. Now the arrows between differ-
ent orbits are defined arbitrarily just to satisfy that for all i ≤ n we have
R(Ki, giHi) and R(Hi,Ki).

We want to finitely approximate this tournament action so that the sta-
bilizers of the orbits are preserved and so that for each i ≤ n the relations
R(Ki, giHi) and R(Hi,Ki) are preserved. Therefore we get an action of Γ
on a finite tournament (Y, S) with 2n + m orbits with stabilizers Ki ≤ K ′i,
Hi ≤ H ′i, for i ≤ n, and Mj ≤M ′j , for j ≤ m, i.e. we may view Y as

Y = (
⊔
i≤n

Γ/K ′i t Γ/H ′i) t
⊔
j≤m

Γ/M ′j

with the natural action of Γ. Moreover, we have for all i ≤ n, S(K ′i, giH
′
i)

and S(H ′i,K
′
i), which implies that that for every i ≤ n, gi /∈ K ′iH ′i. Since all

the stabilizers are good subgroups of finite index, using Lemma 1.5 we can
find good normal finite index subgroups H ′′i ≤ H ′i, K ′′i ≤ K ′i, for i ≤ n, and
M ′′j ≤ M ′j , for j ≤ n. Again using Lemma 1.5 we get that the intersection
N of all these good normal finite index subgroups is again a good normal
finite index subgroup. Clearly, for every i ≤ n we have gi /∈ KiHiN . Now
if the answer of Question 1.6 is positive for Γ, then MjN is good for every
j ≤ m, therefore N is as desired, and we are done. �

Question 1.9. Do finitely generated free groups have the tournament 2-
Ribes-Zalesskii property?

1.2. Kn-free graphs. Now we turn to triangle-free graphs. Using tech-
niques from [22], we prove that the 2-RZ and 3-RZ properties are the lower
and the upper bounds for finite approximability of actions on triangle-free
graphs (and on Kn-free graphs.)

Theorem 1.10. Let Γ be a countable group satisfying the 3-RZ property.
Then every action of Γ on a triangle-free graph is finitely approximable.
More generally, every action of Γ on a Kn-free graph, for n ≥ 3, is finitely
approximable.

Proof. Fix an action α of Γ on a triangle-free graph X identified with a
metric space (X, d) with possible values of d(x, y), x 6= y ∈ X, either 1, if
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there is an edge between x and y, or 2 otherwise. Fix finite F ⊆ Γ, and
A ⊆ X. Without loss of generality, we can assume that 1 ∈ F , and no two
elements of A are in the same orbit under α.

For x ∈ X, let Hx ≤ Γ be the stabilizer of x. Fix x, y, z ∈ X, f1, f2 ∈ Γ.
Observe that the assumption that X is triangle-free means that

d(x, f1.y) = d(x, f2.z) = d(y, f−1
1 f2.z) = 1.

does not hold. Moreover, distances must be constant on appropriate double
cosets, i.e., for every g1 ∈ Hxf1Hy, g2 ∈ Hxf2Hz,

d(x, g1.y) = d(x, g2.z) = d(y, g−1
1 g2.z) = 1.

does not hold hold either. But this is equivalent to saying that for every
f1, f2, f3 ∈ Γ such that

d(x, f1.y) = d(x, f2.z) = d(y, f3.z) = 1

we have

Hyf1Hxf2Hz ∩Hyf3Hz = ∅,
or that

Hyf1Hxf2Hz ∩ {f3} = ∅.
Actually, the above formula can be also written as

f1f2(f−1
2 f−1

1 Hyf1f2)(f−1
2 Hxf2)Hz ∩ {f3} = ∅.

Because Γ has the 3-RZ property, we can find a finite-index normal sub-
group K ≤ Γ such that for every f1, f2, f3 ∈ F , and x, y, z ∈ A, with

d(x, f1.y) = d(x, f2.z) = d(y, f3.z) = 1

we have

Hyf1Hxf2Hz ∩Hyf3HzK = ∅,
and also, for every f ∈ F and x ∈ A with f 6∈ Hx,

Hx ∩ fK = HxK ∩ {f} = ∅.

Let Lx = HxK for x ∈ A. We define a finite graph Y =
∐
x∈A Γ/Lx by

specifying a metric ρ on Y so that

ρ(fLx, gLy) = 1

if and only if f−1g ∈ Hxg
′HyK for some g′ ∈ F with d(x, g′.y) = 1.

Note first that ρ is trivially a metric because the triangle inequality is
satisfied for any mapping from Y × Y into {0, 1, 2}. Also, it is clearly
invariant under the left-translation action β of Γ on Y . We need to verify
that Y is triangle-free, and that α, when restricted to F and A, embeds into
β via the mapping f.x 7→ fLx, for f ∈ F , x ∈ A.

In order to see that Y is triangle-free, suppose the contrary, and fix
x, y, z ∈ A and g1, g2 ∈ Γ such that

ρ(Lx, g1Ly) = ρ(Lx, g2Lz) = ρ(g1Ly, g2Lz) = 1.
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But this means that

g1 ∈ Hxf1HyK, g2 ∈ Hxf2HyK, g
−1
1 g2 ∈ Hyf3HzK,

where f1, f2, f3 ∈ F are such that

d(x, f1.y) = d(x, f2.z) = d(y, f3.z) = 1.

Since we have that

KHyf1Hxf2HzK ∩Hyf3HzK = Hyf1Hxf2Hz ∩Hyf3HzK = ∅,

for any such f1, f2, f3, this is impossible.
In a similar fashion, we can show that f.x 7→ fLx is a mapping embedding

α restricted to F and A into β.
The general statement for Kn-free graphs, n ≥ 3, can be proved in the

same way. For example, for n = 4, the condition that X does not contain
K4 means that, for any fixed X0 = {x, y, z, w} ⊆ X, and f1, f2, f3 ∈ Γ

d(x, f1.y) = d(x, f2.z) = d(x, f3.w) = d(y, f−1
1 f2.z) = d(y, f−1

1 f3.w) = d(z, f−1
2 f3w) = 1

does not hold. That can be rewritten that for any fa,b ∈ Γ, a 6= b ∈ X0 such
that d(a, fa,b.b) = 1, at least one of the intersections

Hbf
−1
a,bHafa,cHc ∩Hbfb,cHc,

is empty. Now, because Γ has the 3-RZ property, we can construct a K4-free
graph Y extending X exactly as above.

�

Theorem 1.11. Let Γ be a countable group whose actions on triangle-free
graphs are finitely approximable. Then Γ has the 2-RZ property.

