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L9-SOLUTION OF THE NEUMANN, ROBIN AND
TRANSMISSION PROBLEM FOR THE SCALAR OSEEN
EQUATION

DAGMAR MEDKOVA'

ABSTRACT. We find necessary and sufficient conditions for the existence of an
L9-solution of the Neumann problem, the Robin problem and the transmission
problem for the scalar Oseen equation in three-dimensional open sets. As a
consequence we study solutions of the generalized jump problem.

1. INTRODUCTION

The Oseen equations represent a mathematical model describing the motion
of a viscous incompressible fluid flow around an obstacle. They are obtained by
linearizing the steady Navier-Stokes equations around a nonzero constant vector
U = U, where u,, represents the velocity at infinity, and have the form

(1.1) —VvAuU+ Uy -Vu+Vp=F, V-u=0 inR*\Q.

Here Q C R? denotes a bounded obstacle and R\ the domain containing the fluid.
The velocity field u and the pressure function p are unknown, while the viscosity
v > 0 and the external force density F acting on the fluid are given. Choosing
Usx = (A,0,0) and taking the divergence of the first equation in (1.1) we obtain
the Poisson equation Ap = V - F for the pressure p, and each component u; of the

velocity satisfies the equation —vAwu; + )\% = F; — %. Thus we see that the
“ J

Oseen equations (1.1) can be reduced to the scalar equation

(1.2) —vAu+MNu=f inR3*\Q
. . on
with scalar functions u and f = F} — T
x

J

The system (1.1) introduced by C. W. Oseen [28] has mostly been studied in
exterior domains with Dirichlet boundary conditions. Early works are due to Finn
who considered these equations in two- and three-dimensional exterior domains

using a weighted L2-approach [10], [I1]. Further important contributions are due
to Farwig [7], Farwig, Sohr [8], and Kra¢mar, Novotny, Pokorny [10] in weighted
Sobolev spaces. Galdi [12] considered the system in W;"”-spaces, and Enomoto,

Shibata [5] and Kobayashi, Shibata [15] investigated the corresponding Oseen semi-
group. Concerning the scalar equation (1.2), important results in weighted Sobolev
spaces are given by Amrouche, Bouzit [1], [2] and Amrouche, Razafison [3]. All
these results concern the exterior Dirichlet problem. Lately classical solutions of
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the Dirichlet problem, the Neumann problem and the Robin problem for the scalar
Oseen equation has been studied by the integral equation method ([23], [24]).

In this paper we study so called L9-solution of the Neumann problem, the Robin
problem and the transmission problem for the scalar Oseen system. It means that
we look for a solution such that the nontangential maximal function of v and Vu
are in L7(092) and boundary conditions are fulfilled in the sense of nontangential
limits. We find necessary and sufficient conditions for the existence of an L9-
solution of the Neumann and Robin problem for bounded and unbounded domains
with compact Lipschitz boundary. We solve also uniqueness of the problem and a
continuous dependence on boundary conditions. Similar results we get also for the
transmission problem. Remark that the essential difference between the Neumann
problem for the Laplace equation and for the scalar Oseen equation is that the
Neumann problem for the scalar Oseen equation —Awu + Adju = 0 with A #£ 0 is
uniquely solvable.

P. Krutitskii studied in [17], [18] classical solutions of the jump problem for the
Laplace equation

Au=0 inR*\T, [ul+ — [u]- = f, [Ou/On]y — [Ou/On]- =gonT,
where I' is a smooth open curve. Later he studied the generalized jump problem
Au=0 inR*\T, [u]l+ — [u]— = f, [Ou/On]4+ — [Ou/On]_ + hlu]; =g on T.

(See [19].) As a consequence of our result for the transmission problem we prove
the existence of an L%-solution of the generalized jump problem for the scalar Oseen
equation corresponding to a crack I' C R?. This result is new even for the Laplace
equation.

2. FORMULATION OF THE PROBLEMS

We shall look for so called L%-solution of boundary value problems. For these
reasons we need to define a nontangential limit and a nontangential maximal func-
tion.

Let Q C R? be an open set with compact Lipschitz boundary. If 2 € 9Q, a > 0
denote the nontangential approach regions of opening a at the point x by

To(z) ={y € Oz —y| < (1+ a)dist(y, Q) }.

If now v is a function defined in 2 we denote the nontangential maximal function
of v on 0N by

M, (v)(z) = Mg (v)(z) = sup{|v(y)|;y € Ta(x)}.

It is well known that there exists ¢ > 0 such that for a,b > c and 1 < g < oo there
exist C1,Cy > 0 such that

[Mavl|Laon) < C1l[Mpv|[Laan) < Cal|Mav| La(an)

for any measurable function v in Q. (See, e.g. [14] and [30, p. 62].) We shall
suppose that a > ¢ and write I'(x) instead of 'y (x). Next, define the nontangential
limit of v at = € 9 by

o(@) = pla(@) = lm ()

whenever the limit exists.
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If Q, C R3is an open set with compact Lipschitz boundary, Q_ = R3\Q, visa
function defined on QL UQ_, and x € 9, we denote by [v(x)]+ the nontangential
limit of v at x with respect to Q.

Let now € C R3 be an open set with compact Lipschitz boundary, A € R,
1< qg<oo, heL>®0N),ge L1YIN). We say that u is an Li-solution of the
Robin problem for the scalar Oseen equation

g—z - %nlu—khu:g on 0f,

if u e C*(Q), —Au+ Aohu = 0 in Q, My(u) + M,(|Vu|) € LI(09Q), there exist
nontangential limits of u and Vu at almost all points of 0, and the boundary
condition du/On — Anju/2 + hu = g is fulfilled in the sense of the nontangential
limit at almost all points of Q. If h = 0 we say about the Neumann problem for
the scalar Oseen equation. Here n = n® is the unit exterior normal of €.

Let now ©Q C R? be a bounded open set with compact Lipschitz boundary,
A, Al ER 1 < g < o0, hy,ho € L®(0), g € L1(0N), f € WH4(99Q). Let ay,
a_, by, b_ be positive constants. Denote 2, = Q, Q_ = R3\ Q, and by n denote
the unit exterior normal of Q. We say that u is an L2-solution of the transmission
problem for the scalar Oseen equation

—Au+ A 01u =0 in Q4,
(2.2) a+lul+ — C;—[U]— = [ on 09,
+

by [g—z - Tnlulr —b_ [% - ’\T’nlu} _+ hyful+ +h_[u]- =g on 0L,

(2.1) — Au+ Ao1u =0 in £,

ifu € C®(0y), —Au+ A\edu = 0 in Qu, My (u) + My* (|Vu|) + M (u) +
My~ (IVul) € L1(09Q), there exist nontangential limits of w and Vu with respect to
Q4 and Q_ at almost all points of O, and the transmission conditions a [u]4 —
a_[ul- = f, by[Ou/On—Ainiu/2]4 —b_[Ou/On—A_niu/2]_+hyfuly+h_[ul- =g
are fulfilled in the sense of the nontangential limit at almost all points of OS2.

