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Abstract This paper deals with the weakened convexity properties, mult. ext. quasiconvexity,
mult. ext. one convexity, and mult. ext. polyconvexity,¡ for integral functionals of the form

I�ω1ÙÜÙωs� ¨ �
Ω

f �ω1ÙÜÙωs� d x

where ω1ÙÜÙωs are closed differential forms on a bounded open set Ω ⊂ R
nØ The main

results of the paper are explicit descriptions of mult. ext. quasiaffine and mult ext. polyconvex
functions. It turns out that these two classes consist, respectively, of linear and convex com-
binations of the set of all wedge products of exterior powers of the forms ω1ÙÜÙωsØ Thus,
for example, a function f ¨ f �ω1ÙÜÙωs� is mult. ext. polyconvex if and only if

f �ω1ÙÜÙωs� ¨ Φ�ÜÙωq1
1

`Ý` ωqs
s ÙÜ�

where q1ÙÜÙ qs ranges a finite set of integers and Φ is a convex function. An existence the-
orem for the minimum energy state is proved for mult. ext. polyconvex integrals. The poly-
convexity in the calculus of variations and nonlinear elasticity are particular cases of mult. ext.
polyconvexity. Our main motivation comes from electro-magneto-elastic interactions in con-
tinuous bodies. There the mult. ext. polyconvexity takes the form determined by an involved
direct calculation in an earlier paper of the author [34].
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1 Introduction

The objective of this paper is to examine the weakened convexity properties for in-
tegral functionals depending on several closed differential forms. Such integrals are
of interest in continuum mechanics, particularly in nonlinear elasticity and nonlin-
ear electro-magneto-elasticity, as will be outlined below in this introduction and ex-
plained in detail in the subsequent exposition. By the weakened convexity properties
we mean the triplet of closely related notions of quasiconvexity, rank one convexity,
and polyconvexity. The mathematical principles of these were set by Morrey [24–25]
and applied in continuummechanics in the pioneering work by Ball [1]. These works
deal with the functionals

I�u� ¨ �
Ω

f �∇u�x�	 d x

where Ω is a bounded open subset of Rn (n ¨ 3 in nonlinear elasticity) and u ¨
�u1ÙÜÙ us� is an s-tuple of scalar functions on Ω (s ¨ 3 in nonlinear elasticity; u
is the deformation of the elastic body). It is well-known that the weakened convexity
properties of f are directly related to the main qualitative properties of the functional
I�ċ�, such as the existence of minima, stability etc.

The framework of the present paper is broader than that of [24–25, 1] inasmuch
as we consider integral functionals

I�ω� ¨ �
Ω

f �ω�x�	 d x (1.1)

whereΩ is as before and
ω ¨ �ω1ÙÜÙωs� (1.2)

is an s-tuple of differential forms on Ω that are closed in the sense that their exterior
derivatives satisfy

dω1 ¨ Ü ¨ dωs ¨ 0 (1.3)

on Ω. The forms in (1.2) are given by

ωα ¨ �
1²i1°Ý°ikα²n

ω�α� i1Ýikα
d xi1 `Ý` d xikα

Ù
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where kα is the degree of ωα and ωα
i1Ýikα

are the components of ωα.
¡ Throughout

the paper we assume that the integrand

f Ú bk r R̄ Ú¨ RT ð( (1.4)

is a continuous function defined on the product

bk Ú¨ bk1 �Ý�bksÙ k ¨ �k1ÙÜÙ ks�Ù

of the spaces bk of k-vectors on R
nØ The reader is referred to Section 2 for the

terminology and notation for the exterior algebra and analysis employed here.
Our version of the weakened convexity properties is embodied in the following

definition and in Definition 3.5 in Section 3.

