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Driven Navier-Stokes/Euler system

Field equations
do + divk(ou)dt =0
d(ou)+div,(eueu)dt+V,p(o)dt = div,S(V.u)dt+ oG(x, o, u)d W |

2
S(Vyu) = <qu + Viu-— 3divxuﬂ> + Adiv,ul

Stochastic forcing

0G(x, 0,u)dW =" 0G(x, 0, u)dBx
k=1

Iconic examples

Gk = fi(x), Gk = udk(x) — "stochastic damping”




Initial and boundary conditions

(Random) initial data
2(0,-) = o, (0u)(0,-) = (ou)o

Spatial domain

u - njgg = 0 impermeability

u X nlpg = 0 no-slip

[S - n] X n|lsgg = 0 complete slip




Weak (PDE) formulation

Field equations

[/ QédX} i Z/T/QU-VX¢dth7
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[/qu.¢dx] :T—/OT/QQu@)u:VXqS—kp(g)divxgb dxdt

//s () : Vi dxdt +

/OT</ gG~¢dx>dW

= ¢(x) — a smooth test function

Stochastic integral (Itd’s formulation)

/OT (/QQG-¢dx>dW:§_o:/OT(/QQGk.(bdX)dﬁk




Admissibility

Energy inequality
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Strong vs. martingale solutions

Strong solutions

m the functions g, u are differentiable a.s., the equations are
satisfied in the classical sense

m the probability space uniquely determined

Martingale solutions

m solutions defined on a different, typically, the standard
probability space

m the white noise as well as the initial data coincide with the
originals in law




Main difficulties

Finite—dimensional approximation

Vacuum zone, random variables ou and u

A priori bounds

Energy a priori bounds only in expectations

Stochastic compactness method

Skorokhod—Prokhorov theorem (works on Polish spaces), weak
topology is not Polish




Existence theory

Local existence of strong solutions [Kim [2011]], [Breit, EF,
Hofmanova [2017]]

If the initial data are smooth, then the problem admits local-in-time
smooth solutions. Solutions exist up to a (maximal) positive
stopping time. The life-span is a random variable.

Global existence for the Navier—Stokes system [Breit,
Hofmanova [2015]

The Navier-Stokes system admits global-in—time martingale
solutions for

N
p(o) = o7, v> 5




Relative energy inequalit

Relative energy

¢ (o.u[r0) = [ [Gohu-UP+ Plo) -

Relative energy inequality

—/Tﬁthf(g,u r,u) dt

/w/SVu S(VxU) : (Veu — V,U) dxdt

< (0)E (g, ' u / deRE+/OT¢R (g, r U)

Test functions
dr = Ddr dt + Dir dW, dU = DZU dt + DU dW

A4O0>» «F>» «E>» <«



Remainder
Remainder term
R (g7u r,U) :/ Q(Dth +u- VXU)(U —u) dx
Q
+/ ((r— 0)P"(r)DZr + YV, P'(r)(rU — ou)) dx
Q

/diva(p(e)—p(r)) dx
2Z/g’Gk 0. ou) DSU]k’ dx

k>1

=5 / oP" (NIID5rl? dx + 5 Z/ MDErlel” dx

k, k>1

Jr/QS(VXU) 1 (ViU — V,u) dx




Weak—strong uniqueness

Weak—strong uniqueness [Breit, EF, Hofmanova [2016]]

Pathwise uniqueness.

A weak and strong solutions defined on the same probability space
and emanating from the same initial data coincide as long as the
latter exists

Uniqueness in law.

If a weak and strong solution are defined on a different probability
space, then their laws are the same provided the laws of the initial
data are the same




Stationary solutions to the Navier—Stokes system

Basic hypotheses
|
|Gk| + ‘VGk‘ X o, ZO&% < o0
k>0

N
po) = o", v > 5

m complete slip/no slip boundary conditions

Stationary solutions [Breit, EF, Hofmanova, Maslowski] [2017]

For a given (deterministic) mass

M:/gw>o
Q

the Navier—Stokes system admits a stationary martingale solution.




Method of the proof

Finite—dimensional approximation

Use the Krylov—Bogolyubov theory on the approximate system

do + divk(ou) = elAo+ M (/ 0 dx)
Q

+ Galerkin approximation for the momentum equation

Uniform bounds
Uniform bounds based on deterministic estimates + 1td's chain rule

Stochastic compactness method

Skorokhod-Prokhorov theorem (works on Polish spaces), here we
have weak topology




Complete system — more physics?