3. POTENTIALS FOR THE SCALAR OSEEN EQUATION

We shall look for solutions of the Robin problem and the transmission problem
for the scalar Oseen equation by the integral equation method. For that reason we
need to define scalar Oseen boundary potentials and study their properties.

We say that F is a fundamental solution of the scalar Oseen equation

(3.1) —Au+ MNu=0
if —Awu+ AO1u = dg in the sense of distribution. The fundamental solution of the
scalar Oseen equation (3.1) is

1

_ |)\z\7)\a:1)/2.
47 ||

e (

(3.2) Ey(x):
(Remark that Fy(z) is a fundamental solution of the Laplace equation.) Clearly
Ex(—z) = E_x(x). We have

(3.3) |Ex(x) — Eo(z)| = O(1), |VEx(2) — VEo(x)| = O(Jz|™') as |z| — 0

by [24, Lemma 3.2]. If & = (a1, ag, a3) is a multiindex and A # 0 then

(3-4) 07 B p(x)] = O(Jz| 7171 as [a] — oo,

(3-5) |09 ES p(x)] = O(e” P22 21071y as Ja| — oo,



4 DAGMAR MEDKOVA

where |a| = a1 + ag + as.
If Q C R3 is an open set with compact Lipschitz boundary and ¢ € L4(99) with
1 < g < oo denote

ESo(x) = /EA(CC —y)p(y) do(y)
o0

the scalar Oseen single layer potential with density ¢. (If A = 0 then E\p is a
classical single layer potential for the Laplace equation.) Easy calculations yield
that Elp € C®(R?\ 0Q) and —AELp + A0 Ep = 0 in R3 \ 0.

Let now y € 02 be such that the unit exterior normal nf(y) of Q there exists at
y. For x € R\ {y} define

K§(2,9) = n() - VEx(x —y) — 5n(y)Bale ).

For ¢ € L9(99) with 1 < ¢ < oo denote

D%mz/mwwwww@
oN

the scalar Oseen double layer potential with density ¢. (If A = 0 then D)y is
a classical double layer potential for the Laplace equation.) Since K{(-,y) is a
solution of the scalar Oseen equation (3.1) in R3\ {y}, the double layer potential
DSy is a solution of the scalar Oseen equation (3.1) in R3\ 9Q.

Proposition 3.1. Let Q C R3 be an open set with compact Lipschitz boundary,
AMNER, 1< qg<oo. Then there exists a constant C such that

| Ma(DS @) Lacan) < Cllellzaon)
for all ¢ € L1(09). If ¢ € L1(0N) and x € 0L, we define
Kp(x) = lim K3 (x,y)¢(y) do(y)
rl0 OQ\ B(z;r)

whenever this integral makes sense. (Here B(xz;r) = {y € R3;|x —y| <r}.) Then
K$ is a bounded linear operator on L1(09). Denote Oy = Q, Q_ = R3\ Q. If
p € L1(0Q) then
1
[DR ()2 = £50() + Kilp(x)
for almost all x € 09Q2.

(See [25], Theorem 2.9.)

Proposition 3.2. Let Q C R? be an open set with compact Lispchitz boundary,
A ER, 1< q<oo. Denote by ELp the restriction of ELp onto OQ. If € LI(0N),
then Exp(x) is the nontangential limit of ESlo at x for almost all x € 09, and

(3.6) |Ma(ES @) Laoa) < CllellLaon)
with a constant C depending only on 2, A and q.

Proof. Since |Ex(z)| = O(|z|™1) as |z| — 0, and |Ex(x)| — 0 as |z| — oo, the
proposition follows from [22, Proposition 1]. |
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Proposition 3.3. Let Q C R3 be an open set with compact Lipschitz boundary,
AER, 1 <qg<oo. Ifp e LUON), then there exists the nontangential limit of
VE?Q@ at x for almost all x € 0X), and

| Mo(VE @) Laany < Cllellzeon)

with a constant C' depending only on Q, A\ and q. Denote by (K$¥)' the adjoint
operator of K5!. Then (K$) is a bounded linear operator on L(9),

(3.7) (K o(x) = lim KXy, x)e(y) do(y)
r OO\ B(z;r)

for almost all z € ). Denote Uy =Q, Q_ =R3\ Q. If p € LI(09Q) then

8) (55— 3m) Bete)| | = +ge(0) = (62, ete)

for almost all x € 09.
(See [25], Theorem 2.9.)

Proposition 3.4. Let Q C R3 be an open set with compact Lipschitz boundary,
ANER, 1< q<oo. Then &Y, K — K§ and (K) — (K&)' are compact linear
operators on L1(0SY).

Proof. The operators 5}, Ki! — K§* and (K{})' — (K§})" are integral operators with
weakly singular kernels by (3.3). So, these operators are compact in L9(9€2) by [9,
§4.5.2, Satz 2]. 0

Proposition 3.5. Let Q C R® be an open set with compact Lipschitz boundary,
AN€ER, 1< g < oo Then EY : LI(ON) — WH1(0Q) is a bounded operator,
EL—ES: L9(0Q) — WL1(9Q) is a compact operator, [0;(ESt — Ef)|q is a compact
operator on L1(0%).

Proof. £} maps L1(9€) to W14(9Q) by Proposition 3.4 and Lemma 11.2 in Ap-
pendix.. Since &5 is a continuous operator on L4(9Q) by Proposition 3.3, the
Closed graph theorem [29, Theorem 3.10] gives that 5 : L9(992) — W14(9Q) is a
bounded operator.

Since |0;E\(z) — 0;Eo(x)| < Clz|~1, [22, Proposition 1] gives

0,220 =0, Fugla(@) = [ 10,83 =) =0, Fola = )la(s) do(y)
for g € LI(09). So, g — [0;Exg — 0;Epgla is a compact operator on L(0%2) by [9,
§4.5.2, Satz 2.