1.1 Definitions Let Q ¨ �0Ù 1�n and let Cð
per�RnÙbk� be the set of all infinitely

differentiableQ-periodicbk-valued maps on Rn. An integrand f Ú bk r R̄ is said
to be
(i) mult. ext. quasiconvex if

�
Q

f �ω + ψ�x�� d x ³ f �ω�

for every ω X bk and every ψ X Cð
per�RnÙbk� such that

dψα ¨ 0 on R
n and �

Q

ψα�x� d x ¨ 0Û

(ii) mult. ext. quasiaffine if f takes only finite values and both f and −f are mult.
ext. quasiconvex;

(iii)mult. ext. polyconvex if there exists a finite number of mult. ext. quasiaffine func-
tions f 1ÙÜÙ f q and a convex lower semicontinuous function Φ Ú R

q r R̄

such that
f �ω� ¨ Φ�f 1�ω�ÙÜÙ f q�ω�	

for each ω X bkØ
The main results of this paper are the determination of all mult. ext. quasiaffine and
mult. ext. polyconvex functions stated in Theorems 1.2 and 1.3, respectively. The
proofs apply theA-quasiconvexity [19, 28–29, 35, 11] to the differential constraints
(1.3).

We introduce the following notation. If � is an s-vector and q a nonnegative
integer we denote by

�q ¨ � `Ý` �
| {z }

p times

the exterior power of �Ù which is an qk-vector. If q ¨ �q1ÙÜÙ qs� is an s-tuple of
nonnegative integers and ω X bk, we denote by ωq the covector of degree

¡ Greek indices are used to label the components of ω and similar objects; Latin indices
are used to label the components of x and the partial derivatives with respect to them. These
two types of indices are tacitly assumed to run from 1 to s and from 1 to n, respectively, unless
stated otherwise.
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deg�q� Ú¨
s

�
α¨1

qαkα

defined by
ω

q ¨ ω
q1
1
`Ý` ωqs

s Ø
Finally, we define the set of admissible exponents by

Adm�k� ¨ !q Ú deg�q� ² n and qi ² 1 if i X�1ÙÜÙ s	 is odd)Ø
Since �q ¨ 0 if either k is odd and q ³ 2 or if qk ± n [see (2.2)1], the power ω

q is
nonzero only for q X Adm�k�Ø

1.2 Theorem An integrand f is mult. ext. quasiaffine if and only if it is given by

f �ω� ¨ �
qXAdm�k�

αq ċωq (1.5)

for each ω X bkÙ where αq X bdeg�q� for each q X Adm�k�Ø
The centered dot in (1.5) is the scalar product of covectors defined in Section 2. To
determine the set of all independent quasiaffine functions

ω w ωqÙ q X Adm�k�Ù
one has to form all possible nonvanishing mutual products

1Ù ωαÙ ωβ ` ωγÙ ωβ ` ωγ `ÝÙ
of the elements of the list

ω1Ù ω2Ù ÜÙ ωsÛ
the repetitions of the same element being admitted, and the indices αÙβÙÜ ordered
in a nondecreasing way to avoid products which differ by a sign.

1.3 Theorem An integrand f is mult. ext. polyconvex if and only if it is given by

f �ω� ¨ Φ�ωq1ÙÜÙωqr� (1.6)

for each ω X bkÙ where q1ÙÜÙ qr is a fixed collection of distinct, nonzero ele-

ments of Adm�k� and Φ Ú bdeg�q1� � Ý � bdeg�qr� r R̄ is a convex lower

semicontinuous function.

1.4 Remark The weakened convexity notions for integrands depending on differen-
tial forms have been investigated previously, but not with all fullness.

(i) A recent work [4] of Bandyopadhyay, Dacorogna & Sil deals with the weak-
ened convexity notions in the special case of a function f of a single differential form.
Their definitions are slightly different but equivalent to the present ones; their termi-
nology is ext. quasiconvexity, ext. quasiaffinity, ext. polyconvexity, ext. one convexity
and ext. one affinity. Using different methods, the authors obtain the particular case
of the representations (1.5) and (1.6) for a single form.

(ii) The paper by Iwaniec & Lutoborski [21] treats null lagrangians and polycon-
vex functions of a collection of differential formsω as in the present paper. However,
there are two major differences. First, while the logic of the present paper and of [4]
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are similar since they derive the representations (1.5) and (1.6) from the quasiaffinity
of the integrand, the reference [21] treats the expressions of the type (1.5) and (1.6)
as definitions of null lagrangians and polyconvex functions. Secondly, the classes of
these functions in [21] are smaller than those in the present paper. The difference
comes from the fact that [21] uses only expansions that contains simple products of
the subsets of the list ω1ÙÜÙωsÙ but not repetitions, i.e., powers of the forms, cf.
[21; Eq. (1.5)].¡

The case of several differential forms treated in the present paper has been mo-
tivated by the desire to encompass the classical calculus of variations with several
unknowns, nonlinear elasticity and electro-magneto-elasticity; areas that remain out-
side the scope of [4]. Referring to Sections 6 and 7 for details, we now outline these
motivations.

