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WCG SPACES AND THEIR SUBSPACES GRASPED BY
PROJECTIONAL SKELETONS

MARIÁN FABIAN AND VICENTE MONTESINOS

Dedicated to the memory of Pawel Domański. Requiescat in pace!

Abstract. Weakly compactly generated Banach spaces and their subspaces are character-
ized by the presence of projectional skeletons with some additional properties. We work
with real spaces. However the presented statements can be extended, without much extra
effort, to complex spaces.

1. Introduction

Projectional resolutions of the identity in Banach spaces have been an important tool for
the theory of nonseparable Banach spaces for decades. Recently, a new related and efficient
instrument —projectional skeletons— made its successful way into the nonseparable theory.
It was introduced by W. Kubís, in his paper [12]: He proved in particular that the fairly
big class of 1-Pličko spaces is exactly that admitting a commutative 1-projectional skeleton.
The paper [4] characterized Asplund spaces and Asplund WCG spaces with the help of
suitable projectional skeletons. In this note, we characterize WCG spaces and their subspaces
in a similar flavor. The more or less already known characterization of weakly Lindelöf
determined spaces is also recalled.Throughout this note, we consider only real Banach spaces.
The art of how to deal also with complex spaces can be found in [15] and [4].

The notation used here is standard. X (or (X, ‖ · ‖) if we wish to specify the symbol for
its norm) will denote a real Banach space, BX its closed unit ball, and X∗ its dual space,
endowed with the standard dual norm, also denoted by ‖ · ‖. The word “subspace” will
always mean a closed linear subset. If Y is a subspace of a Banach space X, we shall denote
by BY its closed unit ball, i.e., BY = BX ∩ Y . If M is a subset of X, then span(M) and
M mean the linear hull of M and the closure of M , respectively. If M is a subset of X∗,
then M

∗
means the weak∗ closure of M . The action of an element x∗ ∈ X∗ on an element

x ∈ X will be denoted by x∗(x) or, alternatively, by 〈x∗, x〉. If x ∈ X and M ⊂ X∗, we put
sup 〈M,x〉 instead of sup {〈x∗, x〉 : x∗ ∈M}. For a set M in a topological space, densM is
the smallest cardinal κ such that M has a dense subset of cardinality κ. The weak topology
w of a Banach space X is the topology of the pointwise convergence on the elements in X∗,
and the weak-star topology w∗ is the topology on X∗ of the pointwise convergence on points
in X. Further concepts are introduced later. For the non-defined ones, the reader is invited
to look into, e.g., [9].
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2. “Dissecting” a nonseparable Banach space

2.1. Complemented subspaces and projections. “Dissecting” a Banach space X into
pieces —totally or partially ordered “chains” of complemented subspaces— is a tool for, on
the one hand, looking into its structure and, on the other, proving results by transfinite
induction (the Occam’s razor from the scholasticism). To write X as the topological direct
sum of two subspaces X = V ⊕W is equivalent to construct a continuous linear projection
P : X → X such that PX = V and (P−1{0} =) (I − P )X = W . In order to carry the
construction with no extra effort to other situations —like to dual spaces— it is convenient
to consider, from the beginning, projections that are, moreover, w(X,D)-continuous, where
D is a given r-norming subspace of the dual space X∗, i.e., a subspace D of X∗ such that
(1/r)‖x‖ ≤ sup{x∗(x) : x∗ ∈ D, ‖x∗‖ ≤ 1} ≤ ‖x‖ for all x ∈ X and a fixed r ∈ [1,+∞).
The starting point is the following lemma. Its proof is simple; we include it for the sake of
completeness. It was formulated in only one direction in, e.g., [11, Lemmata 3.33 and 3.34],
[7, Lemma 6.1.1], and [4, Lemma 8].

{lemma-projection}
Lemma 1. Let (X, ‖ · ‖) be a Banach space, r ≥ 1, and two closed subspaces V ⊂ X and
Y ⊂ X∗. Then the conditions (Ar) and (Br) below are mutually equivalent:

(Ar)

{
(A1) V separates points of Y

w∗

(i.e., V ⊥ ∩ Y w∗

= {0}), and
(Ar2) for all v ∈ V , ‖v‖ ≤ r. sup 〈BY , v〉.

(Br) X = V ⊕ Y⊥, and the associated projection P : X → X with range V and kernel
Y⊥ satisfies ‖P‖ ≤ r.

Before proving Lemma 1, let us show a simple consequence:
{lemma-adjoint}

Lemma 2. If for some r ≥ 1, the projection P satisfies (Br) in Lemma 1 (and so also (Ar)),

then P ∗X∗ = Y
w∗

(and ‖P ∗‖ ≤ r).

Proof. Observe first that (Y⊥)⊥ = Y
w∗

. Let x∗ ∈ P ∗X∗, and let y ∈ Y⊥. We have then

Py = 0, so 〈x∗, y〉 = 〈P ∗x∗, y〉 = 〈x∗, Py〉 = 0, hence x∗ ∈ (Y⊥)⊥ (= Y
w∗

). This proves that

P ∗X∗ ⊂ Y
w∗

. To show the reverse inclusion, let x∗ ∈ Y w∗ (
= (Y⊥)⊥

)
. Then, for x ∈ X,

〈x∗ − P ∗x∗, x〉 = 〈x∗, x〉 − 〈P ∗x∗, x〉 = 〈x∗, x〉 − 〈x∗, Px〉 = 〈x∗, x− Px〉 = 0,

the last equality being true due to the fact that x−Px ∈ Y⊥. This shows that x∗−P ∗x∗ = 0,

hence x∗ ∈ P ∗X∗. We proved that Y
w∗

⊂ P ∗X∗. The two inclusions prove the assertion.
That ‖P ∗‖ ≤ r is a general fact whose proof shall be omitted. �

Let us proceed now with the proof of Lemma 1

Proof. Assume (Ar). Let v ∈ V ∩ Y⊥. Note that (Ar2) implies v = 0, hence V ⊕ Y⊥ is an

algebraic direct sum. If x∗ ∈ X∗ vanishes on V ⊕ Y⊥, then x∗ ∈ V ⊥ ∩ Y w∗

(= {0} by (A1)),
hence V ⊕ Y⊥ is dense in X. Moreover, if x ∈ V ⊕ Y⊥ and P : V ⊕ Y⊥ → V denotes the
associated linear (not necessarily continuous) projection onto V , we have

‖Px‖ ≤ r sup〈BY , Px〉 = r sup〈BY , Px+ (x− Px)〉 = r sup〈BY , x〉 ≤ r sup〈BX , x〉 = r‖x‖,
where the first inequality is (Ar2) and the first equality comes from the fact that x−Px ∈ Y⊥.
Thus, P is continuous (in fact, ‖P‖ ≤ r), hence V ⊕ Y⊥ is closed and so V ⊕ Y⊥ = X. This
shows (Br).
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Assume (Br). Let x∗ ∈ V ⊥ ∩ Y w∗

. Given x ∈ X we have 〈x∗, x〉 = 〈P ∗x∗, x〉 = 〈x∗, Px〉 = 0,
where the first equality comes from Lemma 2. It follows that x∗ = 0. This proves (A1).

Given x∗ ∈ BX∗ , we have, again by Lemma 2, P ∗x∗ ∈ Y
w∗

. Since ‖P ∗‖ ≤ r we get
P ∗x∗ ∈ rB

Y
w∗ , so P ∗BX∗ ⊂ rB

Y
w∗ . Fix v ∈ V . Then

‖v‖ = sup〈BX∗ , v〉 = sup〈BX∗ , Pv〉 = sup〈P ∗BX∗ , v〉 ≤ sup〈rB
Y

w∗ , v〉 = r sup〈BY , v〉.

This proves (Ar2). �

Remark 3. In the rest of the paper, the associated projection P : X → X with range V
and kernel Y⊥ built in Lemma 1 (see (Br) there) will be denoted by PV×Y .