ESI—ESY is compact on L9(992) by Proposition 3.4. Proposition 3.3 and Lemma 11.2
in Appendix gives that
0,1 (EX—E51)g = (00— 0;) (EX = E5")g = 1[0k (€3 —E5") gla—nk[0; (EX €5 glo-

J

Since all tangential derivatives operators 9, (£5) — &) are compact on L4(9),
the operator (E! — Ef}) : L1(0Q) — W14(99Q) is compact. O
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4. BEHAVIOUR AT INFINITY

If Q is an unbounded domain with compact Lipschitz boundary, then there exists
r > 0 such that T',(z) D {y € R3;|y| > r} for all z € 9Q. If u is an L9-solution of
the Robin problem in €, then M$u € L(dS2). This forces that u is bounded on
the set {y € R%|y| > r}. In this section we shall study a behaviour of bounded
solutions of the scalar Oseen equation. We need the following Liouville’s theorem:

Theorem 4.1. Let u be a tempered distribution in R3, X € R. If —Au+ A\dyu = 0
in R3 in the sense of distributions, then u is a polynomial.

(See [1], Chapter XI, §2, Theorem 1.)

Proposition 4.2. Let 2 C R3 be an unbounded open set with compact boundary,
A eR, ueC®(Q) be a bounded solution of the scalar Oseen equation (3.1) in Q.
Then there exists us € R such that u(z) — us as |z| — co. If « is a multiindex
then

O%[u(x) — uso) = O(|z| 1ol as x| — oo for A =0,

(4.1) O%[u(x) — uso] = O(e”P2I=A20/2|2171) g5 |2| — 00 for X # 0.

Proof. Fix ¢ € C*°(R? with compact support such that ¢ = 1 on a neighbourhood
of R?\ Q. Define v = u(l — ¢) in Q, v = 0 elsewhere. Then v € C®(R?) and
g = —Av + Adyv has compact support. Define w by the convolution w = g x Fj.
Then —Aw + Aw = g. According to (3.4), (3.5), we have 0%w(z) = O(|z|~*~Il)
as |z| — oo for X = 0, 0%w(z) = O(e~A#1=A21)/2 |3 =1 as |2| — oo for X # 0. Since
v —w is bounded, it is a tempered distribution. Since —A(v —w) + A9 (v —w) =0
in R3, Theorem 4.1 gives that v — w is a polynomial. Since v — w is bounded, it is
constant. Since u = v in a neighbourhood of infinity, we obtain the proposition. [

5. INTEGRAL REPRESENTATION

In this section we prove a formula for an integral representation of solutions of
the scalar Oseen equation.

Proposition 5.1. Let Q C R? be an open set with compact Lipschitz boundary,
AER, 1< q<oo. Letu be a solution of the scalar Oseen equation (3.1) in €.
Suppose that M, (u) + My (|Vul) € L1(09), and there exist nontangential limits of
u and Vu at almost all points of Q. If Q is unbounded suppose that u(x) — 0 as
|z] — oo. Denote by g the Neumann condition

(in the sense of a nontangential limit). Then

(5.1) Bt + Dfue) = { ) LS5 o

Proof. Suppose first that 2 is bounded and u € C?(Q). For x € R? denote h,(y) =
Ex(z —y). Then Ah, + A1h, =0 in R\ {z}.
Let z € R?\ Q. According to Green’s formula

ou A oh A
Q Q _ AN ¢ AN )
EAg(z)+DAu(I)7AQ [h<8n inu) +u( 5, 3™ h>} do
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_ / [h(Au — Ayu) — u(Ah + Adyh)] dy = 0.
Q

Let now = € Q. Using (5.1) for Q(r) = Q\ B(z;7)

. n{0u A -
0= 17}?()1 {Ef\)( ) <8n - 2n¥) (x) + Di?( )u(m)] = Eg(z) + D{u(x)

. zr) [Ou A oo oo
~lim [Ef“ " (% - 2n?) () + / (KX (2,y) = Ko7 (2, y)uly) do(y)
T o0

u

—lim do = ESlg(z) + D{u(z) — u(z).

10 OB (z;r) 47r?
Let now € be bounded and u be general. Let €; be the sequence of sets from
Lemma 11.1 in Appendix. We have proved (5.1) for Q;. Letting j — co we obtain
(5.1) for Q by the Lebesgue lemma.
Let now 2 be unbounded. Fix z € €. Choose r > 0 such that 9Q C B(z;r).
We have proved

(5.2) u= Ei’”Bm’”)(au/an — Anju/2) + Df\mB(x;T)u in QN B(x;r).
Define
By (0ufonBEm) — xn u/2)(y) + Dy uly), oy E Q.

According to (5.2) we have Ef(w”)(ﬁu/ﬁnB(I”) —)\nf(w;r)u/Q) —&—Df(x;r)u = Eflg+
DStu —u in QN B(x;r). Thus v is a solution of the scalar Oseen equation (3.1) in
R3. So, v is a polynomial by Theorem 4.1. Since v(z) — 0 as |z| — oo, we deduce
that v = 0. By the definition of v we see that (5.1) holds for z € Q. Let now z ¢ Q.
Choose 7 > 0 such that B(x;r) N Q = 0. Define u = 0 on B(z;r). Then

0=u(z) = E?UB(x;T)(au/anQUB(I”) — AnPUBE y9) () + D?UB(w;T)u(x)
= BYg(x) + DSu(x).

O

Corollary 5.2. Let Q C R? be a bounded open set with Lipschitz boundary, A € R,
1 < q< oo Denote 2y =Q, Q. =R3\ Q.. Let u be a solution of the scalar
Oseen equation (3.1) in Q1 UQ_. Suppose that My (u) + M (IVul)+ My~ (u)+
M- (IVu|) € L1(0RY), and there exist nontangential limits of u and Vu with respect

to Q4 and with respect to QL _ at almost all points of Q. Suppose that u(z) — 0 as
|z| — oo. Denote

ou A
f=luly —[ul-, gz = [ - n?ﬂ} , 9=9+—9-,
on 2 n
where n is the unit outward normal of Q). Then
(5.3) u=Elg+DYf inQ UQ_.