1.5 Example (Polyconvexity in nonlinear elasticity) We here derive a well-known
result using the present formalism.The nonlinear elastic body is described by the total
energy functional

I�u� ¨ �
Ω

W�F� d x

whereΩ ⊂ R
3 is the reference configuration of the elastic body, u Ú Ω r R

3 is the
deformation function, F ¨ ∇u is the deformation gradient

F ¨ ∇u ¨ �Fαi�1²αÙi²3 where Fαi ¨ uαÙi

and f is the density of the stored energy. The framework of differential forms (1.1)–
(1.3) is obtained by putting s ¨ n ¨ 3 and writing¡¡

ω ¨ �ω1Ùω2Ùω3� and f �ω� ¨ W�F�
where

ωα Ú¨ Fαi dxiØ (1.7)

The formsωα are closed since the definitionF ¨ ∇u gives the integrability condition
curlF ¨ 0, which is equivalent to dωα ¨ 0Ø

Referring to Theorem 1.2 and to the rule that follows it, we obtain the complete
list of mult. ext. quasiaffine functions by taking all mutual products of ω1Ù ω2Ù and
ω3 of degree ² 3 (since n ¨ 3). This gives the constant 0-form equal to 1 and the
forms

ωαÙ ωβ ` ωγÙ and ω1 ` ω2 ` ω3Ù (1.8)

where 1 ² α ² 3 and 1 ² β ° γ ² 3Ø Each 1-form and each 2-form has three
independent components while each 3-form one component. Thus the forms in (1.8)
represent 3� 3+ 3� 3+ 1 ¨ 19 independent components.

The function f is mult. ext. polyconvex if and only if it is expressible as a con-
vex function of the elements of the list (1.8). Formulas (6.3) and (6.4) (below) show

¡ We also mention works by Dacorogna & Fonseca [12] and Bandyopadhyay& Sil [4–5].

¡¡ In this and the next subsections, both Greek and Latin indices run from 1 to 3Û the
summation convention applies to Latin indices.
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that the elements of the list (1.8) are in a linear one-to-one correspondence with the
elements of the list

FÙ cofFÙ detFØ (1.9)

Thus the mult. ext. polyconvexity is equivalent to Ball’s polyconvexity [1]

W�F� ¨ Ψ�FÙ cofFÙ det F�
whereΨ is a convex function.

1.6 Example (Electro-magneto-elastostatics) The electro-magneto-elastic interac-
tions have recently received much theoretical attention in view of the technological
application of electro- or magneto-sensitive elastomers. These are smart materials
whose mechanical properties change instantly by the application of an electric or
magnetic fields.

One can model the electro- or magneto-sensitive elastomers as nonlinear electro-
magneto-elastic materiakls. Then the total energy is the sum of the energy of the
body, the energy of the vacuum electromagnetic field in the exterior of the body, and
the term corresponding to the loads. Only the first term is of interest here, which takes
the form

I�uÙDÙB� ¨ �
Ω

W�FÙDÙB� d x

where ΩÙ uÙ and F are as in Example 1.5 and D Ú Ω r R
3 and B Ú Ω r R

3

are the referential (lagrangean) electric displacement and magnetic induction which
satisfy

divD ¨ 0Ù divB ¨ 0 in ΩØ
We write

ω ¨ �ω1Ùω2Ùω3Ùω4Ùω5� and f �ω� ¨ W�FÙDÙB�Ù
where ω1Ù ω2Ù and ω3 are as in Example 1.5 and ω4 and ω5 are 2-forms given by

ω4 ¨
1

2
εij kDi dxj ` dxkÙ ω5 ¨

1

2
εij kBi dxj ` dxk (1.10)

where εij k is the permutation symbol. Both ω4 and ω5 are closed since

divD ¨ divB ¨ 0 h dω4 ¨ dω5 ¨ 0

as will be shown in Section 7. Thus we have the format (1.1)–(1.3) with s ¨ 5. A
complete list of quasiaffine functions ofω consists of the identity term 1Ù themechan-
ical terms in (1.8) as before, and the electromagnetic and mechanic-electromagnetic
terms