{subsect-pri-ps}
2.2. Projectional resolutions of the identity and projectional skeletons. Starting
from Lemma 1, and proceeding in a clever way, a “long sequence” (i.e., a projectional
resolution of the identity) of norm-1 projections is produced. According to J. Lindenstrauss,

{def-pri}
Definition 4. A projectional resolution of the identity (PRI, for short) on a Banach space
(X, ‖ · ‖) is a family (Pα : ω ≤ α ≤ densX) of linear projections on X such that Pω = 0,
P dens X is the identity mapping, and for all ω < α ≤ densX the following hold:

(i) ‖Pα‖ = 1,
(ii) densPαX ≤ α,
(iii) Pα ◦ Pβ = Pβ ◦ Pα = Pα whenever β ∈ [α, densX], and

(iv)
⋃

β<α Pβ+1X = PαX.

If (i) is replaced by ‖Pα‖ ≤ r for some fixed finite number r ≥ 1, we speak about an r-PRI.

Instead of a set of projections indexed by an interval of ordinal numbers, W. Kubís [12]
produced from Lemma 1 a set —indexed by a partially ordered set (Γ,≤)— of not-necessarily-
norm-1 linear and bounded projections with separable range. The index set (Γ,≤) is directed
upwards (we shall simply say “directed”), and —to show some continuity property— σ-
complete, i.e., every increasing sequence (γn) in Γ has a “supremum” in Γ, i.e., an element
γ ∈ Γ such that γn ≤ γ for all n ∈ N, and if s ∈ Γ satisfies γn ≤ s for all n ∈ N, then γ ≤ s.
To be precise, and following W. Kubís,

{def-ps}
Definition 5. A projectional skeleton in a (rather non-separable) Banach space (X, ‖ · ‖)
is a family of linear bounded projections

(
Ps : s ∈ Γ

)
on X, indexed by a directed and

σ-complete set (Γ,≤) such that

(i) PsX is separable for every s ∈ Γ,
(ii) X =

⋃
s∈Γ PsX,

(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s ≤ t, and

(iv) Given a sequence s1 ≤ s2 ≤ · · · in Γ, we have PsX =
⋃

n∈N PsnX, where s := supn∈N sn.

The concept of projectional skeleton has a topological predecessor —retractional skeleton—
introduced by W. Kubís and H. Michalewski in [13].

Remark 6. Observe that (iii) in Definition 5 above is equivalent to the fact that, for all
s ≤ t in Γ, we have simultaneously PsX ⊂ PtX and P ∗sX

∗ ⊂ P ∗t X
∗.

Definition 7. For r ≥ 1, we say that
(
Ps : s ∈ Γ

)
is an r-projectional skeleton if it is a

projectional skeleton and ‖Ps‖ ≤ r for every s ∈ Γ.
3



Remark 8. For r-skeletons, it is easy to show that the identity in (iv), Definition 5 above,
is equivalent to the convergence Psj

x→ Psx as j →∞ for every x ∈ X and every sequence
s1 ≤ s2 ≤ · · · in Γ, with s := supn∈N sn.
Indeed, assume that the identity in (iv) holds. Then, given x ∈ X and ε > 0 there exists
z ∈ X and n ∈ N such that ‖Psx− Psnz‖ < ε. It follows that

‖Psx− Psnx‖ ≤ ‖Psx− Psnz‖+ ‖Psnz − Psnx‖
< ε+ ‖PsnPsnz − PsnPsx‖ < ε+ ‖Psn‖.‖Psnz − Psx‖ < ε+ rε = (1 + r)ε. (1)

For m ≥ n we have

‖Psmx− Psnx‖ = ‖PsmPsx− PsmPsnx‖ ≤ ‖Psm‖.‖Psx− Psnx‖ < r(1 + r)ε, (2){eq-triangle-2}

so ‖Psx − Psmx‖ < (1 + r)2ε for s := supn∈N sn, and we get that Psnx → Psx as n → ∞.
The other implication is obvious.

{rem-convergence-in-w-star}
Remark 9. Observe, too, that given a sequence s1 ≤ s2 ≤ · · · in Γ and x∗ ∈ X∗, we always

have P ∗sn
x∗

w∗
−→ P ∗s x

∗ where s = supn∈N sn. Indeed, if x ∈ X, we have 〈(P ∗s − P ∗sn
)x∗, x〉 =

〈x∗, (Ps − Psn)x〉 → 0. This shows, in particular, that P ∗sX
∗ ⊂

⋃∞
n=1 P

∗
sn
X∗ w∗

. The other
inclusion is obvious, since we mentioned above that PsnX

∗ ⊂ P ∗sX
∗ for all n ∈ N and P ∗sX

∗

is w∗-closed, due to the w∗-w∗-continuity of P ∗s . We finally get P ∗sX
∗ =

⋃∞
n=1 P

∗
sn
X∗ w∗

.
It is worth to note that for any x∗ ∈ X∗, the net {P ∗γ x∗ : γ ∈ Γ, ≤} is w∗-convergent to x∗.
Even more holds: given x ∈ X, there exists γ0 ∈ Γ such that 〈x∗ − P ∗γ x

∗, x〉 = 0 for every
γ ≥ γ0(x) and every x∗ ∈ X∗. Indeed, find γ0 ∈ Γ so big that Pγ0X 3 x. Then for every
γ ∈ Γ, with γ ≥ γ0, and every x∗ ∈ X∗ we have

〈x∗ − P ∗γ x
∗, x〉 = 〈x∗, x〉 − 〈P ∗γ x∗, x〉 = 〈x∗, x〉 − 〈x∗, Pγx〉 = 〈x∗, x− x〉 = 0

Definition 10. We say that a skeleton
(
Ps : s ∈ Γ

)
is commutative if Ps ◦ Pt = Pt ◦ Ps,

whenever s, t ∈ Γ (no matter if s, t are comparable).

A sufficient condition for the commutativity of a projectional skeleton will be given in Lemma
13 below.

The instrument of PRI served efficiently for half a century in proving many statements for
non-separable Banach spaces. As an illustration we recall classical results that once a Banach
space X is weakly compactly generated, then there exist a linear bounded injection from it
into c0( densX) and a linear bounded and weak∗ to weak continuous injection of X∗ into
c0( densX); moreover, X then admits an equivalent locally uniformly rotund norm whose
dual norm is strictly convex. However, the presence of a PRI itself is not much eloquent
about the space in question, provided its density is big enough. For instance, if κ is an ordinal
greater than the density of `∞ (equal to c), then the space `2(κ)× `∞ clearly admits a PRI.
But his space does not admit any projectional skeleton because `∞ is not, by Lindenstrauss,
LUR renormable; see [5, pages 120–123]. Note that `∞ does not admit any projectional
skeleton: Otherwise c0 will be a subspace of Pγ`∞ for some γ ∈ Γ, and so complemented
in Pγ`∞ by Sobczyk’s theorem (see, e.g., [9, Theorem 5. 11]). This will imply that c0 is
complemented in `∞, and this is false.
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2.3. Consequences of having a projectional skeleton. By [14, Theorem 12], the exis-
tence of an r-projectional skeleton implies that of an r-PRI (but not reversely!).
In contrast with what was said at the end of Subsection 2.2 regarding projectional resolutions,
the presence of a projectional skeleton in a Banach space proves to be quite eloquent. We
mention the following most striking facta:
If a Banach space X admits a projectional skeleton, then:
• X admits an r-PRI where r ≥ 1 is a finite number [12, Proposition 9 and Theorem 12];
• X linearly and continuously injects into c0( densX), [14, Corollary 17.5];
• X admits a Markushevich basis, [3]; and
• X admits an equivalent locally uniformly rotund norm, see [14, Corollary 17.5] modulo S.
Troyanski and V. Zizler.