Proof. According to Proposition 5.1

£B9. (o) £ DYluls(o) = { 1) 70

Adding we get (5.3). O
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6. DERIVATIVES OF A DOUBLE LAYER POTENTIAL

Lemma 6.1. Let Q C R3 be an open set with compact Lipschitz boundary, A € R3,
l<g<oo, f€ Wl’q(aﬂ) If x € Q then

(61) D) = 3 NELPnS)(0) — NNEL ) — 20,E () (o),

k=1
where 0., = n?ak —n$20;.
Proof. Fix x € Q. Suppose first that f € C®(R™). Choose ¢ € C>®(R3) with

compact support such that ¢ =1 on 99, ¢ = 0 on a neighbourhood of z and put
f=rfo. By virtue of the Green formula

ZakEA (0r,, ) (x Z / =0k Ex(x — )][n;05 f —nsd; ] d
3 ~
= Z/ (1105 ( (foREr(z —-)) — njOk(fOLEN(z — )] do

3
—|—/ f[njAE,\(J; —) - anakﬁjE,\(m - )} do

k=1

/QZ 0;0k(FEx(x — ) — 9x0;(fEx(z — )] dy

k=1

~ A
—/ frj oL EY(z — ) do + 9, D f(x) + 8j/ f=ni1Ex(x —-) do
09 00" 2

A
= ;DN f(x) + A ER (fn) (@) + S0, EX (fra) (@)-
Let now f € W14(99). Choose fr € C>°(R?) such that fr — f in W19(99Q).
We have proved (6.1) for fj. Letting k — oo we obtain (6.1) for f. O

Proposition 6.2. Let Q C R3 be an open set with compact Lipschitz boundary,
ANER, 1< q<oo. If f e WHhi(dQ), then there exists a nontangential limit of
VDg\zf at almost all points of O and

(6.2) [Mo(VDR)llaan) < CllfllLacan)
with a constant C depending only on 2, q and a. The operator

[0; D8] — [0;Dgla - WH(0%) — LU(09)
18 compact.
Proof. Let f € WH4(9Q). We have (6.1) by Lemma 6.1. According to Proposi-
tion 3.3 there exists a nontangential limit of VDf\2 f at almost all points of 902 and
(6.2) holds.

g — [0jExgla — [0;Eogla is a compact operator on L?(092) by Proposition 3.5.
By virtue of (6.1) we deduce that [0;D$]o — [0;D{}q : Wh4(9Q) — LI(0RQ) is
compact. U
Proposition 6.3. Let Q C R? be an open set with compact Lipschitz boundary,

A€ER, 1< q< . Then Kﬁ? is a bounded linear operator on W11(9Q) and
K — K& is a compact operator on W14(9Q).
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Proof. If f € WH9(09Q) then 1f + K{f is the nontangential limit of DY f with
respect to Q. (See Proposition 3.1.) Proposition 6.2 and Lemma 11.2 in Appendix
give that 5 f + K§!f € WH2(09). Hence K§ f € W14(99). Since K{ is a continu-
ous operator in L?(95), Closed graph theorem ([29, Theorem 3.10]) gives that K’
is a bounded linear operator on W14(99Q).

Kf\z —K(S)) is a compact operator on L4(9€2) by Proposition 3.4. For the tangential
derivative

0, IS = K§1f 1= (120, — 0, K — KE1f
one has by Lemma 11.2
0, [KX — Kg')f = 15(06(DS — D) fla — ni[0;(DS — D) fle-

So, O, [KY — K§] : Wh1(09) — L(0%) is compact by Proposition 6.2. Hence
K{! — K{! is a compact operator on W14(9). O
Proposition 6.4. Let Q C R? be an open set with compact Lipschitz boundary,
AER, 1< g<oo. Denote 2y =, Q_ =R3\ Q.

e There exists a bounded linear operator H! : W14(9Q) — L9(9S) such that

Q x Q T
) @i = [ S| = mprw

for almost all x € ON.
o H{!— H§ : Wh1(9) — LI(0Q) is a compact operator.
Proof. Let f € Wh4(9Q). Define
ODLf A

_ A pe
on inDAf]+

Then HS!: Wh4(02) — L9(09Q) is a bounded linear operator by (6.2).
Define u = D{f. Denote g+ = [Ou/On — Anju/2]+, g = g+ — g—. Since
[ul+ — [u]— = f by Proposition 3.1, Corollary 5.2 gives

DS f =u=FE{g+ D} in Q. UQ_.
Hence Eg\)g =0in Q4 UQ_. According to Proposition 3.3

=@ a) ] |G z) el

oD$ A
Hyf9+g—{ 82f2n1D§\2f] .

(6.1), Proposition 6.2, Proposition 3.1 and Proposition 3.4 give that H? - Hé2 :
Wha(9Q) — LI(99) is a compact operator. O

H?f{

Thus

7. REGULAR L9-SOLUTIONS OF THE DIRICHLET PROBLEM

In this auxiliary section we study regular L9-solutions of the Dirichlet problem
of the scalar Oseen equation.

Let now © C R3 be an open set with compact Lipschitz boundary, A € R,
1<q<oo, g€ Whi(0Q). We say that u is a reqular Li-solution of the Dirichlet
problem for the scalar Oseen equation

(7.1) —Au+X1u=01inQ, u=g on 0,
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if u € C®(Q), —Au+ Nou = 0 in Q, My(u) + My(|Vu|) € LI(0R), there exist
nontangential limits of u and Vu at almost all points of 02, and the boundary
condition w = g 1is fulfilled in the sense of the nontangential limit at almost all
points of Of).

Lemma 7.1. Let Q C R? be an open set with compact Lipschitz boundary, X € R,
h € L>=(09), g € L*(09). Let u be an L%-solution of the Robin problem for the
scalar Oseen equation (2.1). If Q is unbounded suppose moreover that u(x) — 0 as
|x| — co. Then

(7.2) / gu do :/ |Vu|? dz +/ hu? do.
a9 Q a9
IfA#0, h >0 and ug =0 on 0N then u = 0.

Proof. Suppose first that  is bounded. Let Q(k) be a sequence of open sets from
Lemma 11.1 in Appendix. According to the Gauss-Green theorem and the Lebesgue
lemma

0 A
/ gu do = / hu? do + lim (uu — nlug) do
00 00 k—oo Joouy \ On 2
:/ hu? do + lim [Vul|? + u(Au — \oyu)] dx :/ hu? do —|—/ |Vul|? dz.
Ele) k—oo Jo(k) Ele) Q

Let now Q be unbounded. Put A = 0 outside 0f2. Using (7.2) for G(r) :=
QN B(0;r)

/ hu? da—l—/ |Vu|? dz :/ gu do —|—/ wy(x) do
aG(r) G(r) a9 aB(0;1)

where w,.(x) = r2u(rz)[Ou(rz)/On—(\/2)niu(rz)]. Proposition 4.2 gives |w,(z)| <
C and w,(z) — 0 as 7 — oo for x € 9B(0;r). Letting r — oo we obtain (7.2) by
Lebesgue’s lemma.