Proof. Fix finitely generated subgroups H1, H2 of Γ, and g ∈ Γ \ H1H2.
We need to show that there is a finite index subgroup K ≤ Γ such that
g 6∈ H1H2K. Define a graph

X = Γ/H1 t Γ/H2

with metric satisfying d(fHi, gHj) = 1 iff i = 1, j = 2, and fHi ∩ gHj 6= ∅.
Clearly, this is a triangle-free graph, and Γ acts on X by left-translation.
Note also, that d(H1, gH2) = 2. Let β be an action on a finite graph Y such
that the left-translation action of Γ on X embeds into β when restricted to
A = {H1, H2, gH2} and F = {generators of H1, H2}∪{1, g}. Let i : X → Y
be such an embedding, and let Ki be the stabilizer of i(Hi), i = 1, 2.

Observe that Hi ≤ Ki. Moreover, g 6∈ K1K2 because for every k1 ∈ K1,
k2 ∈ K2 we have that

d(H1, k1k2H2) = d(H1, H2) = 1.

Therefore g 6∈ H1H2K. �
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2. Finite approximability and generic representations

In this section, we study connections between finite approximability and
generic representations in the context of Fräıssé theory. Moreover, we present
a simpler proof of genericity of permutation representations from [6].

We will say that a Fräıssé class K has independent amalgamation if for
any A0, A1, A2 ∈ K there exists an amalgam B ∈ K of A1 and A2 over
A0 such that for all automorphisms φ1, φ2 of A1, A2, respectively, that
agree on A0, φ1 ∪ φ2 extends to an automorphism of B. Analogously, we
define independent joint embedding. The simplest example of independent
amalgamation is free amalgamation, present, e.g., in the class of finite graphs
or Kn-free graphs.

Recall that a chain from a Fräıssé class K is a locally finite structure X
such that Age(X) ⊆ K. It follows from [16] that if K is a Fräıssé class with
a Katětov functor, then every chain X in K can be embedded in the Fräıssé
limit M of K so that Aut(X) embeds in Aut(M). Thus, for Fräıssé classes
with a Katětov functor (e.g., the class of finite graphs, by [16, Example
2.5], finite Kn-free graphs, by [16, Example 2.10], finite tournaments, by
[16, Example 2.6], or finite metric spaces with rational distances), studying
actions on chains (graphs, Kn-free graphs, tournaments or metric spaces
with rational distances) reduces to studying actions on their Fräıssé limits
(the random graph, the random Kn-free graph, the random tournament or
the rational Urysohn space.)

Theorem 2.1. Let Γ be a finitely generated discrete group, and let M be the
Fräıssé limit of a relational Fräıssé class K with independent amalgamation
and joint embedding, and with a Katětov functor. Then every action of Γ
on a chain from K is finitely approximable if and only if Γ has a generic
representation in Aut(M) with finite orbits .

Proof. Clearly, if Γ has a generic representation in Aut(M) with finite orbits,
then every action of Γ on M can be approximated by actions of Γ on finite
A ∈ K. Since K has a Katětov functor, this implies that every action of Γ
on a chain from K is finitely approximable.

In order to prove the converse, we show, as in the proof of Theorem
2.4, that the class Ka of all actions of Γ on elements of K, with equivari-
ant injections as morphisms, is a Fräıssé class. The hereditary property is
obvious. Amalgamation in Ka follows from independent amalgamation in
K: take actions α0, α1, α2 ∈ Ka on A0, A1, A2 ∈ K, respectively, such that
α1 � Γ × A0 = α2 � Γ × A0 = α0. Fix an amalgam B ∈ K of A1 and A2

over A0 with A1 ∪ A2 as the underlying set, and chosen using independent
amalgamation in K. It is easy to verify that the mapping β defined on Γ×B
by setting β(γ, x) = α1(γ, x) if x ∈ A1, and β(γ, x) = α2(γ, x) if x ∈ A2 \A1

is an action of Γ on B. For the same reasons, Ka has joint embedding.
Because Γ is finitely generated, Ka is countable up to isomorphism, and so
a Fräıssé class.
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Observe that actually, we can assume that the Fräıssé limit of Ka is an
action of Γ on M . This is because K has a Katětov functor, which implies,
together with the assumption that actions of Γ on chains from K are finitely
approximable, that for every A ⊆ B ∈ K, and every action α of Γ on A,
there exists C ∈ K such that B ⊆ C, and an action β on C extending
α. Thus, in the standard construction of the Fräıssé limit of Ka, where
a cofinal increasing sequence of actions αn on An ∈ K, n ∈ N, with the
extension property is selected (see, e.g., [11, Theorem 7.1.2]), we can make
sure that the sequence An, n ∈ N, is cofinal in K, and it has the extension
property (in K) as well. In other words, that

⋃
nAn is the Fräıssé limit of

K.
Now, consider the family of all representations in Rep(Γ,M) with the

extension property with regard to Ka. It is straightforward to verify this
is a dense Gδ condition. As any two representations with the extension
property are conjugate, we are done. �

Corollary 2.2. Let Γ be a finitely generated discrete group.

(1) If Γ has the 3-RZ property, then, for any n ≥ 3, Γ has a generic
representation in Aut(Gn), where Gn is the random Kn-free graph,

(2) For any n ≥ n, the group Zn has a generic representation in Aut(T ),
where T is the random tournament; in particular, Aut(T ) has a
comeager conjugacy class,

(3) more generally, if Γ has the tournament 2-RZ property, then Γ has
a generic representation in Aut(T ),

(4) (Rosendal) Γ has the RZ property iff Γ has a generic representation
in Aut(QU) finite orbits.

Proof. As is has been already mentioned, the classes of triangle free graphs,
tournaments, and finite metric spaces with rational distances have Katětov
functors.

Now, the class of triangle-free graphs has free amalgamation and joint
embedding. For finite tournaments, the amalgamation is not free but this
class has independent amalgamation (as well as joint embedding) because,
for given tournaments A0, A1, A2 with A0 ⊆ A0, A1, we can amalgamate A1,
A2 over A0 by adding an edge (a1, a2) iff a1 ∈ A1, a2 ∈ A2, for a1, a2 6∈ A0.
Similarly, the class of finite metric spaces with rational distances has metric-
free amalgamation, which is also a case of independent amalgamation. �

Remark 2.3. We note that Corollary 2.2 in particular implies that Kn-free
graphs, for n ≥ 3, have the Hrushovski property and the automorphism
group of the random Kn-free graph has ample generics. This is a result
originally proved by Herwig in [8].

2.1. The theorem of Glasner, Kitroser and Melleray. Finally, we
give another proof of a characterization of groups with generic permutation
representations that was proved by Glasner, Kitroser and Melleray in [6],
which is in the spirit of our other proofs in this paper. Let us recall some
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terminology. For a countable group Γ, view the set Sub(Γ) of its subgroups
as a closed subspace of the Cantor space 2Γ. With this identification we give
Sub(Γ) a compact Polish topology usually called the Chabauty topology (see
[3] for the original reference). Glasner, Kitroser and Melleray call a countable
group Γ solitary if the set of isolated points in Sub(Γ) is dense.