Complete system
do + div(pu)dt =0
d(ou)+divy(euu)dt+Vp(e, ¥)dt = div,S(V,u)dt+| 0G(x, g, u)dW

2
S(Vxu) = <qu +Viu— 3divxu}1> + Miv,ul

Internal energy balance

doe(o,9)+divy(oe(o, #)u)dt+diveqdt = S(Vu) : udt—p(p, ¥)div,udt
q=—rV,0

Gibbs’ relation

9Ds(0.9) = De(o.9) + plo. 9)D (;)



Weak (PDE) solutions to the Euler system

Infinitely many weak (PDE) solutions, Breit, EF, Hofmanova
[2017]

Let T > 0 and the initial data

00 € C3(Q), 00 >0, up € C3(Q)

be given.
There exists a sequence of strictly positive stopping times

™ >0, T — 00

a.s. such that the initial-value problem for the

’ compressible Euler system‘ possesses infinitely many solutions
defined in (0, T A 7p). Solutions are adapted to the filtration
associated to the Wiener process W'.




Semi-deterministic approach - additive noise

“Additive noise” problem

Oro + divy(ou) =0

Ot(ou) + divye(ou ® u) + Vip(o) = QZ G401 Sk
k=1

0GBk = 0GAW

k=1




Additive noise, Step |

Step |

O(ou—0GW)+divy(ou®@u)+Vip(0) = —0:0GW = div,(ou)GW

Transformed system |

w = ou — oGW

Oro + dive(w + oGW) =0
(w4 oGW) ® (w + oGW)
4
= dive(w + oGW)GW

8tW + diVX (

) + V.p(0)




Additive noise, Step Il

Step 11

w=v+V+V,0 divxv:07/vd><:07 V =V(t)
Q

Transformed system ||

w = ou — oGW

Oro + divy(Vx® + oGW) =0
(v+V+Vx¢+QGW)@(v+V+VX¢+QGW)>
0
HV,p(0) + Vide® = diva(Vx® + 0GW)GW — 9,V

3tv + diVX (




Additive noise, Step IlI

Step 11
Fix ®, 9, V so that

1
00.) = 20, V(0) = / uo dx, V,®(0,-) = H-[ug]
Q
Oro + divy(Vi® + oGW) =0

1
OV = @divx(vxcb + 0GW)GW

div, (VXM + VMt — i/diva>

= divy(Vx® + 0GW)GW — 9,V




Additive noise, Step IV

Step IV
Fix h, H so that

2
h=V+V,®+oGW, H=V.M+ VM- ~div,MI € Ry,

Tranformed system |1l
(v+h)® (v+h)
0

81»\’ + diVX (

—H+ p(o)I + 8t<b]l) =0
div,v =0

1
v(0,-) = vo = Hlug] — |Q|/Qu0 dx




Additive noise, Step V

Prescribing the kinetic energy

1|lv+h? N
S e n- T plo) +00). A= A)

Abstract Euler system
(v+h)®(v+h) _1|v+h|2H_H> _o

0 N o

div,v =0
1|v+h[?
—_— = e
2 o

v(0,) =vp

atV + diVx <




Subsolutions

Field equations, differential constraints
Oiv + div F =0, divev =0
v(0,-) =vg, v(T,:)=vr

Non-linear constraint

ve C([0, T] x RV, Fe C([o, T] x Q; RNXNY,

sym,0

(v+h)®(v+h)
0

—F+M| <e

>y /\max
2




Subsolution relaxation

Algebraic inequality

2
1|v+h| <N
2 0

(v+h)®(v+h)
0

— 2 AI‘I‘laX

Solutions

1|v+h[?
z —e
2 0

=

(v+h)®(v+h)_l|v+h|2ﬂ

F:
0 N

+M

—F+M| <e



Augmenting oscillations

Oscillatory lemma

If
o,e,h € C(Q;RV),0,e >0, He C(Q;RN*N)

sym,0
N
— Amax [h®h —]HI] <ein Q,
2 0

then there exist

w, € C°(Q;RV), G, e C(Q;RN*NY, n=0,1,...

sym,0

dw), + divyG, = 0, div,w, =0in R x RV,

ﬂ)\ [(h+w,,)®(h+wn) B
2 max Q

(H+Gn):| <e

n—oo

n2 1 h2
w, =0, Iiminf/ [whl dxdtz/\(maxe)/ <e||
Q © @ 7Jo 20

2
> dxdt




Basic ideas of proof [DeLellis and Székelyhidi]

Basic result

Unit cube and constant coefficients g, e, h, H

Scaling

Localizing the basic result to “small” cubes by means of scaling

arguments

Approximation

Replacing all continuous functions by their means on any of the
“small” cubes




Difficulties in the stochastic world

Adaptiveness

All quantities must be adapted to the filtration associated to the
Wiener process W

Geometric setting

Continuous functions approximated in a similar way as in the

definition of It6's integral
Admissible directions for oscillations selected by the Kuratowski,
Ryll-Nardzewski theorem

Space—time localization

Stopping the Wiener process by its Holder norm