Let A 2 0, h > 0 and ug = 0 on 992. We can suppose that ) is connected.
The relation (7.2) gives Vu = 0 in Q, hu®? = 0 on 9. So, there exists a constant
¢ such that u = c¢. Suppose that ¢ # 0. Then 0 = ug = cg forces g = 0. Since
0 = hu? = c*h we infer that h = 0. Thus 0 = g = Ou/In—(\/2)njut+hu = c¢(\/2)n,
on 0f). Hence ny = 0 on 91, what is impossible. Therefore u = 0. O

Proposition 7.2. Let Q C R3 be an open set with compact Lipschitz boundary,
1<q<2, AeR. Then EL: LI(0Q) — WL(9Q) is an isomorphism.

Proof. £ : L1(0Q) — W1(9Q) is a Fredholm operator with index 0 by [13,
Theorem 2.2.22]. Since £ is injective (see [20, Chapter I, Theorem 1.15]), it is an
isomorphism.

Let A # 0. Proposition 3.5 gives that £} — £§? : LY(9Q) — W14(99) is compact.
So, £ : L1(9Q) — W14(99Q) is a Fredholm operator with index 0 by [27, § 16,
Theorem 16]. Let f € L9(99Q), ELf = 0. Then f € L2(00) by [26, Lemma 11.9.21].

Denote Q, =, Q_ = R3\Q. Then Eyf is an L2-solution of the Neumann problem
0 A

a—z - Enlu =g+ on 004

for some g4 € L?(99). (See Proposition 3.2 and Proposition 3.3.) Lemma 7.1 gives
that E'f =0 in Q4. Thus

F=1f/2— (K&)' f1 = [=f/2 = (K2))'f] =0

—Au + /\81u =0 in Qi,
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by Proposition 3.3. Therefore £ : L9(0Q) — W14(9Q) is an isomorphism. O

Theorem 7.3. Let Q C R? be a bounded open set with Lipschitz boundary, 1 < q¢ <
2, A\ €RL Ifg € Wh9(99Q) then u = ES{(ES)"Lg is a unique regular L9-solution
of the Dirichlet problem (7.1). Moreover,

(7.3) M3 ()| Lacan) + [|1M5} (V) Lagae) < Cllgllwraon)
where C' does not depend on g.

Proof. £ : L1(0) — W19(9Q) is an isomorphism by Proposition 7.2. So, u =
ESY(EY)~1g is aregular L9-solution of the Dirichlet problem (7.1) by Proposition 3.2
and Proposition 3.3.

Let now u be a regular Li-solution of the Dirichlet problem (7.1) with g = 0.
Denote f = du/On — (A/2)niu on 0S). Then f € LI(0N2). Proposition 5.1 gives
that u = E?f—i—Df\)g = Ef\zf Since Ef\Qf = u = 0 on 012, Proposition 7.2 gives that
f=0. Thus u = EQf =0.

The estimate (7.3) is a consequence of Proposition 3.2 and Proposition 3.3. O

Theorem 7.4. Let Q C R3 be an unbounded open set with Lipschitz boundary,
1<qg<2, AeRY geWhi(0Q). If u is a regular Li-solution of the Dirichlet
problem (7.1) then there exists us, € R! such that u(z) — us as |z| — co. On
the other hand, if us € RY is given then u = ES{(EY) 71 (g — too) + Uoo 18 a unique
reqular L-solution of the Dirichlet problem (7.1) such that u(x) — uso as || — co.
Moreover,

(7.4) 1M ()| Lagon) + 1M (V)| Laoay < C [lgllwraon) + tool]
where C' does not depend on g and teso.

Proof. Let u be a regular Li-solution of the Dirichlet problem (7.1). Since u is
bounded in a neighbourhood of infinity, Proposition 4.2 gives that there exists
Uso € RY such that u(z) — us as x| — oo.

ESY: L1(0Q) — WL9(9Q) is an isomorphism by Proposition 7.2. If us, is given
then u = EL(E5Y) (9 — too) + oo is a regular Li-solution of the Dirichlet problem
(7.1) by Proposition 3.2 and Proposition 3.3.

Let now u be a regular L?-solution of the Dirichlet problem (7.1) with g = 0 such
that u(x) — 0 as |z| — oco. Denote f = du/On—(A/2)njuon 0Q. Then f € L1(00).
Proposition 5.1 gives that u = Eizf + Dg\zg = Eyf Since Ef\)f =u = 0 on 09,
Proposition 7.2 gives that f = 0. Thus u = Ef\zf =0.

The estimate (7.4) is a consequence of Proposition 3.2 and Proposition 3.3. O

8. NEUMANN AND ROBIN PROBLEM

We shall look for a particular solution of the Robin problem (2.1) in the form of
a single layer potential. If ¢ € L9(02) then Eflp is an Li-solution of the problem
(2.1) if 3o — (K)o + h&p = g. (See Proposition 3.2 and Proposition 3.3.)

Proposition 8.1. Let Q C R? be an open set with compact Lipschitz boundary,
ANER, he L*(0N), 1 < q< oco. Suppose that ¢ < 2 or OQ is of class C*. Then
31— (K2 + héS is a Fredholm operator with index 0 in LI(9Q). If A # 0 and
h >0 then 11 — (K%,)" + hES is an isomorphism in L1(0SY).
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Proof. For A = 0 and h = 0 see [6, Theorem 1.2] and [13, Theorem 2.2.22]. The
operator (K) — (K%,)" + h&S is compact on L(9) by Proposition 3.4. So,
T := 31 — (K%,) + hé€Y is a Fredholm operator with index 0 in L?(9€2) by [29,
Theorem 5.10].