Theorem 2.4 (Glasner, Kitroser, Melleray). A countable group Γ has a
generic permutation representation if and only if it is solitary.

Remark 2.5. Notice the analogy of this theorem with the result that follows
from [15] mentioned in the beginning of Section 3 which says that Γ has a
generic unitary representation if and only if the set of isolated points in the
unitary dual Γ̂ equipped with the Fell topology is dense.

Proof. Let Γ be a countable solitary group. Let

G = {Γi : i ∈ N}
be the (at most) countable collection of isolated subgroups of Γ in Sub(Γ)
which form a dense subset there. Let C be the set of all finite ‘sums’ of left
quasi-regular actions

Γ y Γ/H1 t . . . t Γ/Hn,

where Hi ∈ G, for i ≤ n. It is immediate that it is a countable class with
the amalgamation property, thus it has some Fräıssé limit α ∈ Rep(Γ, S∞),
which is uniquely, up to conjugation, characterized by the extension prop-
erty. We show that the extension property can be expressed as a Gδ con-
dition. Since G is dense, the extension property will thus define a dense Gδ
set, therefore proving that α has a comeager conjugacy class. Consider the
set

{β ∈ Rep(Γ, S∞) : ∀H ∈ G ∀(xi)i≤n ∃x ∈ N \ β(Γ)[(xi)i≤n] (Stabβx = H)}.
It is clearly dense. Moreover, it is Gδ. Indeed, the only non-trivial part is
that ‘Stabβx = H’ is an open condition, which, however, follows since H is
isolated, thus uniquely determined by finitely many group elements.

Suppose that Γ is not solitary. Then there exists a non-empty basic
open set O without isolated points in Sub(Γ), consisting of subgroups of Γ
containing some g1, . . . , gn ∈ Γ and not containing some h1, . . . , hm ∈ Γ. For
every H ∈ O, let

C(H) = {α ∈ Rep(Γ, S∞) : ∀n ∈ N∃g ∈ Γ(α(g).n = n⇔ g /∈ H)}.
It is easy to check it is a Gδ set. Moreover it is dense. Indeed, fix a basic
open neighborhood U of some β ∈ Rep(Γ, S∞) and some n ∈ N. It suffices
to show there is γ ∈ U such that for some g ∈ Γ,

γ(g).n = n⇔ g /∈ H.
If β satisfies this condition we are done. Otherwise fix n1, . . . , ni ∈ N and
g1, . . . , gj ∈ Γ that determine U ; we can suppose n1 = n. Since H is not
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isolated, there exist H ′ ≤ Γ and h ∈ Γ \ F such that for k ≤ j, gk ∈ H iff
gk ∈ H ′ and h ∈ H iff h /∈ H ′. Therefore we can find some γ ∈ U such that
γ(Γ).n ∼= Γ/H ′, which means that γ satisfies the condition above.

Now suppose there is a comeager conjugacy class C. It must intersect the
open set

D = {α ∈ Rep(Γ, S∞) : ∃n ∈ N ∃H ∈ O α(Γ).n ∼= Γ/H}.

Then for some H ∈ O, and for every β ∈ C, there is n ∈ N such that
β(Γ).n ∼= Γ/H. This contradicts that C also intersects C(H). �

3. Generic representations in metric structures

In this section, we investigate generic properties of representations of
countable groups in automorphism groups of metric structures. Typically,
there are no generic representations in this situation. However, perhaps the
most interesting case, when the metric structure in question is the separable
infinite-dimensional Hilbert space, is still open. It follows from Theorem
2.5 in [15] that when Γ is a group with the Kazhdan’s property (T) whose
finite-dimensional unitary representations form a dense set in the unitary
dual Γ̂, then Γ has a generic unitary representation. See also [4] for a more
explicit statement of this theorem and more elementary proof. Nevertheless,
the existence of such infinite Kazhdan groups is an open question, see e.g.
Question 7.10 in [1].

Here, we prove that an at most countable group Γ has a generic represen-
tation in the isometry group of the Urysohn space and the Urysohn sphere
if and only if Γ is finite. As mentioned in the introduction, Julien Melleray
informed us he had proved it earlier in his habilitation theis, see Theorem
5.78 in [19]. As he did not publish the proof for the Urysohn sphere we use
the opportunity to present our proof here (for the sake of completeness also
with the proof for the Urysohn space which is a simpler version). We also
show that every infinite countable group has meager conjugacy classes in
the linear isometry group of the Gurarij space, which answers a question of
Melleray from the same paper [19]. We also show that these methods can
be used to prove that when one restricts to the space of free actions on the
Random graph, the rational Urysohn space, etc., then every infinite group
has meager classes.

Most importantly, we show that the conjugation action of the isometry
group of the Urysohn space on the space of representations of a fixed infinite
group Γ in the Urysohn space is generically turbulent.

3.1. Urysohn space and Urysohn sphere. Denote by U and by U1 the
Urysohn universal metric space and the Urysohn sphere respectively. We
refer the reader to Chapter 5 in [20] for information about the Urysohn
space. We recall that the Fräıssé limit of finite rational-valued metric spaces
is the so called rational Urysohn space, denoted here by QU, and U is its
completion. Analogously, the Fräıssé limit of finite rational-valued metric
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spaces bounded by one is the rational Urysohn sphere, denoted by QU1,
and its completion is U1. Alternatively, one may obtain U1, as the name
suggests, by picking any point from U and taking the subset of U of those
points having distance one half from the chosen point.

For a fixed countable group Γ, we shall denote the Polish space of rep-
resentations of Γ in the Polish groups Iso(U), resp. Iso(U1) by Rep(Γ,U),
resp. Rep(Γ,U1).

We omit the proof of the following theorem which is straightforward, and
probably known among the experts.

Theorem 3.1. Let Γ be a finite group. Then the classes of all actions of
Γ on finite rational metric spaces, resp. on finite rational metric spaces
bounded by 1 are Fräıssé classes whose limit are an action of Γ on the QU,
resp. on QU1. Their completions are generic actions of Γ on U, resp. on
U1.

Recall that a pseudonorm (or length function) on a group Γ is a function
λ : Γ → R satisfying λ(1Γ) = 0, λ(g) = λ(g−1), for g ∈ Γ, and λ(g · h) ≤
λ(g) + λ(h), for g, h ∈ Γ. We shall generalize this notion below.

Definition 3.2. Let Γ be a group and I some index set. A generalized
pseudonorm on the pair (Γ, I) is a function N : Γ× I2 → [0,∞) satisfying

• N(g, i, j) = N(g−1, j, i), for all g ∈ Γ and i, j ∈ I;
• N(1Γ, i, i) = 0, for every i ∈ I, and N(g, i, j) > 0 for all g ∈ Γ

(including 1Γ) whenever i 6= j;
• N(gh, i, j) ≤ N(g, i, k) +N(h, k, j), for all g, h ∈ Γ and i, j, k ∈ I.