{subsect-building-pri-ps}
2.4. Building efficiently projectional skeletons: Projectional generators, rich fam-
ilies. One of the most efficient ways to build a projectional resolution of the identity is to
provide a projectional generator (M. Valdivia and J. Orihuela): Let X be a Banach space,
and let W ⊂ X∗ be a 1-norming subspace. Assume there exists an at most countably valued
mapping Φ : W → 2X such that for every nonempty set B ⊂ W , with linear closure, we have

Φ(B)⊥ ∩ B w∗

= {0}. Then the couple (W,Φ) is called a projectional generator on X (see,
e.g., [7, page 106] or [11, page 104]). The projectional generator is then used for producing
a projectional resolution of the identity on X by a countable “back-and-forth” method. We
provide two natural examples of projectional generators:
(PGi) Let us consider a WCG Banach space X, and let K ⊂ X be a linearly dense and
w-compact subset of X. Then, the couple (X∗,Φ), where Φ is the (single-valued) mapping
Φ : X∗ → X that to any x∗ ∈ X∗ associates an element in K where x∗ attains its supremum
on K, is easily seen, by using the Mackey–Arens theorem, or just Lemma 18 below, to be a
projectional generator (see, e.g., [11, Proposition 3.43]). The details are given in the proof
of Theorem 20 below.
(PGii) Let X be a Banach space, and let M be a linearly dense subset of X. Assume there
exists a 1-norming subspace D of X∗ such that, for every x∗ ∈ D, its support suppM(x∗) :=
{m ∈ M : x∗(m) 6= 0} is countable. Define Φ(x∗) := suppM(x∗) for x∗ ∈ D. Then (D,Φ)
is a projectional generator on X. Indeed, let B ⊂ D be a nonempty set such that B is

linear. Pick x∗ ∈ Φ(B)⊥ ∩ Bw∗

. Assume x∗ 6= 0. We can find then m ∈ M such that
ε := |x∗(m)| > 0. Find b∗ ∈ B such that |〈x∗ − b∗,m〉| < ε/2. It follows that |b∗(m)| > ε/2,
so m ∈ suppM(b∗), hence m ∈ Φ(B). Since |x∗(m)| 6= 0, we reach a contradiction.

Regarding projectional skeletons on a Banach space X, still a projectional generator (W,Φ)
on X —if it exists at all— is a useful instrument for building them. Now we allow a slight
change in its definition, namely that, for some r ≥ 1, the subspace W may be r-norming
instead of just 1-norming (from now on, this more relaxed requirement and the corresponding
concept will be adopted). The set of indices for indexing a projectional skeleton (in the
definition, an abstract partially ordered directed and σ-complete set), may quite naturally
be particularized in our setting by taking a suitable (partially ordered by inclusion) rich
family of “rectangles” V ×Y in X×D, where D is a given closed subspace of X∗, and V and
Y are separable subspaces of X and D, respectively. We precise this by introducing some
useful notation:
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Let W be a Banach space. Denote by S(W ) the partially ordered by inclusion family of
all separable subspaces of W . A subfamily R of S(W ) is said to be rich (in S(W ) or just
in W ) if it is cofinal (i.e., for every S ∈ S(W ) there exists R ∈ R such that R ⊃ S) and

σ-closed (i.e., whenever (Rn) is an increasing sequence in R, then
⋃
Rn ∈ R). This concept

was introduced by J.M. Borwein and W. Moors in [2].; see also [4].
If W := X × Z, where X and Z are two Banach spaces, we denote by S@A(X × Z) the
subfamily of S(X × Z) consisting of all rectangles V × Y , where V and Y are separable
subspaces of X and Z, respectively. Clearly, the family S@A(X × Z) is rich in S(X × Z).
Below, we shall consider rich families R in S@A(X × Z).
For later reference, let us mention here some elementary facta —coming directly from the
definition— about rich families R in S@A(X × Z).
•

⋃
{V × Y : V × Y ∈ R} = X × Z. Indeed, for x ∈ X and z ∈ Z the rectangle

span{x} × span{z} belongs to S@A(X × Z), and R is cofinal there. In particular,

X =
⋃
{V : there exists Y ∈ S(Z) such that V × Y ∈ R}, and

Z =
⋃
{Y : there exists V ∈ S(X) such that V × Y ∈ R}.

• The partially ordered set (R,⊂) is directed and σ-complete. Note that if (Vn × Yn) is an

increasing sequence in a rich family R, then
⋃

(Vn × Yn) (=
⋃
Vn ×

⋃
Yn) is its supremum

in S@A(X × Z), and it belongs to R by assumption.
An important feature of rich families is that the intersection of countably many rich families
is not only non-empty but again rich; see [2].

Suitable rich families give raise to associated projectional skeletons. Indeed, we have the
following basic result, whose proof, after Lemma 1 and the previous observations, is now
almost obvious:

{prop-projectional-skeleton}
Proposition 11 ([4], Lemma 9). Let X be a Banach space, and for some r ≥ 1 let D ⊂ X∗

be a closed r-norming subspace. Assume that there exists a rich family Γ ⊂ S@A(X×D) such
that for each γ := V ×Y ∈ Γ, the condition (Ar) in Lemma 1 is satisfied. Then (Pγ : γ ∈ Γ)
is an r-projectional skeleton in X such that D ⊂

⋃
γ∈Γ P

∗
γX

∗.

Remark All the projectional skeletons in the rest of the paper will adopt the particular
form given in Proposition 11.

The existence of a projectional generator on a Banach space X ensures that a rich family
with the property in the statement of Proposition 11 does exist. This is the content of the
next result:

{prop-pg-implies-rich}
Proposition 12 ([4], Proposition 10). Let (X, ‖ · ‖) be a Banach space with a projectional
generator (D,Φ), where D is a closed r-norming subspace of X∗ for some r ≥ 1. Then there
is a family Γ rich in S@A(X ×D) and such that for each V × Y ∈ Γ, the condition (Ar) in
Lemma 1 is satisfied.

Proof. (Sketch) For every x ∈ X pick a countable set φ(x) ⊂ BD such that ‖x‖ ≤ r sup{y(x) :
y ∈ φ(x)}. Define Γ as the family of all V × Y ∈ S@A(X ×D) such that there are countable
sets C ⊂ V and E ⊂ Y satisfying C = V , E = Y , Φ(E) ⊂ C, and φ(C) ⊂ E. This family
satisfies all the requirements for being a rich family in S@A(X ×D). �
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Putting together Propositions 11 and 12, we get that the existence of a projectional generator
(D,Φ) on a Banach space X ensures the existence of a projectional skeleton in it of the form
(Pγ : γ ∈ Γ), where Γ is a rich family in S@A(X ×D).

In the rest of the paper we shall need [4, Lemma 11]. We state it here —with a little
complement— for the sake of completeness, and we shall prove only this little addition.
Observe that, in Lemma 13(ii) below, the couple (D,Φ) is a projectional generator (see
(PGii) in Subsection 2.4 above, where it is proved for the case r := 1).

{lemma-rich}
Lemma 13. Let X be a Banach space with a linearly dense subset M and a subspace D of
X∗ such that, for every x∗ ∈ D, the set Φ(x∗) := suppM(x∗) is countable. Then
(i) [4, Lemma 11] The family R := {V × Y ∈ S@A(X × D) : M \ V ⊂ Y⊥} is rich in
S@A(X ×D).
(ii) Assume that, moreover, the subspace D is r-norming for some r ≥ 1. Let Γ be the rich
family in S@A(X ×D) given by the projectional generator (D,Φ) (Proposition 12). Then the
projectional skeleton provided by Proposition 11 via the rich family R∩ Γ is commutative.

Proof. (of (ii)) This follows from the properties of M : Indeed, fix γ := V × Y ∈ R ∩ Γ and
m ∈M . Then, due to the fact that M \ V ⊂ Y⊥, that Pγ(X) = V and that kerPγ = Y⊥, we
have

Pγ(m) =

{
m, if m ∈ V,
0, otherwise.

As as consequence, given γ = V × Y and γ′ = V ′ × Y ′ in R ∩ Γ, we may easily check that,
for m ∈M , {

Pγ ◦ Pγ′(m) = Pγ′ ◦ Pγ(m) = m, if m ∈ V ∩ V ′, and
Pγ ◦ Pγ′(m) = Pγ′ ◦ Pγ(m) = 0, otherwise.

Since M is linearly dense in X, we get, then, the commutativity of the projectional skeleton
(Pγ : γ ∈ Γ). �

3. Classes of nonseparable Banach spaces and projectional skeletons

3.1. WLD spaces. A Banach space is called weakly Lindelöf determined (WLD) if its closed
dual unit ball, provided with the weak∗ topology, is a Corson compactum, which means that
it is homeomorphic to a subset of the Σ-product of real lines. In the next theorem, the
equivalence (ii)⇐⇒(iv) can be found in [12, Proposition 21 and Theorem 27].