Let now A # 0 and h > 0. Let ¢ € L1(0Q), Ty = 0. Since T is a Fredholm
operator with index 0 in L(09Q) and in L?(92), [21, Lemma 9] gives that ¢ €
L2(0%2). Thus Elp is an L2-solution of the problem (2.1) with g = 0. Moreover,
ESp(x) — 0 as |z| — oo. Lemma 7.1 gives that E{¢ = 0 in Q. The function E{}p
is an L? solution of the problem —Au+ Adu = 0 in R3\ Q, du/dn — (A\/2)nju=g
on O(R?\ Q) for some g € L2(99). Since Eflp = 0 on d(R*\ Q) by Proposition 3.2,
Lemma 7.1 gives that E?go =0in R3\ Q. According to Proposition 3.3

1 1
= {Qw - (KQ)\)/(P] - [—Qsa - (KQ)\)/SD:| =0.
Thus T is an isomorphism on L%(952). O

Theorem 8.2. Let Q C R3 be a bounded open set with Lipschitz boundary, \ €
R\ {0}, h € L*(0Q), h > 0, 1 < g < co. Suppose that ¢ < 2 or IQ is of class
Cl. Fiz g € L1(09Q). Put ¢ = [31 — (K2)' + hEY]1g. Then ESlp is a unique
Li-solution of the Robin problem (2.1). Moreover,

(8.1) MG ()| Laoey + 1M5 (V)| Lagan) < CligllLaoa)

where C' does not depend on g.

Proof. 1T — (K9,)" + h€Y is an isomorphism in L9(9) by Proposition 8.1. So,
ESlp is an L9-solution of the Robin problem (2.1).

Let now u be an L9-solution of the Robin problem (2.1) with g = 0. We can
suppose that ¢ < 2. Then w is a regular L?-solution of the Dirichlet problem in
Q. According to Theorem 7.3 there exists 1 € L9(0S2) such that u = E§. So,
(AT — (K2,) + hEL|Y = g = 0, what forces ¢ = 0. Thus u = E{y = 0.

The estimate (8.1) is a consequence of Proposition 3.2 and Proposition 3.3. O

Theorem 8.3. Let Q C R3 be an unbounded open set with compact Lipschitz
boundary, A € R\ {0}, h € L>®(9), h > 0, 1 < q < co. Suppose that ¢ < 2 or
99 is of class Ct. Fiz g € L1(0Q). If u is an Li-solution of the Robin problem
(2.1) then there exists a constant us, such that u(x) — us as |x| — 0o. Let uso be
given. Put o =[£I — (K2,)" + hEY] g — uoc(h — n1A/2)]. Then B¢ + us is a
unique Li-solution of the Robin problem (2.1) such that u(z) — us as |z| — oo.
Moreover,

(8.2) 1M (w)] Lagany + [|ME (V)| Laon) < C (ll9llaaa) + lusol)

where C' does not depend on g.

Proof. I — (K%,) 4+ h&S} is an isomorphism in L?(9€2) by Proposition 8.1. If us,
is given then E{!¢p + uo is an Li-solution of the Robin problem (2.1) such that
u(r) = us as x| — oo.

Let u be an L?-solution of the Robin problem (2.1). Put p = min(g,2). Then u
is a regular LP-solution of the Dirichlet problem in Q. According to Theorem 7.4
there exists a constant us such that u(z) — us as |x| — co. Let now us = 0,
g = 0. According to Theorem 7.4 there exists ¢ € L(99) such that u = E4. So,
(11— (K2,) + hEL)Y = g = 0, what forces ¢ = 0. Thus u = E{y = 0.
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The estimate (8.2) is a consequence of Proposition 3.2 and Proposition 3.3. O

9. TRANSMISSION PROBLEM

Let now 2 C R? be a bounded open set with Lipschitz boundary, A, A_ € R,
l<qg<oo, hy,h_ gL“(@Q). Let ay, a_, by, b_ be positive constants. Denote
O, =Q, 0 =R3\ Q, and by n denote the unit exterior normal of €.

Lemma 9.1. Let u be an L?-solution of the transmission problem for the scalar
Oseen equation (2.2) such that u(x) — 0 as |z| > oo. If hy >0 and f=0,9g=0
then u = 0.

Proof. Since [u]y = (a—_/ay)[u]- on 9Q and —n is the outward normal to Q_,
Lemma 7.1 gives

o:/m[u]+ {b+ [gZ—A;nluL—b {gg—/\inlu]—&-h+[u]++h[u]} do

:b+/ Vu? dm+b7a7/ |Vul? dx—l—/ [hﬁu]i—kha[u]ﬂ do.
Q4 a+ Ja_ o0 a4

Hence Vu = 0 and u is constant on each component of R?\ Q. The condition
u(x) — 0 as |z| — oo forces that u = 0 on the unbounded component of R3 \ 9.

Since a4 [u]+ = a_[u]- on 02, we infer that u = 0. O
Lemma 9.2. Let ¢, g € LI1(0R) and ¢, f € WH9(09Q). Define
1 1
(01 Ti(ew) =as(E ¢+ 50+ K ) —a (82 ¢ — So+ K3 ),
(9.2)

To(p,y) = bilgy — (K2, )Y+ HY o] —b_[—5¢ — (K2, )¢+ HY o]
+hi(E3 Y+ 59+ KL @) +h (60 ¥ — 5o+ K o),
T(QO71/}) = [T1(<P7¢)7T2(<P71/1)] Then
(9.3) u=FE} v+ DS ¢  inQy

is an L9-solution of the transmission problem for the scalar Oseen equation (2.2) if
and only if T(¢,v) = (f,9)-

Proof. Lemma is a consequence of Proposition 3.1, Proposition 3.2, Proposition 3.3,
Proposition 6.2 and Proposition 6.4. O

Proposition 9.3. Letar =a_ =1, hy >0, ho > 0. Let T be an operator from
Lemma 9.2. Suppose that one from the following conditions is satisfied:

hd b+ = b,,

e g=2,

e 9Q is of class C'.
Then T is an isomorphism on Wh4(92) x L4(99)).

Proof. We prove that T" is a Fredholm operator with index 0. Denote T(p,0) =
[Tl(SDa1/))aT2(<P,¢)] = [QD, bJr[%w - (Kg!)lw + H(?(p] - b*[_% - (K(?)/fﬁ + H(?so]a ie
the operator T for Ay = A_ =0, hy = h_ = 0. Clearly, T is a Fredholm operator
with index 0 on W4(99Q) x L9(dQ) if and only if Sy = by [3v — (K§)'y] —

b_[—1¢ — (K§)'y] is a Fredholm operator with index 0 on L?(0€). If by = b_



14 DAGMAR MEDKOVA

then St = by, If by # b_ then S is a Fredholm operator with index 0 in L?(99)
by [6, Theorem 2.5]. If 9§ is of class C! then (K§)’ is a compact operator on L?(952)
by [6, Theorem 1.8] and thus S is a Fredholm operator with index 0 on L7(992).
Since T is a Fredholm operator with index 0 in W9(9Q) x L1(9) and T — T is
compact by Proposition 3.4, Proposition 3.5, Proposition 6.3 and Proposition 6.4,
the operator T is a Fredholm operator with index 0 in W14(9Q) x L1(952).