For any i ∈ I, we shall denote by Ni the function defined by Ni(g) =
N(g, i, i). Clearly, it is a pseudonorm on Γ.

Generalized pseudonorms correspond to actions of Γ on metric spaces
by isometries together with representatives of each orbit. Indeed, let I be
some index set, and let N be a generalized pseudonorm on (Γ, I). For each
i ∈ I, let Hi ≤ Γ be the subgroup defined as the kernel of Ni. We define
a metric d on M =

⋃
i∈I Γ/Hi as follows: for g, h ∈ Γ and i, j ∈ I we

set d(gHi, hHj) = N(g−1h, i, j). It is straightforward to check that it is
a metric, and, moreover, that the natural action of Γ on M (defined as
g.(hHi) = (gh)Hi) is an action by isometries.

Conversely, let (M,d) be a metric space on which Γ acts by isometries.
Let I be an index set for all the orbits in M of this action, and for each
i ∈ I select a representative xi ∈ M from this orbit. Now the function
N : Γ× I2 → R defined by N(g, i, j) = d(xi, gxj) is readily checked to be a
generalized pseudonorm.

A function P : Γ × I2 → [0,∞) satisfying all the axioms of the gener-
alized pseudonorm except the triangle inequality is called generalized pre-
pseudonorm.
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Fact 3.3. If P : Γ × I2 → R is a generalized pre-pseudonorm, then there
exists a maximal generalized pseudonorm N satisfying N(g, i, j) ≤ P (g, i, j)
for all g ∈ Γ and i, j ∈ I.

Proof. Consider a complete graph with the set of vertices Γ × I, i.e. |I|
disjoint copies of Γ and consider a real valuation of its edges P ′, where the
value P ′((g, i), (h, j)) is defined to be P (h−1g, i, j), for g, h ∈ Γ and i, j ∈ I.
Now consider the corresponding graph metric N ′ on Γ×I. It is clear that the
functionN(g, i, j) = N ′((1Γ, i), (g, j)) is the desired generalized pseudonorm.
Note that another equivalent way how to define N is to set

N(g, i, j) = inf{
m∑
i=1

P (gi, ki, li) : g = g1 . . . gm, li = ki+1∀i < m}.

�

An analogous notion is that of a partial generalized pseudonorm. A func-
tion P : Γ × I2 → R is a partial generalized pseudonorm if it satisfies all
the axioms of the generalized pseudonorm except that it is defined partially,
i.e. its domain is a proper subset of Γ × I2. Let now P : A ⊆ Γ × I2 → R
be some partial generalized pseudonorm. Take again a graph V with the
set of vertices Γ× I and connect two vertices (g, i) and (h, j) by an edge if
and only if (h−1g, i, j) ∈ A. If V is connected, then we say that the partial
generalized pseudonorm is sufficient. Note that this is the case when for
example A = F × I2, where F is some symmetric generating subset of Γ.
Also, in this case we can extend the partial generalized pseudonorm onto a
genuine generalized pseudonorm.

Fact 3.4. Let P : A ⊆ Γ × I2 → R be a sufficient partial generalized
pseudonorm. Then there exists a maximal generalized pseudonorm N on
Γ× I2 which extends P .

Proof. The proof proceeds as the proof of Fact 3.3. We take graph V with
the set of vertices Γ× I and we connect two vertices (g, i) and (h, j) by an
edge if and only if (h−1g, i, j) ∈ A, as above. For every edge ((g, i), (h, j)) in
V we define a value P ′((g, i), (h, j)) of this edge to be P (h−1g, i, j). Then we
take the graph metric which gives the generalized pseudonorm N as in the
proof of Fact 3.3. The fact that N extends P follows from the property that
P satisfies all the axioms of the generalized pseudonorm on its domain. �

We are now prepared to prove the meagerness of conjugacy classes for the
Urysohn space and the Urysohn sphere.

Theorem 3.5 (see also Theorem 5.78 in [19]). Let Γ be an infinite group.
Then every α ∈ Rep(Γ,U) has all conjugacy classes meager. Analogously,
every α ∈ Rep(Γ,U1) has all conjugacy classes meager.

Proof. Fix an infinite group Γ. First, we work with the full Urysohn space.
Let λ be an arbitrary pseudonorm on Γ. It suffices to show that the set
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C(λ) of all α ∈ Rep(Γ,U) such that for every x ∈ QU there exists g ∈ Γ
with

|λ(g)− dU(α(g)x, x)| > 1/4

is comeager. Indeed, if the conjugacy class of any α′ ∈ Rep(Γ,U) was non-
meager, it would have a non-empty intersection with C(λ0), where λ0(g) =
dU(α′(g)x, x) for some fixed x ∈ QU; this is clearly a contradiction.

To see that C(λ), for any pseudonorm λ on Γ, is comeager, it suffices to
show that for a fixed x ∈ QU the open set of all α ∈ Rep(Γ,U) such that
there exists g ∈ Γ with

|λ(g)− dU(α(g)x, x)| > 1/4,

is dense in Rep(Γ,U).
Let U be an open neighborhood of some β ∈ Rep(Γ,U) given by some

finite set x1, . . . , xn, where x = x1 and each xi, xj lie in different orbits of
β, some finite symmetric set F ⊆ Γ containing the unit and some ε > 0.
Set F ′ = {g−1h : g, h ∈ F}, I = {1, . . . , n} and let N0 : F ′ × I2 → R be
a function defined as N0(g, i, j) = dU(xi, β(g)xj), for every g ∈ F ′, i, j ∈ I.
Let N ′0 : F ′ × I2 → R be a function defined as

N ′0(g, i, j) =

{
0 g = 1Γ, i = j;

N(g, i, j) + ε/2 otherwise.

Note that N ′ is a partial generalized pseudonorm. Let

M ′ = max{N ′0(g, i, j) : g ∈ F ′, i, j ∈ I}.

If the pseudonorm λ is bounded by some K, then we set M = max{M ′,K+
1/4}; if it is unbounded, we set M = M ′. and finally, let N ′′0 : Γ × I2 → R
be a generalized pre-pseudonorm extending N ′0 which coincides with N ′0 on
its domain, and everywhere else it is constantly M . Now we use Fact 3.3 to
find a maximal generalized pseudonorm N bounded by N ′′0 .

Note that

• N(g, i, j) = 0 if and only if g = 1Γ and i = j;
• N(g, i, j) = N ′0(g, i, j) if g ∈ F ′;
• for every i ∈ I for all but finitely many g ∈ Γ we have N(g, i, i) = M .