{thm-wld}
Theorem 14. For a Banach space (X, ‖ · ‖) TFAE:

(i) X is weakly Lindelöf determined.
(ii) There exists a linearly dense set M ⊂ X which countably supports all elements in X∗,

that is, for every x∗ ∈ X∗ the set {x ∈M : x∗(x) 6= 0} is at most countable.
(iii) There exist a set M as in (ii) and moreover a rich family WLD ⊂ S@A(X ×X∗) such

that every V × Y ∈ WLD satisfies (A1) in Lemma 1, and M \ V ⊂ Y⊥.
(iv) There exists a commutative 1-projectional skeleton (Pγ : γ ∈ Γ) on (X, ‖ · ‖) such that⋃ {

P ∗
γ X

∗ : γ ∈ Γ
}

= X∗.

Proof. (i)=⇒(ii). The existence of the set M goes back to M. Valdivia [16]; see also [8,
Theorem 5]. First, a projectional generator is constructed. From it a PRI is found. Having
this, the construction of M goes by a transfinite induction over the density of X.
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(ii)=⇒(iii). Assume that there exists a set M as in (ii). As it was proved in Subsection 2.4
(see (PGii) there), the couple (X∗,Φ) is a projectional generator on X. Now, Proposition
12 above, where D := X∗ and r := 1, provides a rich family W ⊂ S@A(X ×X∗) that satisfies
(A1) in Lemma 1. Put WLD := W ∩R, where R is the rich family defined in Lemma 13(i).
It follows that WLD is also a rich family in S@A(X ×X∗). And of course, each element in
WLD satisfies (A1) in Lemma 1.
(iii)=⇒(iv). Letting D := X∗, Proposition 11 guarantees that the system (Pγ : γ ∈ Γ)
satisfies (iv), except maybe the commutativity statement. However, this follows from (ii) in
Lemma 13 above.
(iv)=⇒(ii). This is included in [12, Theorem 27]. In order to get a taste of the proof, let us
show this when densX = ω1. Let (iv) hold without “commutative 1-”. By [12, Proposition
9], we may and do assume that ‖Ps‖ ≤ r for all s ∈ Γ and some fixed r. A shorter reasoning
in one’s mind reveals that there exists an order homomorphism of the interval [ω, ω1) onto
a cofinal subset of Γ such that, when assuming, for simplicity, that [ω, ω1) ⊂ Γ, we get that
(Pα : α ∈ [ω, ω1]), where Pω1 := idX , is an r-PRI on X with

⋃
α∈[ω,ω1) P

∗
αX

∗ = X∗. For

every α ∈ [ω, ω1) find a countable dense subset Cα in the (separable) subspace (Pα+1−Pα)X
and put then M :=

⋃
α∈[ω,ω1)Cα. According to, say, [7, Proposition 6.2.1 (iv)], valid also

for r-PRI, the set M is linearly dense in X. We shall show that the support suppMx
∗ :=

{x ∈ M : x∗(x) 6= 0} is at most countable for every x∗ ∈ X∗. Funny, suppMx
∗ is such

for every x∗ ∈ P ∗ωX
∗ (= {0}). Consider any α ∈ (ω, ω1). Assume that suppMx

∗ is at most
countable for every x∗ ∈ P ∗βX

∗ where β ∈ [ω, α). Now pick any x∗ ∈ P ∗αX
∗. If α − 1

exists, then x∗ = (P ∗α − P ∗α−1)x
∗ + P ∗α−1x

∗, and so suppM x∗ ⊂ Cα−1 ∪ suppM P ∗α−1x
∗, and

the latter set is at most countable; we used here the “orthogonality” of the projections
Pβ+1 − Pβ, β ∈ [ω, ω1). Second, if α is a limit ordinal, then x∗ = w∗-limβ↑α P

∗
βx

∗, and so
suppM x∗ ⊂

⋃
ω≤β<α suppM P ∗βx

∗; the latter set here being at most countable. We proved

(ii). If the density of X is higher than ω1, we can proceed as in the proof of [12, Theorem
27].
(ii)=⇒(i). If M is as in (ii), then the assignment BX∗ 3 x∗ 7−→ (x∗(m) : m ∈ M) ∈ Σ(M)
reveals that X is WLD. �

3.2. WCG spaces. Let X be a Banach space, and let A ⊂ X be a non-empty bounded set.
We define the pseudo-metric ρA on X∗ by

ρA(x∗1, x
∗
2) = sup |〈x∗1 − x∗2, A〉|, x∗1, x∗2 ∈ X∗, (3)

where sup |〈x∗, A〉| := sup{|〈x∗, a〉| : a ∈ A} for x∗ ∈ X∗. We also denote by S
A

the

closure of a set S ⊂ X∗ in ρA. Observe that S
A

= {x∗ ∈ X∗ : ρA(x∗, S) = 0}, where
ρA(x∗, S) := inf{ρA(x∗, y∗) : y∗ ∈ S}.

{def-A-shrinking}
Definition 15. Given an ε ≥ 0, a projectional skeleton (Ps : s ∈ Γ) in X (if it exists) is
called A-ε-shrinking if for every sequence γ1 ≤ γ2 ≤ · · · in Γ and for every x∗ ∈ X∗ we have

lim sup
j→∞

ρA

(
P ∗γj

x∗, P ∗sup γi
x∗

)
≤ ε‖x∗‖;

if ε = 0, we say just “A-shrinking ”.

Remark 16. Note the following fact: If the set A is w-compact and Ps(A) ⊂ A for all s ∈ Γ,
then (Ps : s ∈ Γ) is A-shrinking. Indeed, under these requirements for A the argument goes
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as follows: Let γ1 ≤ γ2 ≤ · · · be a sequence in Γ, and let γ := sup{γn : n ∈ N}. Pick

any x∗ ∈ X∗. We observed in Subsection 2.2 that P ∗γ x
∗ ∈

⋃∞
n=1 P

∗
γn
X∗ w∗

. If µ(X∗, X)
denotes the Mackey topology on X∗ of the uniform convergence on the family of all convex,
symmetric and w-compact subsets of X then, by the Mackey–Arens theorem, or just using

Lemma 18 below, we have P ∗γ x
∗ ∈

⋃∞
n=1 P

∗
γn
X∗ µ(X∗,X)

. The sequence (P ∗γn
x∗) converges to

P ∗γ x
∗ uniformly on A. To show this, we follow the pattern in formulas (1) and (2) above. To

be precise, if A◦ denotes the polar set of A, and ε > 0, then there exists z∗ ∈ X∗ and n ∈ N
such that P ∗γ x

∗ − P ∗γn
z∗ ∈ εA◦. We have

P ∗γ x
∗ − P ∗γn

x∗ = (P ∗γ x
∗ − P ∗γn

z∗) + (P ∗γn
P ∗γn

z∗ − P ∗γn
P ∗γ x

∗) ∈ εA◦ + εA◦ ⊂ 2εA◦,

as Pγn(A) ⊂ A. Hence, for m ≥ n,

P ∗γm
x∗ − P ∗γn

x∗ = P ∗γm
P ∗γ x

∗ − P ∗γm
P ∗γn

x∗ ∈ 2εA◦,

so (P ∗γ x
∗ − P ∗γm

x∗) ∈ 4εA◦, and this proves the assertion.
{rem-shrinking-implies-wld}

Remark 17. Let A be a bounded and linearly dense subset of X, and let (Pγ : γ ∈ Γ)
be an A-shrinking projectional skeleton on X. Then

⋃
γ∈Γ P

∗
γX

∗ = X∗ (in particular, it
follows from Theorem 14 that the space X is WLD; Theorem 20 below will provide a more
precise result). Indeed, pick any x∗ ∈ X∗ and consider the net {P ∗γ x∗ : γ ∈ Γ, ≤}.
Given an arbitrary sequence {γn} in Γ and γ ∈ Γ such that γn ↗ γ, it follows from the
definition of A-shrinkingness that P ∗γn

x∗ → P ∗γ x
∗ uniformly on A. By Proposition 19 we

get that the net {P ∗γ x∗ : γ ∈ Γ, ≤} converges uniformly on A, say to z∗ ∈ X∗, and
that, moreover, there exist an increasing sequence (sn) in Γ and s0 ∈ Γ such that sn ↗ s0

and P ∗sn
x∗ → z∗ (= P ∗s0

x∗) uniformly on A. Since, according to Remark 9, P ∗γ x
∗ w∗
−→ x∗,

given a ∈ A, we have 〈x∗, a〉 = 〈P ∗s0
x∗, a〉. Due to the fact that A is linearly dense, we get

x∗ = P ∗s0
x∗, and this shows that X∗ =

⋃
γ∈Γ P

∗
γX

∗, as we wanted to prove.