Let now (p,¢) € Wh4(dQ) x L4(0Q), T(p,) = 0. Since T is a Fredholm
operator with index 0 in W2(9Q) x L?(9Q), [21, Lemma 9] gives that (p,1) €
W2(0Q) x L?(052). Define

vi:E&w—&—D?igo in R®\ 09, u=wvg in Q.

Then u is an L2-solution of the problem (2.2) with ¢ = 0, f = 0 by Lemma 9.2.
Lemma 9.1 gives that v = 0 in Q4. According to Proposition 3.1 and Proposi-
tion 3.2

(9.4) ol =p+l-l- =[] = —p+[o4]s = —.

Proposition 3.3 and Proposition 6.4 force

(9.5) [Qv_/On — (A_/2)n1v_]4 =¥ + [Qv_/On — (A_/2)n1v_]— = ¥,
[Ovy/On — (Ay/2)navg]— = = + [Ovy /On — (A4 /2)n1v4] - = =

So, @ =wv_ in Q,, % = —v, in Q_ is an L%-solution of the transmission problem

—AG+Aza=0 in Qy,
[a]+ — [a]- =0, [Gu - Lnlﬂ} - {au — Mnlﬂ} =0 on 09.
+ —

Lemma 9.1 gives that vy = 0 in Q5. According to (9.4) and (9.5) we obtain
p=[v_]4 =0,% = [0v_/In — (A_/2)nyv_]+ = 0. Since T is a Fredholm operator
with index 0 in W14(9Q) x L4(952), it is an isomorphism. O

Theorem 9.4. Let ho > 0. Suppose that one from the following conditions is
satisfied:

® bi/ay =b_/a_,

° qg=2,
o 9Q is of class C'.
Define

S ) = [a1EL ¥ —aEL ¥ by (594 — (K2, )'¥4)

—b_(—gt— — (K2, )¢_) + hy&Q vy +h_EF v_].
Then S : L1(0S) x L1(0) — WL4(9Q) x LI(I) is an isomorphism. If u is
an Li-solution of the transmission problem (2.2), then there exists us, € R such
that u(z) — s as |x| — o0o. Let now us € RY, f € WHI(0Q), g € LY (09Q)
be given. Put (Y, ) = STHf — a4t + G_Uso, g — Pitioe — h_tuso]. Then
U = Ef\zizpi + Uoo 1n Qg 15 a unique Le-solution of the transmission problem (2.2)
such that u(x) — us as |z| — co. Moreover,

(9.6) M2 (u) + M (V)| zaon) < Clllfllwraan) + 191l Laan) + [tso]]

where C' does not depend on f, g and -
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Proof. It (¢Yy,4¢_) € L1(ON) x LI(0N), then u = Siziz/)i + Uso In Q4 is an LI-
solution of the transmission problem (2.2) such that u(z) — us as |z| — oo if and
only if S(¢4,%-) = [f — a4 too + G—Uoo, § — hptice — h_us]. (See Proposition 3.2
and Proposition 3.3.)

Let now u be an L%-solution of the transmission problem (2.2). Then u is a
regular L9-solution of some Dirichlet problem in Q.. According to Theorem 7.4
there exists uo, € R! such that u(x) — ue as |z| — 00. If us, = 0 then there exists
(Y4,9_) € LI(0Q) x LI(0N) such that u = Eyi ¥y in Q4. (See Theorem 7.3 and
Theorem 7.4.)

Suppose now that a; = a— = 1. Let T be the operator from Lemma 9.2.
Then T is an isomorphism on W4(9Q) x L4(99) by Proposition 9.3. Let (f,g) €
Wha(0Q) x L1(0Q) be given. Put (p,) = T~(f,g), u = Ef\)iz/J + D?igo in Q4.
Then w is an L%-solution of the transmission problem (2.2) such that u(z) — 0
as |z|] — oo. (See Lemma 9.2.) We have proved that there exists (¢¥,9_) €
L1(09) x L1(0N) such that u = Eyidzi in Q1. Hence S(¢4+,v_) = (f,g) and thus
S(L1(0Q) x L1(092)) = WH4(9Q) x L1(9S). Denote p = min(q, 2),

Sy ) = (60 = €8, by(¥y/2 = (KG)'¥s) = b (—v /2 = (KG)'-)]
ie. Sfor \y =A_ =0, hy =h_ =0. We have proved that S(L%(dQ) x L1(IN)) =
Wha(9Q) x LI(99). Let now s € LI(9Q), S(thy,1_) = 0. Since EFp, = E§hb_
and & : LP(0Q) — WLP(9Q) is an isomorphism by Proposition 7.2, we deduce
that ¥_ = ¢4. Denote by T the operator T for Ay =A_=0, hy =h_=0. Since
Y_ =4 and S(py,_) =0, we deduce T(0,74) = 0. Since T is an isomorphism
on Wh4(9Q) x L1(d9) by Proposition 9.3, we infer that ¢_ = ¢, = 0. Therefore
S L1(09Q) x L1(9Q) — Whe(dQ) x L1(dN) is an isomorphism. Since S—9:
L9(0Q) x L1(992) — WH4(9Q) x LI(9R) is a compact operator by Proposition 3.4
and Proposition 3.5, S : LI(9Q) x L1(9Q) — Wh1(9Q) x L1(9Q) is a Fredholm
operator with index 0. Since S(L?(9€) x L4(9Q)) = W14(aQ) x LI(91), the
operator S : L1(9€) x LI(9Q) — W14(0Q) x L1(9) is an isomorphism. Let now u
be an Li-solution of the transmission problem (2.2) such that u(z) — 0 as |z] — o0
and f =0 = g. We have proved that there exists (¢4, 1¥_) € L1(9Q) x LI(9Q) such
that u = EY ¢+ in Qs. Hence S(¢hy,¢_) = 0 and thus ¢ = 0 = ¢»_. Therefore
u=0.