N gives an action γ′ by isometries on a metric space Y =
⋃
i≤n Γ.yi, where

dY (γ′(g)yi, γ
′(h)yj) = N(h−1g, i, j), for g, h ∈ Γ and i, j ∈ I. Using the

Katětov functor for metric spaces we can extend the action γ′ on Y to an
action γ on U, and then, using the finite extension property of the Urysohn
space, we can find an isometry φ of U such that φ(y1) = x1, and for ev-
ery i ≤ n and g ∈ F we have dU(φ(γ(g)yi), β(g)xi) < ε. Without loss
of generality, we can assume that φ is the identity map, therefore γ is in
the neighborhood U of β. By the construction, there exists g ∈ Γ such
that dU(x, γ(g)x) = M , while λ(g) ≤ M − 1/4 in case λ was bounded, or
λ(g) > M + 1/4 in case λ was unbounded. This finishes the proof for the
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Urysohn space.

Now we work with the Urysohn sphere. Fix some pseudonorm λ on Γ
which is now bounded by 1. Analogously as above, it suffices to show that
for a fixed x ∈ QU1 the open set of all α ∈ Rep(Γ,U) such that there exists
g ∈ Γ with

|λ(g)− dU1(α(g)x, x)| ≥ 1/4,

is dense in Rep(Γ,U1).
The proof proceeds similarly in the beginning, however we cannot take an

advantage of the fact that λ may be unbounded. Let U be an open neigh-
borhood of some β ∈ Rep(Γ,U1) again given by some finite set x1, . . . , xn,
where x = x1, and each xi, xj lies in a different orbit of β, some finite sym-
metric set F ⊆ Γ containing the unit, and some ε > 0. Set F ′ = {g−1h :
g, h ∈ F}, I = {1, . . . , n}, and let N0 : F ′× I2 → R be a function defined as
N0(g, i, j) = dU1(xi, β(g)xj), for every g ∈ F ′, i, j ∈ I. Let N ′0 : F ′× I2 → R
be a function defined as

N ′0(g, i, j) =

{
0 g = 1Γ, i = j;

max{N(g, i, j) + ε/2, 1} otherwise.

Set m = min{N ′0(g, i, j) : g 6= 1Γ or i 6= j}. Note that m > 0. Take now
M = d1/me+ 1.

Suppose first that there are infinitely many g ∈ Γ such that λ(g) ≤ 3/4.
Then we set N ′′0 : Γ× I2 → R to be a generalized pre-pseudonorm extending
N ′0 which coincides with N ′0 on its domain, and everywhere else it is con-
stantly 1. Now we use Fact 3.3 to find a maximal generalized pseudonorm
N bounded by N ′′0 . It is clear that N coincides with N ′0 on its domain and
it is equal to 1 at co-finitely many elements.

If, on the other hand, for all but finitely many g we have λ(g) > 3/4,
then we may and will find some g ∈ Γ satisfying λ(g) > 3/4 and such that g
cannot be obtained as a product of less than M -many elements of F ′. Then
we set N ′′0 : Γ × I2 → R to be a generalized pre-pseudonorm extending N ′0
which coincides with N ′0 on its domain, it is equal to 1/2 for at (g, 1, 1),
and everywhere else it is constantly 1. We again use Fact 3.3 to find a
maximal generalized pseudonorm N bounded by N ′′0 . Clearly N(g, 1, 1) ≤
1/2. We now check that N coincides with N ′0 on its domain. Suppose
that there is some (f, i, j) from the domain of N ′0 such that N(f, i, j) <
N ′0(f, i, j). By the construction of N , it means there are g1, . . . , gn ∈ F ′

and k1, l1, . . . , kn, ln ∈ I such that f = g1 . . . gn and li = ki+1 for i < n and
N(f, i, j) =

∑n
i=1N

′′
0 (gi, ki, li) < N ′0(f, i, j). We claim that n < M − 1 since

otherwise N(f, i, j) =
∑n

i=1N
′′
0 (gi, ki, li) ≥

∑n
i=1m ≥ 1 (note that for each

i ≤ n we have N ′′0 (gi, ki, li) ≥ m). It is clear that for at least one i ≤ n
we must have (gi, ki, li) = (g, 1, 1) since otherwise all (gi, ki, li) are from the
domain of N ′0 and N ′0 is a restriction of a genuine generalized pseudonorm,
so the triangle inequalities are satisfied. there. On the other hand, there
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is at most one i ≤ n such that (gi, ki, li) = (g, 1, 1) since N ′′0 (g, 1, 1) = 1/2.
Let i ≤ n be such that gi = g. We have f = g1 . . . gi−1ggi+1 . . . gn, so g =
g−1
i−1 . . . g

−1
1 fg−1

n . . . g−1
i+1, but that is in contradiction with the assumption

that g cannot be obtain as a product of less than M -many elements of F ′.
Now we finish the proof as in the Urysohn space case. N gives an action

γ′ by isometries on a metric space Y =
⋃
i≤n Γ.yi bounded by 1, where

dY (γ′(g)yi, γ
′(h)yj) = N(h−1g, i, j), for g, h ∈ Γ and i, j ∈ I. Using the

Katětov functor for metric spaces bounded by 1, we can extend the action
γ′ on Y to an action γ on U1, and then, using the finite extension property
of the Urysohn sphere, we can find an isometry φ of U such that φ(y1) = x1,
and for every i ≤ n and g ∈ F we have dU1(φ(γ(g)yi), β(g)xi) < ε. Without
loss of generality, we can assume that φ is the identity map, therefore γ is
in the neighborhood U of β.

Now if λ was such that for infinitely many g we have λ(g) ≤ 3/4, then we
have guaranteed that there are co-finitely many g ∈ Γ such that dUrS (x, γ(g)x =
1). If, on the other hand, for all but finitely many g we have λ(g) > 3/4,
then we have guaranteed an existence of g ∈ Γ such that λ(g) > 3/4, while
dUrS (x, γ(g)x ≤ 1/2). This finishes the proof. �

An object analogous with its properties to the Urysohn space in the cate-
gory of Banach spaces is the Gurarij space ([7]), denoted here by G. We refer
the reader to the paper [17] for information about this Banach space. We can
use similar methods as in the proof of Theorem 3.5 to show that also every
representation of every infinite group has meager conjugacy classes in the
linear isometry group of the Gurarij space. Since the arguments are repet-
itive we provide only a sketch of the proof. The existence of the Katětov
functor in the category of Banach spaces is shown in [2]. We mention that
this theorem answers Question 5.7 from [19].

Theorem 3.6. Let Γ be a countably infinite group. Then every conjugacy
class in Rep(Γ,G) is meager.