A Banach space is called weakly compactly generated (WCG) if it contains a linearly dense
weakly compact set.

As we mentioned above, the Mackey topology µ∗ := µ(X∗, X) is the topology on X∗ of
the uniform convergence on the family of all convex symmetric and weakly compact subsets
of X. We need the following particular case of the Mackey–Arens theorem. For the full
statement, see, e.g., [9, Theorem 3.41]. We provide here a direct proof.

{lemma-ma}
Lemma 18. Let X be a Banach space and let C ⊂ X∗ be a convex set. Then C

w∗

= C
µ∗

.

Proof. Obviously, w∗ ≤ µ∗, hence C
w∗

⊃ C
µ∗

. Let x∗0 6∈ C
µ∗

. Without loss of generality we
may assume x∗0 = 0. Find a convex, symmetric and w-compact subset K of X such that
K◦ ∩ C = ∅. The set K◦ is a ‖ · ‖-neighborhood of 0, so the Separation Theorem gives
α > 0 and x∗∗ ∈ X∗∗ such that 〈c∗, x∗∗〉 ≥ α > 〈k∗, x∗∗〉 for every c∗ ∈ C and every k∗ ∈ K◦.
Since K◦ is symmetric we get |〈k∗, x∗∗〉| ≤ α for every k∗ ∈ K, so x∗∗ ∈ αK◦◦. The bipolar
theorem ensures that K◦◦ = K (⊂ X), so x∗∗ ∈ X; thus {x∗ ∈ X∗ : 〈x∗, x∗∗〉 ≥ α} is

w∗-closed (and it contains C), hence 0 6∈ Cw∗

. �

We shall need a short trip to the convergence of nets. Let (M,ρ) be a metric space and let
n := (xs)s∈Γ be a net consisting of elements from M ; we recall that Γ is a directed set, with
order, “≤”, say. We say that n has a limit y ∈M if for every ε > 0 there is s ∈ Γ such that
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ρ(xt, y) < ε whenever t ∈ Γ and t ≥ s. If this is so, we use for y the symbol lims∈Γ xs. The
net n is called Cauchy if for every ε > 0 there is s ∈ Γ such that ρ(xs, xs′) < ε whenever
s′ ∈ Γ and s′ ≥ s.

{prop-net}
Proposition 19. Let (M,ρ) be a metric space, let (Γ,≤) be a directed and σ-complete set,
let T ⊂ Γ be a directed subset and let (xs)s∈Γ be a net in M such that limj→∞ ρ

(
xsj
, xγ

)
= 0

whenever s1 ≤ s2 ≤ · · · is a sequence in T and γ := supj∈N sj (∈ Γ). Then the limit lims∈T xs

exists in the metric ρ (and is equal to xγ where γ := supi∈N ti for some t1 ≤ t2 ≤ · · · in T ).

Proof. First we show that the net (xs)s∈T is Cauchy. Assume that this is not true. Find
then ε > 0 such that for every s ∈ T there is s′ ∈ T such that s′ ≥ s and ρ

(
xs, xs′

)
≥ ε.

Using this, we can construct a sequence s1 ≤ s2 ≤ s3 ≤ · · · in T such that ρ
(
xs1 , xs2

)
≥

ε, ρ
(
xs2 , xs3

)
≥ ε, . . . . Since (Γ,≤) is σ-complete, s := supn∈N sn exists and belongs to Γ.

By the assumption, ρ
(
xsj
, xs

)
−→ 0 as j →∞, and so (ε ≤) ρ

(
xsj
, xsj+1

)
−→ 0 as j →∞;

a contradiction. We proved that our net is Cauchy.
Next, we shall construct a sequence t1 ≤ t2 ≤ · · · in T as follows. Pick t1 ∈ T such that
ρ(xs, xt1) < 1 whenever s ∈ T and s ≥ t1. Consider any j ∈ N and assume that tj ∈ T was
already found. Pick t ∈ T such that ρ(xs, xt) <

1
2(j+1)

whenever s ∈ T and s ≥ t. Find

tj+1 ∈ T such that it majorizes both t and tj. Now, if s ∈ T is such that s ≥ tj+1, then

ρ(xs, xtj+1
) ≤ ρ(xs, xt) + ρ(xt, xtj+1

) < 2 · 1

2(j + 1)
=

1

j + 1
.

Doing so for every j ∈ N, put γ := supj∈N tj. Then we know that limj→∞ ρ(xtj , xγ) = 0. We

claim that lims∈T xs = xγ. Indeed, take any ε > 0. Pick j > 2
ε

so big that ρ(xtj , xγ) <
ε
2
.

Now, if s ∈ T and s ≥ tj, we have

ρ(xs, xγ) ≤ ρ(xs, xtj) + ρ(xtj , xγ) <
1
j

+ ε
2
< ε.

�{thm-wcg}
Theorem 20. For a Banach space (X, ‖ · ‖) TFAE:

(i) X is weakly compactly generated.
(ii) There exist a bounded closed symmetric convex and linearly dense set A ⊂ X, and a

(commutative 1-) projectional skeleton (Pγ : γ ∈ Γ) on (X, ‖ · ‖) (with
⋃

γ∈Γ P
∗
γX

∗ =

X∗), which is moreover A-shrinking and satisfies that Pγ(A) ⊂ A for every γ ∈ Γ.

Proof. (i)=⇒(ii). Assume that X is WCG. The celebrated Amir-Lindenstrauss theorem pro-
vides a set Γ and a linear bounded injective mapping T : X∗ −→ c0(Γ), which is moreover
w∗-w-continuous; see [1], [9, Theorem 13.20]. (Its proof may nowadays start from construct-
ing a projectional generator on a reflexive space R, e.g., the simple generator described in
(PGi) of Subsection 2.4. Then a PRI on R is constructed from this generator. Then, a
transfinite induction argument provides a bounded linear and one-to-one mapping from R
into c0(Γ). Finally, combining this with a mapping coming from the factorization theorem
[9, Theorem 13.22] yields our T : X∗ −→ c0(Γ).) Once having T , put

M :=
{
T ∗eγ : γ ∈ Γ

}
,

where eγ’s are the elements of the canonical basis in `1. It is straightforward to verify that
this M is a subset of X (if we identify X with its canonical image in X∗∗), that M is linearly
dense in X, and that for every x∗ ∈ X∗ the set Φ(x∗) := {m ∈ M : 〈x∗,m〉 6= 0} is at
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most countable (in addition, M ∪ {0} is a w-compact set with the only accumulation point
0). According to (PGii) in Subsection 2.4 , (X∗,Φ) is a projectional generator on X (better
than that from (PGi)). Let A be the closed convex hull of the set M ∪ (−M).

Denote ‖·‖0 := ‖·‖. For n ∈ N, let ‖·‖n be the Minkowski functional of the set A+ (1/n)BX .
Then ‖·‖n is an equivalent norm on X. For the norm ‖·‖n the set X∗ is obviously 1-norming,
and so (X∗,Φ) is a projectional generator on (X, ‖ · ‖n). Applying Proposition 12, we get a
rich family Rn with property (A1) in Lemma 1. Further put R−1 := {V ×Y ∈ S@A(X×X∗) :
M \ V ⊂ Y⊥}; this is a rich family by Lemma 13 (i). Put finally R :=

⋂∞
n=−1Rn; this is

again a rich family and its elements have the property (A1) in Lemma 1 with respect to all
norm ‖ · ‖0, ‖ · ‖, . . . Thus, the 1-projectional skeleton (Pγ : γ ∈ Γ) associated to R via
Proposition 12 is commutative by Lemma 13 (ii). Moreover, for all γ ∈ Γ and all n ∈ N, due
to the fact that ‖Pγ‖n = 1, we have

Pγ(A) ⊂ Pγ(A+ 1
n
BX) ⊂ A+ 1

n
BX ⊂ A+ 2

n
BX ,

and so Pγ(A) ⊂ A for all γ ∈ Γ. The A-shrinking character of our skeleton comes from
Remark 17. And having this, it is easy to check that

⋃
γ∈Γ P

∗
γX

∗ = X∗.