Let now a4+ be arbitrary. Define v = ua+ in Q4. Then u is an L4-solution of
the transmission problem (2.2) such that u(x) — us as |z| — oo if and only if v is
an L7-solution of the transmission problem

—Av+AL0v =0 1in Qy, [v]4 —[v]- = f on 09,
b+ ov )\+ b+ ov )\+ h+ h_ o
- {371 5 nlv]+ o |on 2 nyv N + = [v]+ + " [v]- =g on 0N

such that v(xz) — a_us as || — co. We have proved that there exists a unique
Li-solution of this problem. Therefore there exists a unique LY-solution of the
transmission problem (2.2) such that u(z) — ueo as |z| — 00. If us = 0 then there
exist ¢4, € LI1(9Q) such that u = E?i ¥y in Q4. Since S(¢Y4,v_) = [f,g], we
deduce that S(L(02) x Li(0Q2)) = Wh4(9Q) x LI(0Q). If ¢y, v_ € LI(9Q) and
S(t4+,v-) = 0, then u = Eyi 14 is an L9-solution of the transmission problem
(2.2) with f =0 = ¢ such that u(z) — 0 as |x| — oco. Thus u = 0. Proposition 3.2
gives 5! 1+ = 0 on 9. Since &y, : LP(9Q) — WP(99Q) is an isomorphism for
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p = min(2, ¢) by Proposition 7.2, we deduce that v =0 =1_. Thus S : L1(9Q) x
L1(0Q) — Wh1(9Q) x LI(0R) is an isomorphism. If u,, € R, f € WH4(9Q),
g € L1(09) are given and (4 ,%_) = STHf — a1 Uoo + A _Uso, § — hytioo — h_Uso],
then u = Ef\li P4 + Uso in Q4 is a unique L?-solution of the transmission problem
(2.2) such that u(x) — us as |z] — oco. The estimate (9.6) is a consequence of
Proposition 3.2 and Proposition 3.3. O

10. JuUMP PROBLEM

Let © C R? be a bounded open set with compact Lipschitz boundary. Denote
Qy =0, Q0 =R3\ Q, and by n denote the unit exterior normal of Q. Let A be
a closed subset of 0Q. Let A € R, 1 < ¢ < 00, hy,ho € L>®(09Q), g € LI(09Q),
f e Whi(99Q) be such that f = g=hy =h_ =0o0n dQ\ A. We say that u is an
Li-solution of the generalized jump problem for the scalar Oseen equation

—Au+Xu=0inR3\A, [uly—[ul_=FfonA,
gy AUHAB=ORE L -l

I — §n1u]+ — (%% — 3nqu]_ +hi[uly +ho[u]- =g on A,
ifu e C®(R3\A), —Au+\yu =0 in R3\ A, M (u) + M (|Vul) + My~ (u) +
My (|Vu|) € L1(09), there exist nontangential limits of u and Vu with respect
to Q4 and Q_ at almost all points of 0, and the generalized jump conditions
[ul4 —[u]— = f, [Ou/On—Ainiu/2]4 — [Ou/On—A_niu/2]_ +hifuly +h_[u]l- =g
are fulfilled in the sense of the nontangential limit at almost all points of A. If
hy =0 = h_ we say about the jump problem.

Lemma 10.1. Letar =a_=by =b_ =1, Ay =A_= A\

(1) If u is an Li-solution of the generalized jump problem (10.1), then u is an
Li-solution of the transmission problem (2.2).

(2) Let u be an Li-solution of the transmission problem (2.2). Define u = [u]4
on OQ\A. Then u is an L9-solution of the generalized jump problem (10.1).

Proof. The first proposition is trivial.
Let now u be an L?-solution of the transmission problem (2.2) and u = [u]+ on
00\ A. Then

(10.2) w=Ef+ D9 —holuls —h_[u]-)

in R3\ 9Q by Corollary 5.2. Since f =0, (g — hy[u]ly —h_[u]_) = 0 on 00\ A,
the function w is given by (10.2) and it is a solution of the scalar Oseen equation
in R3\ A. Thus u is an L9-solution of the generalized jump problem (10.1). O

Theorem 10.2. Let Q C R3 be a bounded open set with compact Lipschitz bound-
ary. Denote Qy = Q, Q_ =R3\ Q, and by n denote the unit exterior normal of §).
Let A be a closed subset of 0. Let A€ R, 1 < g < 00, hy,h_ € L*°(0Q), hy >0,
g € L0, f € Wh1(9R) be such that f = g=hy =h_ =0 on OQ\ A. Ifu
is an L2-solution of the generalized jump problem (10.1) then there exists us, € R
such that u(z) — us. On the other hand, if usx, € R is given then there exists a
unique Li-solution of the generalized jump problem (10.1) such that u(x) — Ueo-
Moreover, the estimate (9.6) holds with a constant C that does not depend on f, g
and Uss -

Proof. The theorem is an easy consequence of Lemma 10.1 and Theorem 9.4. O
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11. APPENDIX

Lemma 11.1. If Q C R™ is an open set with compact Lipschitz boundary then
there is a sequence of open sets §); with compact boundaries of class C™° such that

° ﬁj C Q.

o There are a > 0 and homeomorphisms A : 0Q — 0, such that A;(y) €
Lo(y) for each j and each y € O and sup{|ly — A;(y)|;y € 092} — 0 as
J — 00.

o There are positive functions w; on OS2 bounded away from zero and infinity
uniformly in j such that for any measurable set E C 052, fE wj dHpo1 =
Hm—1(Aj(E)), and so that w; — 1 pointwise a.e. and in every L*(0S2),
1<s <.

o The normal vectors to Q;, n(A;(y)), converge pointwise a.e. and in every

js
L#(092), 1 < s < 00, to n(y).

(See [31, Theorem 1.12].)

Lemma 11.2. Let Q@ C R™ be an open set with compact Lipschitz boundary,
1 < g < oo, u€C?Q). Suppose that M,(u), M,(|Vu|) € LI(0Q) and there exist
nontangential limits of uw and Vu at almost all points of 9. Define the nontan-
gential derivative 0., u in the sense of distributions by

<6Tjku? <P> :/8 u(ngaﬂp — N?ak(p) do.
Q
Then w € WhH%(9Q) and 9., u in the sense of distributions coincides with the
nontangential limit n?aku — n?Bju.

Proof. Let (i) be a sequence of sets from Lemma 11.1. If ¢ € C®(R™) has
compact support, then the Gauss-Green theorem and the Lebesgue lemma give

(07, u, @) = lim u(ni2djp — n?@kgp) do = lim (Orudjp — 0judyp) dx
100 J 90 (4) e (i)
= lim np(n?@ku —nd;u) do = / np(n?@ku — nid;u) do.
=0 /(i) o0
Since u, 8;,, u € L1(0Q) we infer that u € W9(99). O
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