Sketch of the proof. Fix an infinite group Γ and some countable dense subset
D of the sphere in G. Notice that for any α ∈ Rep(Γ,G) and any x ∈ G
of norm one, the function on Γ defined as g → ‖α(g)x − x‖ is again a
pseudonorm (bounded by 2). Therefore, as in the case of the Urysohn
sphere, it suffices to show that for any pseudonorm λ on Γ, bounded by 2,
we have that the set of those α ∈ Rep(Γ,G) such that for every x ∈ D there
exists g ∈ Γ with

|λ(g)− ‖α(g)x− x‖| > 1/4

is comeager. That again reduces to showing that for a fixed x ∈ D the open
set of all α ∈ Rep(Γ,G) such that there exists g ∈ Γ with

|λ(g)− ‖α(g)x− x‖| > 1/4,

is dense in Rep(Γ,G).



GENERIC REPRESENTATIONS 23

Take U to be an open neighborhood of some β ∈ Rep(Γ,G) given by some
finite set x1, . . . , xn ∈ D of unit linearly independent vectors, where x = x1

and each xi, xj lie in different orbits of β, some finite symmetric set F ⊆ Γ
containing the unit and some ε > 0. Perturbing the representation β by less
than ε if necessary, we may assume that the set S = {β(f)xi : f ∈ F, i ≤
n} consists of linearly independent elements. As in the Urysohn sphere
case, we get that N ′ : F × I2 → R defined as N ′(f, i, j) = ‖xi − β(f)xj‖
is a partial generalized pseudonorm, where I = {1, . . . , n}. By the same
arguments as for the Urysohn sphere we get that N ′ extends to a generalized
pseudonorm N : Γ × I2 → R that ‘avoids’ λ, i.e. there exists g ∈ Γ such
that |λ(g)−N(g, 1, 1)| > 1/4.

Now let X be the vector space spanned by the set {g.xi : g ∈ Γ, i ≤ n}.
Note that Γ acts canonically on X, so for any g ∈ Γ and x ∈ X the element
g.x is defined. By Y we denote the finite-dimensional subspace spanned by
{g.xi : g ∈ F, i ≤ n}. We define a norm on X. First we define ‘a partial
norm’ ‖ · ‖′ on X and then show how it naturally extends to a norm on X
so that the canonical action of Γ on X is by linear isometries. Since we may
identify Y with the finite-dimensional subspace of G spanned by S we set
for any x ∈ Y ,

‖x‖′ = ‖x‖G.
Next, for any g, h ∈ Γ and i, j ≤ n we set

‖g.xi − h.xj‖′ = ‖h.xj − g.xi‖′ = N(g−1h, i, j).

Note that in case that g.xi−h.xj ∈ Y we have ‖g.xi−h.xj‖G = N(g−1h, i, j),
so our definition is consistent. For any g ∈ Γ and i ≤ n we set

‖g.xi‖′ = 1,

this is again consistent, and finally we make ‖·‖′ invariant under the canoni-
cal action of Γ, i.e. for any g ∈ Γ and x ∈ X such that ‖x‖′ has been defined
above we set

‖g.x‖′ = ‖x‖′.
This is again readily checked to be consistent.

Now we set ‖ · ‖ to be the greatest norm on X that extends ‖ · ‖′. That
can be formally defined as follows. For any x ∈ X we set

‖x‖ = inf{
m∑
i=1

|αi|‖xi‖′ : (αi)i≤m ⊆ R, (xi)i≤m ⊆ dom(‖·‖′), x =
m∑
i=1

αixi}.

Finally, using the Katětov functor for Banach spaces, we may extend the
action Γ on X to an action γ of Γ on G, and moreover in such a way that
γ ∈ U and |‖γ(g)x − x‖ − λ(g)| > 1/4 which is what we were supposed to
show. �

Remark 3.7. One may ask what happens when Γ is a finite group. Is there
a generic representation of Γ in G? Indeed, this is the case and it is again
possible to construct such generic representation by Fräıssé theory. It is



24 MICHAL DOUCHA AND MACIEJ MALICKI

perhaps less clear though what is the right Fräıssé class. We refer the reader
to Section 4 in [5] where similar Fräıssé classes of representations of groups
in Banach spaces were considered.

3.2. Free actions on countable metric spaces. Let Γ be a countable
discrete group and X a countable structure. Notice that the set RepF (Γ, X)
of all free actions of Γ on X is a Gδ set invariant under the conjugacy
action of Γ and therefore a Polish space itself. One may thus also study
conjugacy classes in these spaces. It is obvious from the proofs of Theorems
3.5 and 3.6 that the main difference between spaces Rep(Γ,Aut(M)) and
Rep(Γ, Iso(N)), where M is a countable metric space viewed as a countable
discrete structure and N is a Polish metric space, that in the latter ‘locally
free’ actions are dense. Here by ‘locally free actions are dense’ we mean that
for any finite set {x1, . . . , xn} the set of those actions whose restriction on
the orbit of xi, for i ≤ n, is regular is dense. Since this is also satisfied,
for obvious reasons, in the spaces of free actions we can prove by the same
means as in the proof of Theorem 3.5 the following.

Theorem 3.8. Let Γ be a countably infinite group. Then all conjugacy
classes are meager in the spaces RepF (Γ,Aut(QU)), RepF (Γ,Aut(QU1))
and RepF (Γ,Aut(R)), where R is the random graph.

This stands in stark contrast with Rosendal’s results from [23] which
say that all finitely generated groups with the RZ property have a generic
representation in Iso(QU), and all finitely generated groups with the 2-RZ
property have a generic representation in Aut(R).

3.3. Generic turbulence. The notion of turbulence was introduced by
Hjorth in [10] in order to develop methods for proving non-classifiability by
countable structures. Suppose that G is a Polish group acting continuously
on a Polish space X. Fix a point x ∈ X, some open neighborhood U of x in
X and some open neighborhood V of the unit in G. The local orbit O(U, V )
of x is the set {y ∈ U : ∃g1, . . . , gn ∈ V (y = g1 . . . gn.x∧∀i ≤ n (g1 . . . gi.x ∈
U))}.

A point x ∈ X is turbulent if for every open neighborhood U of x in X
and every open neighborhood V of 1G ∈ G, the local orbit O(U, V ) of x is
somewhere dense (in U). If there is a G-invariant comeager subset Y ⊆ X
such that every G-orbit in Y is dense and meager and every point in Y is
turbulent, then we say that the G-action on X is generically turbulent. It
is shown in [10] that as a consequence the corresponding orbit equivalence
relation on X is not classifiable by countable structures.

Our aim is now to show that the orbit equivalence given by the action of
Iso(U) on Rep(Γ,U) by conjugation is generically turbulent whenever Γ is
infinite. By Theorem 3.21 in [10], to show that it is sufficient to prove that
all equivalences classes are meager, which we have proved already, and that
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there exists a turbulent element whose equivalence class is dense. That will
be the content of the following theorem.

We note that Kerr, Li and Pichot in [15] prove analogous statements
for unitary representation. Namely, in Theorem 3.3 they prove that for any
countable group Γ the action of U(H) on the space Repλ(Γ,H) of all unitary
representations weakly contained in the regular representation is generically
turbulent. It follows from Theorem 2.5 there that for any countable group
without property (T) the action of U(H) on Rep(Γ,H) is generically turbu-
lent.