(ii)=⇒(i). Let A and (Pγ : γ ∈ Γ) be as in (ii). We shall prove the bit stronger statement
that there exists a weakly compact set K ⊂ A which is linearly dense in X (and thus X will
be a WCG space). By [12, Proposition 9] or [14, Proposition 17.6], there exists a directed and
σ-closed subset of Γ, denoted for simplicity again as Γ, such that r := sup{‖Ps‖ : s ∈ Γ} <
+∞. Clearly, this “smaller” (Pγ : γ ∈ Γ) will be an A-shrinking r-projectional skeleton on
X.
In order not to get lost and get a taste of the proof, we first consider the special case when
the density of X is ω1. It is not dramatically difficult to find a subset of Γ which is cofinal, σ-
closed, and which is moreover order homeomorphic with the interval [ω, ω1). For simplicity,
we will think that this interval is a subset of Γ, and the order relation on it coincides with
the order of Γ. (If we let Pω1 to denote the identity mapping on X, then it is easy to check
that (Pα : ω ≤ α ≤ ω1) is a projectional resolution of the identity on (X, ‖ ·‖), with the only
exception that ‖Pα‖ ≤ r for every ω ≤ α ≤ ω1.) For every ω ≤ α < ω1 we find a sequence
xα

1 , x
α
2 , . . . in the (separable) set 1

2
(Pα+1 − Pα)A such that ‖xα

n‖ → 0 as n → ∞ and that

sp {xα
1 , x

α
2 , . . .} = (Pα+1 − Pα)X. Now, put K :=

{
xα

n : ω ≤ α < ω1 and n ∈ N
}
∪ {0}; then

clearly K ⊂ A. By a (well known) fact [7, Proposition 6.2.1 (iv)], we immediately get that
spK = X. We shall show that the setK is weakly compact. Let U be a family of weakly open
sets in X covering K. We have to find a finite subfamily of U that still covers K. Pick U ∈ U
so that U 3 0. Find a finite set F ⊂ X∗ so that U ⊃ {x ∈ X : max〈F, x〉 < 1} 3 0. We shall
show that K \U is finite and thus the weak compactness of K will be proved. It is actually
enough to show that for every x∗ ∈ F the set Mx∗ := {(n, α) ∈ N × (ω, ω1) : 〈x∗, xα

n〉 ≥ 1}
is finite. So fix one such x∗ ∈ F and assume that Mx∗ is infinite. Since ‖xα

n‖ → 0 as n→∞
for every α ∈ (ω, ω1), the set {α ∈ (ω, ω1) : (n, α) ∈Mx∗ for some n ∈ N} is infinite. Thus,
there are an increasing sequence α1 < α2 < · · · in (ω, ω1) and a sequence (nj) in N such that
(nj, αj) ∈ Mx∗ for every j ∈ N. Put α := supj∈N αj; clearly α < ω1. Now, for every j ∈ N
we have (due to the fact that Pαj

x
αj
nj = 0)

1 ≤ 〈x∗, xαj
nj
〉 =

〈
x∗, Pαx

αj
nj

〉
=

〈
P ∗αx

∗, xαj
nj

〉
=

〈
P ∗αx

∗ − P ∗αj
x∗, xαj

nj

〉
≤ ρA

(
P ∗αx

∗, P ∗αj
x∗

)
−→ 0
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as j →∞; a contradiction. We proved that our K is weakly compact. Therefore X is WCG.

Now, we consider the general case, when X is any non-separable space satisfying (ii). We
shall prove the existence of a linearly dense and weakly compact set lying (even) in A.
Let κ be an uncountable cardinal and assume that such a set was found for all X’s with
densX < κ. Now, assume that densX = κ. The argument will be split into several steps.
1. Using ideas from the proofs of [14, Theorem 12] and [4, Theorem 15], we find an increasing
family Tα, ω < α ≤ κ, of directed subsets of Γ such that Tα =

⋃ {
Tβ+1 : ω < β < α

}
and

cardTα ≤ α for every α ∈ (ω, κ], and that the set
⋃ {

PsX : s ∈ Tκ

}
is dense in X.

2. Put Qω := 0 and for every α ∈ (ω, κ] define

Qαx := lim
s∈Tα

Psx, x ∈ X;

see Proposition 19 where M := X and ρ comes from the norm ‖ · ‖; then clearly QαX =

{PsX : s ∈ Tα}. It is easy to verify that (Qα : ω ≤ α ≤ κ) is then an r-PRI on (X, ‖ · ‖);
for more details, see the proofs mentioned in Step 1. Moreover, we can easily verify that
Ps ◦Qα = Ps whenever α ∈ (ω, κ) and s ∈ Tα, and that Qα(A) ⊂ A for every α ∈ [ω, κ].
3. For every x∗ ∈ X∗ and every α ∈ (ω, κ] we have

Q∗
αx

∗ = ρA- lim
s∈Tα

P ∗s x
∗;

the limit here exists according to Proposition 19 where M := X∗ and ρ := ρA. Indeed, for
every a from the linearly dense set A we have〈

Q∗
αx

∗, a
〉

=
〈
x∗, Qαa

〉
=

〈
x∗, lim

s∈Tα

Psa
〉

= lim
s∈Tα

〈
x∗, Psa

〉
= lim

s∈Tα

〈
P ∗s x

∗, a
〉

=
〈
ρA- lim

s∈Tα

P ∗s x
∗, a

〉
.

4. For every x∗ ∈ X∗ and every sequence ω < α1 < α2 < · · · < κ, with α := sup{α1, α2, · · · }
(which may be equal to κ), we have ρA

(
Q∗

αj
x∗, Q∗

αx
∗) −→ 0 as j → ∞. Indeed, take any

ε > 0. Find s0 ∈ Tα so that ρA

(
P ∗s x

∗, Q∗
αx

∗) < ε whenever s ∈ Tα and s ≥ s0. Find j0 ∈ N
so big that Tαj0

3 s0. Now fix any j ∈ N greater than j0. Then Tαj
⊃ Tαj0

3 s0, and so, by
Step 3,

Q∗
αj
x∗ = ρA - lim

s∈Tαj

P ∗s x
∗ = ρA - lim

s∈Tαj , s≥s0

P ∗s x
∗.

Hence ρA

(
Q∗

αj
x∗, Q∗

αx
∗) = lims∈Tαj , s≥s0 ρA

(
P ∗s x

∗, Q∗
αx

∗) ≤ ε for all j ∈ N greater than j0.