Theorem 3.9. Let Γ be a countably infinite group. Then there exists α ∈
Rep(Γ,U) whose conjugacy class is dense and which is turbulent.

Proof. First we work with finitely generated groups. Fix some finitely gen-
erated group Γ. Let I be some finite index set and call a generalized
pseudonorm N on Γ × I2 finitely generated if there exists a sufficient par-
tial generalized pseudonorm with finite domain such that N is its maximal
extension (guaranteed by Fact 3.4). An embedding between two generalized
pseudonorms N1 on Γ × I2

1 and N2 on Γ × I2
2 is an injection ι : I1 ↪→ I2

such that for every g ∈ Γ and i, j ∈ I1 we have N1(g, i, j) = N2(g, ι(i), ι(j)).
Typically, ι will be just the inclusion.

Lemma 3.10. The class of all finitely generated rational valued generalized
pseudonorms is a Fräıssé class.

Note that being rational valued means that it is the maximal extension
of some partial generalized pseudonorm with finite domain which is rational
valued.

Proof. This is straightforward, we only check the amalgamation property.
Suppose we are given such generalized pseudonorms N1, N2 and N3 defined
on Γ × I1, Γ × I2 and Γ × I3 respectively, and I1 ⊆ I2 ∩ I3. That is, there
are embeddings from N1 into N2 and N3. Suppose that Ni is the maximal
extension of a partial generalized pseudonorm Pi defined on Ai ⊆ Γ × I2

i ,
where i ∈ {2, 3}. Set I4 = I2 ∪ I3 and A4 = A2 ∪ A3. Define a partial
generalized pseudonorm P4 on A4 ⊆ Γ× I2

4 so that it extends P2, resp. P3.
Note that this is well-defined as P2 and P3 agree on A2 ∩ A3. Set N4 to
be the maximal extension of P4. This is readily checked to be the desired
amalgam. �

The Fräıssé limit is some rational valued generalized pseudonorm NF

defined on Γ × I2
F , for some infinite IF . NF corresponds to an action of Γ

on some rational valued countable metric space with orbits indexed by IF
and for each i ∈ IF there is a distinguished base point xi of that orbit. It is
straightforward to check that this metric space is isometric to QU and that
D = {xi : i ∈ IF } is dense. Denote by α this action on QU and use the
same letter also for its extension on U, the completion of QU. We aim to
show that α is the desired element from the statement of Theorem 3.9.
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First we observe that the conjugacy class of α is dense. That is easy. Fix
an open neighborhood O of some β ∈ Rep(Γ,U) given by some x1, . . . , xn ∈
U, some finite symmetric F ⊆ Γ containing the unit and some ε > 0. Set
F ′ = {g−1h : g, h ∈ F}. Set I = {1, . . . , n}. Define a partial generalized
pseudonorm P on F ′ × I2 ⊆ Γ × I2 as follows: set P (g, i, j) = dU(xi, g.xj)
for (g, i, j) ∈ F ′ × I2. By ε-perturbing P a bit if necessary, we may assume
that P is rational valued. Now using the property of the Fräıssé limits we
see that that there are i1, . . . , in ∈ IF such that NF (g, ik, il) = P (g, k, l) for
every g ∈ F ′ and k, l ∈ I. Clearly we can then find an isometry φ ∈ Iso(U)
such that φ−1αφ ∈ O.

We now check that α is turbulent. Suppose, without loss of generality,
that IF = N. Fix some open neighborhood U of α which we may assume
is given by x1, . . . , xn ∈ D ⊆ QU, finite symmetric F ⊆ Γ containing the
unit and some ε > 0, and some open neighborhood V of id in Iso(U) which
we may assume is given also by the same x1, . . . , xn ∈ D ⊆ QU and ε >
0. Recall that by the construction, for every f, g ∈ F , i, j ≤ n we have
dU(α(f).xi, α(g).xj) = NF (g−1f, i, j). Set F ′ = {g−1f : g, f ∈ F} and
I = {1, . . . , n}. The restriction of NF onto Γ × I2 is a finitely generated
generalized pseudonorm. Without loss of generality we may assume that it
is generated by the values on A = F ′ × I2.

Now we check that the local orbit O(U, V ) of α is dense in U . Take some
β ∈ U and some its open neighborhoodW ⊆ U given by x1, . . . , xn, . . . , xm ∈
D ⊆ QU, some finite symmetric F ⊆ H ⊆ Γ containing the unit and
some ε > ε′ > 0. Set again H ′ = {g−1f : g, f ∈ H}, J = {1, . . . ,m}
and let Pβ be the partial generalized pseudonorm on H ′ × J2 defined as
Pβ(g, i, j) = dU(xi, β(g).xj). Again, by perturbing Pβ a bit if necessary,
we may assume that Pβ is rational valued. Analogously, set Pα to be the
restriction of NF onto H ′×J2. We may suppose, without loss of generality,
that the finitely generated generalized pseudonorm NF � Γ×J2 is generated
by its values on H ′ × J2, i.e. it is generated by Pα.

Before we proceed further we need a few notions and basic lemmas. First,
suppose that N1 and N2 are two partial generalized pseudonorms defined on
the same set of the form A×L2 for some A ⊆ Γ. Then we define the distance
D(N1, N2) between them as the supremum distance, i.e. supa∈A×L2 |N1(a)−
N2(a)|. For any n ∈ N denote by L × n the set {(i, j) : i ∈ L, j ≤ n} and
for any j ≤ n denote by L(j) ⊆ L × n the subset {(i, j) : i ∈ L}. Finally,
denote by (L × n)′ ⊆ (L × n)2 the set {((i, j), (i, j + 1)), ((i, j + 1), (i, j)) :
i ∈ L, j < n}.

Lemma 3.11. There exists a partial generalized pseudonorm N defined on
B = (A× L(1)2) ∪ (A× L(2)2) ∪ ({1Γ} × (L× n)′) such that

• N(a, (i, k), (j, k)) = Nk(a, i, j), for k ∈ {1, 2}, a ∈ A and i, j ∈ L;
• N(1Γ, (i, j), (i, j + 1)) = D(N1, N2).
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Proof. Define N as in the statement of the lemma. We must check that it
is a partial generalized pseudonorm. The only non-trivial thing to check is
the triangle inequality. Suppose that the triangle inequality does not hold.
That is, there are g, g1, . . . , gj ∈ A, (i1, i

′
1), . . . , (ij+1, i

′
j+1) ∈ L×n such that

• g = g1 . . . gj ;
• (gl, (il, i

′
l), (il+1, i

′
l+1)) ∈ B for l ≤ j and (g, (i1, i

′
1), (ij+1, i

′
j+1)) ∈ B;

• N(g, (i1, i
′
1), (ij+1, i

′
j+1)) >

∑j
l=1N(gl, (il, i

′
l), (il+1, i

′
l+1)).