5. Fix any α ∈ (ω, κ). Let Γα be the smallest subset of Γ that contains Tα, is directed, and
σ-closed. For the construction of such an envelope we refer to the proof of [4, Theorem 15].
The system

(
Hα

s := Ps�QαX : s ∈ Γα

)
is then an r-projectional skeleton on (QαX, ‖ · ‖) such

that Hα
s (QαA) ⊂ QαA for every s ∈ Γα; the verification of this directly follows from the

description of Γα. Further, our skeleton is QαA-shrinking. Indeed, consider any sequence
s1 ≤ s2 ≤ · · · in Γα and put s := sup{s1, s2, . . .}. Take any y∗ ∈ (QαX)∗. Find x∗ ∈ X∗

such that x∗�QαX= y∗ and ‖x∗‖ = ‖y∗‖. An elementary verification reveals that for every
n ∈ N

ρQα(A)

(
Hα

s
∗y∗, Hα

sn

∗y∗
)

= ρQα(A)

(
P ∗s x

∗, Psnx
∗) ≤ ρA

(
P ∗s x

∗, Psnx
∗)

So, knowing that the skeleton (Ps : s ∈ Γ) is A-shrinking, we can conclude that the skeleton(
Hα

s : s ∈ Γα

)
on QαX is QαA-shrinking.
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6. Now we are ready to construct a weakly compact subset of A which is linearly dense in
X. Fix any α ∈ (ω, κ) for a while. The subspace Qα+1X has density less than κ. From
Steps 1, 2, 5, by the induction assumption, we find a weakly compact set Kα ⊂ 1

2
Qα+1A

which is linearly dense in the subspace Qα+1X. Define K :=
⋃

α∈(ω,κ)(Qα+1 −Qα)Kα ∪ {0}.
By [7, Proposition 6.2.1 (iv)], we can easily conclude that K is linearly dense in X. Also,
K ⊂ A. As regards the weak compactness of K, let U be a family of weakly open sets in X
covering K. We shall show that U contains a finite subcover. Find U ∈ U so that U 3 0. We
shall show that the set of α’ from (ω, κ) such that (Qα+1−Qα)Kα \U 6= ∅ is finite. Putting
together this with the weak compactness of each set (Qα+1 − Qα)Kα, we immediately get
that U contains a finite subfamily covering the whole K.
So, assume that set of α’s as above is infinite. Find a finite set F ⊂ X∗ so that U ⊃
{x ∈ X : max〈F, x〉 < 1} 3 0. Then, for sure, there is x∗ ∈ F such that the set

{
x ∈

(Qα+1 − Qα)Kα : 〈x∗, x〉 ≥ 1
}

is nonemtpy for infinitely many α ∈ (ω, κ). Then there
exists an infinite increasing sequence α1 < α2 < · · · in (ω, κ) and for every j ∈ N a point
xj ∈ (Qαj+1 −Qαj

)Kαj
such that 〈x∗, xj〉 ≥ 1. Put α := supj∈N αj; clearly α ≤ κ. Now, for

every j ∈ N (due to the fact that Qαj
xj = 0)

1 ≤ 〈x∗, xj〉 =
〈
x∗, Qαxj

〉
=

〈
Q∗

αx
∗, xj

〉
=

〈
Q∗

αx
∗ −Q∗

αj
x∗, xj

〉
≤ ρA

(
Q∗

αx
∗, Q∗

αj
x∗

)
−→ 0

as j →∞; a contradiction. We proved that our K is weakly compact, and so X is WCG. �

Remark 21. (Important) If we do not care about the commutativity of skeletons con-
structed on WCG spaces, we may take, in the proof above, for the projectional generator the
simple one constructed in Subsection 2.4 (PGi); thus avoiding the use of Amir-Lindenstrauss
theorem.

3.3. SWCG spaces. Before attacking the problem of characterizing the class of subspaces
of WCG spaces via projectional skeletons, we recall the following criterion going back to V.
Farmaki [10].

{farma}
Theorem 22. [8, Theorem 3] A Banach space X is a subspace of a weakly compactly gen-
erated space if and only if there exists a linearly dense set ∆ ⊂ BX such that for every ε > 0
there is a decomposition ∆ =

⋃∞
n=1 ∆ε

n such that

∀n ∈ N ∀x∗ ∈ X∗ #
{
δ ∈ ∆ε

n : 〈x∗, δ〉 > ε‖x∗‖
}
< ω.

{swcg}
Theorem 23. For a Banach space (X, ‖ · ‖) TFAE:

(i) X is a subspace of a weakly compactly generated space.
(ii) There exist a (commutative 1-) projectional skeleton (Pγ : γ ∈ Γ) on X and a countable

family A of convex closed symmetric subsets of BX such that
(a) Pγ(A) ⊂ A for every A ∈ A and every γ ∈ Γ,
(b) for every A ∈ A there is εA > 0 such that the skeleton (Pγ : γ ∈ Γ) is A-εA-

shrinking, and
(c)

⋃
{A ∈ A : εA < ε} = BX for every ε > 0.

Proof. (i)=⇒(ii). Assume that X is a subspace of a WCG space (W, ‖ · ‖). Assume that the
norm on W is an extension of the norm on X. We shall proceed similarly as in the proof of
[4, Proposition 10]. The space W being WCG, here exists a projectional generator (W ∗,Φ)

13



constructed as at the begining of the proof of Theorem 20. Now we define a multivalued
mapping ψ : W −→ [W ∗]≤ω as follows. For w ∈ W we find a countable set ψ(w) ⊂ W ∗ such
that

‖w‖ = sup
{
|〈w∗, w〉| : w∗ ∈ ψ(w) and ‖w∗‖ ≤ 1

}
‖w‖m = sup

{
|〈w∗, w〉| : w∗ ∈ ψ(w) and ‖w∗‖m ≤ 1

}
m ∈ N,

‖w‖n,m = sup
{
|〈w∗, w〉| : w∗ ∈ ψ(w) and ‖w∗‖n,m ≤ 1

}
m,n ∈ N,

where ‖ · ‖m and ‖ · ‖m,n are the Minkowski functionals of the sets BX + 1
m
BW and (nK +

1
m
BW ) ∩ BX , respectively, BW := {w ∈ W : ‖w‖ ≤ 1} and BX := {x ∈ X : ‖x‖ ≤ 1}.

(Here we always use the convention that a norm and the dual norm to it is denoted by the
same symbol.) Proposition 12 and Lemma 13 above yields a rich family Γ ⊂ S@A(W ×W ∗)
and a commutative projectional skeleton (Qγ : γ ∈ Γ) on W such that ‖Qγ‖ = ‖Qγ‖m =
‖Qγ‖m,n = 1 for every γ ∈ Γ and every n,m ∈ N. Now, given any γ ∈ Γ, for every m ∈ N
we have

Qγ(BX) ⊂ Qγ

(
BX + 1

m
BW

)
⊂ BX + 1

m
BW ⊂ BX + 2

m
BW ,

and hence Qγ(BX) ⊂ BX , and so QγX ⊂ X. Thus, putting Pγ := Qγ �X , γ ∈ Γ, we
immediately get that (Pγ : γ ∈ Γ) is a commutative 1-projectional skeleton on the space
(X, ‖ · ‖). We define

Am
n := nK + 1

2m
BW ∩BX for m,n ∈ N

and put A := {Am
n : m,n ∈ N}. Clearly, Am

1 ∪ Am
2 ∪ · · · = BX for every m ∈ N. Further,

for every γ ∈ Γ and every n,m ∈ N we have Pγ(A
m
n ) = Qγ(A

m
n ) ⊂ Am

n as ‖Qγ‖n,m = 1.
Finally, fix any m,n ∈ N, fix any x∗ ∈ X∗, consider any sequence γ1 ≤ γ2 ≤ · · · in Γ, and
put γ := sup{γ1, γ2, . . .}. Find a w∗ ∈ W ∗ such that w∗�X= x∗ and ‖w∗‖ = ‖x∗‖. From
Theorem 20 we know that

sup
∣∣〈Q∗

γj
w∗ −Q∗

γw
∗, K

〉∣∣ −→ 0 as j →∞. (4)

Also, for every x ∈ Am
n we have〈

P ∗γj
x∗−P ∗γ x∗, x

〉
=

〈
x∗, Pγj

x
〉
−

〈
x∗, Pγx

〉
=

〈
w∗, Qγj

x
〉
−

〈
w∗, Qγx

〉
=

〈
Q∗

γj
w∗−Q∗

γw
∗, x

〉
.

Therefore

lim sup
j→∞

sup
∣∣〈P ∗γj

x∗ − P ∗γ x
∗, Am

n

〉∣∣ = lim sup
j→∞

sup
∣∣〈Q∗

γj
w∗ −Q∗

γw
∗, Am

n

〉∣∣
= lim sup

j→∞
sup

∣∣〈Q∗
γj
w∗ −Q∗

γw
∗, nK + 1

2m
BW ∩BX

〉∣∣
≤ 1

2m
lim sup

j→∞
sup

∣∣〈Q∗
γj
w∗ −Q∗

γw
∗, BW

〉∣∣
≤ 1

2m
· 2‖w∗‖ = 1

m
‖x∗‖

where the first inequality comes from (4). We proved that the skeleton (Pγ; γ ∈ Γ) is
Am

n - 1
m

-shrinking with respect to the norm ‖ · ‖.
(ii)=⇒(i). If X is separable, then it is even WCG. Further, let κ be any uncountable cardinal
and assume that the implication holds for all Banach spaces with density less than κ. Now
consider any X, with density κ, and satisfying (ii). A reasoning as in the proof of Theorem 20
authorizes us to assume that (Pγ : γ ∈ Γ) is an r-projectional skeleton with some finite
r ≥ 1. (Again, we do not need that this skeleton is commutative nor that it is a 1-skeleton.)
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We copy here Steps 1 and 2 from the proof of Theorem 20. The notation follows the notation
there.
3. Given any 0 6= x∗ ∈ X∗, any α ∈ (ω, κ], and any A ∈ A, there exists γx∗,α,A ∈ Tα such
that ρA

(
P ∗s x

∗, Q∗
αx

∗) < 5εA‖x∗‖ whenever s ∈ Tα and s ≥ γx∗,α,A. Indeed, first we observe

that the net
(
P ∗s x

∗)
s∈Tα

is “2εA‖x∗‖-Cauchy”. Assume this is not so. Pick some s1 ∈ Tα.

Find then s2 ∈ Tα such that s2 ≥ s1 and ρA

(
P ∗s1

x∗, P ∗s2
x∗

)
≥ 2εA‖x∗‖. Find then s3 ∈ Tα

such that s3 ≥ s2 and ρA

(
P ∗s2

x∗, P ∗s3
x∗

)
≥ 2εA‖x∗‖, . . .. Put s := sup{s1, s2, . . .} (∈ Γ). Then

we know that lim supj→∞ ρA

(
P ∗sj

x∗, P ∗s x
∗) < εA‖x∗‖, and so ρA

(
P ∗sj

x∗, P ∗sj+1
x∗

)
< 2εA‖x∗‖

for all j ∈ N big enough, a contradiction. We proved that there exists γx∗,α,A ∈ Tα such that
ρA

(
P ∗γx∗,α,A

x∗, P ∗s x
∗) < 2εA‖x∗‖ whenever s ∈ Tα and s ≥ γx∗,α,A, and hence∣∣〈P ∗s′x∗ − P ∗s x

∗, a
〉∣∣ < 4εA‖x∗‖ whenever a ∈ A, s, s′ ∈ Tα and s, s′ ≥ γx∗,α,A .

Applying here lims′∈Tα, s′≥γx∗,α,A
, we get that

∣∣〈Q∗
αx

∗, a
〉
−

〈
P ∗s x

∗, a
〉∣∣ ≤ 4εA‖x∗‖ whenever

a ∈ A, s ∈ Tα and s ≥ γx∗,α,A, and so our claim is proved.
4. Given any 0 6= x∗ ∈ X∗, any A ∈ A, and any sequence α1 < α2 < · · · in (ω, κ), with
α := supj∈N αj, then

lim sup
j→∞

ρA

(
Q∗

αj
x∗, Q∗

αx
∗) ≤ 10 εA‖x∗‖.

Indeed, from Step 3, find sα ∈ Tα so big that ρA

(
P ∗s x

∗, Q∗
αx

∗) ≤ 5εA‖x∗‖ whenever s ∈ Tα

and s ≥ sα. Find j0 ∈ N so big that Tαj0
3 sα. Now, take any j ∈ N greater than j0. From

Step 3 find sαj
∈ Tαj

so big that ρA

(
P ∗s x

∗, Q∗
αj
x∗

)
< 5εA‖x∗‖ whenever s ∈ Tαj

and s ≥ sαj
.

Pick some s̄ ∈ Tαj
so that s̄ ≥ sα and s̄ ≥ sαj

. Then s̄ ∈ Tα and so ρA

(
P ∗s̄ x

∗, Q∗
αx

∗) ≤
5εA‖x∗‖. Also, ρA

(
P ∗s̄ x

∗, Q∗
αj
x∗

)
< 5εA‖x∗‖. Therefore ρA

(
Q∗

αx
∗, Q∗

αj
x∗

)
< 10 εA‖x∗‖ for

every j ∈ N greater than j0.
5. This is just a tiny generalization of Step 5 from the proof of Theorem 20. For every
α ∈ (ω, κ) the system

(
Hα

s := Ps�QαX : s ∈ Γα

)
is an r-projectional skeleton in QαX such

that for every A ∈ A we have Hα
s (QαA) ⊂ QαA whenever s ∈ Γα, this skeleton is Qα(A)-

εA-shrinking, and
⋃
{Qα(A) : A ∈ A, εA < ε} = BQαX for every ε > 0. Recall that Γα is

the smallest subset of Γ that contains Tα, is directed, and σ-closed. The verification of all
these statements is very similar to that from Step 5 in the proof of Theorem 20, and hence
it is omitted.
6. Now, given any α ∈ (ω, κ), we have at hand the validity of the assertion (ii) from our
Theorem where X is replaced by QαX and A is replaced by the family {Qα(A) : A ∈ A}.
Hence, by the induction assumption, QαX is a subspace of a WCG space. Thus for every
α ∈ (ω, κ) the subspace Qα+1X, and hence also (Qα+1−Qα)X, is a subspace of a WCG space.
Therefore Theorem 22 yields a set ∆α ⊂ (Qα+1−Qα)∩BX , linearly dense in (Qα+1−Qα)X,
such that for every ε > 0 we have a decomposition ∆α =

⋃∞
n=1 ∆ε

α,n such that

∀n ∈ N ∀y∗ ∈
(
(Qα+1 −Qα)X

)∗
#

{
δ ∈ ∆ε

α,n : 〈y∗, δ〉 > ε‖y∗‖
}
< ω. (5) {14}

Now put ∆ :=
⋃
{∆α : α ∈ (ω, κ)}. According to, [7, Proposition 6.2.1 (iv)], this set is

linearly dense in the whole X. Fix any ε > 0. We shall verify the criterion from Theorem 22
for the space X. We have by (c) in (ii) of our theorem

∆ =
⋃ {⋃

{∆ε
α,n : α ∈ (ω, κ)} ∩ A : n ∈ N, A ∈ A, εA <

ε
10

}
;
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note that the “bigger” union consists of countably many pieces. Fix for a while any n ∈ N
and any A ∈ A. Consider any x∗ ∈ X∗. We have to verify that the set{

δ ∈
⋃
{∆ε

α,n : α ∈ (ω, κ)} ∩ A : 〈x∗, δ〉 > ε‖x∗‖
}

is finite. Arguing by contradiction, assume that this is not so; thus x∗ 6= 0. Find then a
one-to-one sequence δ1, δ2, . . . in

⋃
{∆ε

α,n : α ∈ (ω, κ)} ∩ A such that 〈x∗, δj〉 > ε‖x∗‖ for
every j ∈ N. For every j ∈ N find αj ∈ (ω, κ) so that δj ∈ ∆ε

αj ,n ∩ A. From (5) we easily

deduce that the set {α1, α2, . . .} is infinite. When going to subsequences, we may and do
assume that α1 < α2 < · · · . Put α := sup{α1, α2, . . .} (which may be also equal to κ). For
every j ∈ N we have (as Qαj

δj = 0)

ε‖x∗‖ < 〈x∗, δj〉 =
〈
Q∗

αx
∗ −Q∗

αj
x∗, δj

〉
≤ ρA

(
Q∗

αx
∗, Q∗

αj
x∗

)
,

and letting j →∞, Step 4 guarantees that

ε‖x∗‖ ≤ lim sup
j→∞

ρA

(
Q∗

αx
∗, Q∗

αj
x∗

)
≤ 10 εA‖x∗‖ < 10 · ε

10
‖x∗‖ = ε‖x∗‖,

a contradiction. Hallelujah! We thus verified the criterion from Theorem 22 and therefore
X is a subspace of a WCG space. �

CHALLENGE. To characterize weakly K-analytic and Vašák, i.e. weakly K-countably de-
termined Banach spaces, via skeletons.
To characterize Banach spaces which are simultaneously Asplund and 1-Pličko (W. Kubís)
via skeletons.

Acknowledgments. The authors thank Marek Cúth for discussions related to the topic of
this note.
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