The case when g = 1Γ and i′1 6= i′j+1, i.e. (g, (i1, i
′
1), (ij+1, i

′
j+1)) ∈ {1Γ} ×

(L × n)′ is straightforward. So let us assume that i′1 = i′l+1 = 1, the case
when it is equal to 2 is symmetric.

Suppose also that j above is the least possible. We claim that for no l < j
we have i′l = i′l+1 = i′l+2. Indeed, by the triangle inequality we have

N(gl, (il, i
′
l), (il+1, i

′
l+1)) +N(gl+1, (il+1, i

′
l+1), (il+2, i

′
l+2)) =

Nil(gl, (il, i
′
l), (il+1, i

′
l+1)) +Nil(gl+1, (il+1, i

′
l+1), (il+2, i

′
l+2)) ≥

Nil(glgl+1, (il, i
′
l), (il+2, i

′
l+2)) = N(glgl+1, (il, i

′
l), (il+2, i

′
l+2)).

So we may shorten the decomposition of g which contradicts that j was the
least possible.

It follows that without loss of generality we may assume that for l ≤ j
odd we have that gl ∈ A and i′l = i′l+1, while for l ≤ j even we have gl = 1Γ

and i′l 6= i′l+1. Suppose that for some l ≤ j we have that i′l = 2. It follows
that l < j therefore by the paragraph above we have

N(gl−1, (il−1, i
′
l−1), (il, i

′
l)) +N(gl, (il, i

′
l), (il+1, i

′
l+1))+

N(gl+1, (il+1, i
′
l+1), (il+2, i

′
l+2)) = D(N1, N2) +N2(gl, il, il+1) +D(N1, N2) ≥

N1(gl, il, il+1).

Therefore we may again shorten the decomposition which again contradicts
that j was the least possible. It follows that for no l ≤ j we have that i′l = 2.
However, then we are clearly done. �

The proof of the following lemma is very easy and left to the reader. Note
in particular that if N is a generalized pseudonorm and r > 0 is a positive
real, then rN is a generalized pseudonorm, and if N1, N2 are two generalized
pseudonorms, then N1 +N2 is as well.

Lemma 3.12. Suppose that we have generalized pseudonorms N1 and N2 as
above. Take any 0 < t < 1. Then for the convex combination N3 = tN1+(1−
t)N2 we have D(N1, N3) = (1− t)D(N1, N2) and D(N2, N3) = tD(N1, N2).

Now set M = D(Pα, Pβ). Let δ > 0 be an arbitrary rational number
such that δ < ε and k = M/δ is in N. For every 1 < j < k let Pj be the

convex combination j
kPα + k−j

k Pβ defined on H ′ × J2. Notice that since
for every i, i′ ∈ J we have Pα(1Γ, i, i

′) = Pβ(1Γ, i, i
′), we also have for every

1 < j < k, Pα(1Γ, i, i
′) = Pj(1Γ, i, i

′). Moreover, since for every i, i′ ∈ I and
every g ∈ F ′ we have |Pα(g, i, i′) − Pβ(g, i, i′)| < ε, we also have for every
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1 < j < k, |Pα(g, i, i′)− Pj(g, i, i′)| < ε.

Now we define a rational valued sufficient partial generalized pseudonorm
N on C = (

⋃
j≤kH

′ × J(j)) ∪ ({1Γ} × (J × k)′) as follows:

• For any b ∈ {1Γ} × (J × k)′ we set N(b) = δ.
• For any g ∈ H ′ and i, i′ ≤ m we set N(g, (i, 1), (i′, 1)) = Pα(g, i, i′)

and N(g, (i, k), (i′, k)) = Pβ(g, i, i′).
• For any g ∈ H ′, i, i′ ≤ m and 1 < j < k we set N(g, (i, j), (i′, j)) =
Pj(g, i, i

′).

It follows from Lemma 3.12 and repeated use of Lemma 3.11 that N is in-
deed a rational valued sufficient generalized pseudonorm.

By the extension property of the Fräıssé limit NF we may realize N as
the extension of NF � Γ × I2 and as a subfunction of NF . To simplify the
notation, we view C as a subset of Γ×I2

F and assume that NF � C = N � C.
Now we may find φ1 ∈ V ⊆ Iso(U) such that for every i ≤ m and every

1 < j ≤ k, φ1(α(f).x(i,j) = α(f).x(i,j−1).
Indeed, that follows from the fact that for every j < k, the subspaces

{x(i,j) : i ≤ m} and {x(i,j+1) : i ≤ m} are isometric.
Analogously, for every 1 < l < k we may find φl ∈ V such that for every

i ≤ m and every l < j < k, φl ◦ . . . ◦ φ1(x(i,j) = x(i,j−l).
That shows that for every l < k − 1 we have

φl ◦ . . . ◦ φ1 ◦ α ◦ φ−1
1 ◦ . . . ◦ φ

−1
l ∈ U

and

φk−1 ◦ . . . ◦ φ1 ◦ α ◦ φ−1
1 ◦ . . . ◦ φ

−1
k−1 ∈W

and we are done.

If Γ is infinitely generated, then write Γ as an increasing union Γ1 ≤ Γ2 ≤
. . . of finitely generated subgroups. Denote by αn, for n ∈ N, the action of
Γn on QU obtained as a Fräıssé limit as above. Since the Fräıssé limits are
uniquely characterized by the extension property, it is easy to check that for
every n ∈ N the restriction of αn+1 onto Γn is isomorphic to αn. Denote
by Un the copy of QU on which αn acts. By the identification of αn with
the restriction of αn+1 we may view Un as a subspace of Un+1. Moreover,
it is easy to see that Un is dense in Un+1. Therefore we get the direct limit
of the actions αn to be an action α on the union U =

⋃
n Un which is also

isometric to QU and each Un is dense in U . Therefore α is also naturally a
direct limit of the actions αn on the completion U and it follows from the
argument above, for finitely generated groups, that α is a turbulent element
in Rep(Γ,U). �

Let us mention that analogous proof can be also used to show that the
conjugacy action of Iso(U1) on Rep(Γ,U1), for any infinite Γ, is generically
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turbulent. The turbulent element there is the completion of the Fräıssé limit
of finitely generated bounded rational generalized pseudonorms on Γ.

Proposition 3.13. The conjugacy action of Iso(U1) on Rep(Γ,U1) is gener-
ically turbulent for any countably infinite group Γ.

To proof of the same result for the Gurarij space is more technical. The
turbulent element can be again constructed as an appropriate Fräıssé limit of
certain ‘finitely generated actions’ of Γ on finite-dimensional Banach spaces.
We refer the reader the reader again to Section 4 of [5] where similar Fräıssé
classes of finitely generated actions on Banach spaces were considered.
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