ω4Ù ω5Ù and ωα ` ω4Ù ωα ` ω5Ù (1.11)

where 1 ² α ² 3Ø The list (1.11) involves 2�3+3�2 ¨ 12 scalar components and
hence the combination of (1.8) and (1.11) shows that there are 19+ 12 ¨ 31 indepen-
dent non-constant mult. ext. quasiaffine functions. It will be explained in Subsection
7 that the forms (1.11) are in a one-to-one correspondence with the terms

DÙ BÙ FDÙ FBØ
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Combining this with the results of Subsection 1.5, we conclude that the mult. ext.

polyconvexity for electro-magneto-elasticity reads

W�FÙDÙB� ¨ Ψ�FÙ cofFÙ det FÙDÙBÙFDÙFB�
whereΨ is a convex function. This form of polyconvexity was determined by a direct
calculation in [34].

This paper is organized as follows. Section 2 presents an index-free approach to
the exterior algebra and analysis. Section 3 introduces the central convexity concepts
of the A-quasiconvexity theory. Section 4 is devoted to the proof of the main result
of the paper, i.e., Theorem 1.2. Section 5 presents a sample-type existence theorem
for minimizers of the total energy under the mult. ext. polyconvexity; in contrast with
the analogous result under mult. ext. quasiconvexity, the integrand may take infinite
values. Section 6 shows that the classical calculus of variations and nonlinear elastic-
ity may be viewed as particular cases of the present theory. Section 7 describes the
mult. ext. polyconvexity for electro-magneto-elastostatics.

2 Preliminaries: exterior calculus

This section summarizes basic notions of exterior algebra and analysis in the extent
needed in this paper. Since these needs are purely theoretical, I feel that it that it is
preferable to adopt the index-free notation and definitions. I follow [6; Chapter 4] and
[18; Chapters One & Four] in taking this abstract attitude, with minor modifications.
Bases and components with multiindices are introduced at the end of this section for
comparison purposes.

The inner product in Rn enables us to identify Rn with its dual; consequently, we
do not distinguish between vectors and covectors and between differential forms and
multivector fields.

2.1 Alternating maps A map � from the cartesian product Rn �Ý� R
n

| {z }

k times

into R

is called k linear if for any i and any collection vj X R
n corresponding to all j © iÙ

the map on RnÙ carrying x into

��v1ÙÜÙ vi−1Ù xÙ vi+1ÙÜÙ vk�
is a linear map from R

n into RØ We say that � is alternating if it has the following
three equivalent properties:
é we have

��v1ÙÜÙ vk� ¨ 0 (2.1)

whenever the collection v1Ù ÜÙ vk contains at least two identical elements;
é we have (2.1) whenever the collection v1Ù ÜÙ vk is linearly dependent;
é we have

��vπ�1�ÙÜÙ vπ�s�� ¨ sgn�π���v1ÙÜÙ vk�
for eachv1ÙÜÙ vk X R

n and each permutationπ Ú  1ÙÜÙ s( r  1ÙÜÙ s(Ø
We denote by Pk the set of all such permutations and by sgn�π� the sign of
π X PkØ
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2.2 Theorem There exists an associative algebrab  with the product ` having the

following properties:
(i) b  has the structure

b  ¨
n
�
k¨0

bk

where bk ⊂ b  are subspaces with the property

if a X bk and b X bl then a ` b ¨ bk+l

for any k ³ 0Ù l ³ 0 with k+ l ² nÛ
(ii) we have

b1 ¨ R
nÛ

(iii) for every alternating k linear map � on Rn there exists a unique linear form L on

bk such that

��v1ÙÜÙ vk� ¨ L�v1 `Ý` vk�
for each v1Ù ÜÙ vk X R

n.

We callb  the Grassmann algebra over Rn and ` the exterior product. The elements
of bk are called k-vectors or covectors of degree kØ It is convenient to put

bk ¨  0( if k ° 0 or k ± nØ
An alternative approach introduces the spacesbk first and then defines (often implic-
itly)b  as the direct sum.

We say that a k-vector a X bk is simple if

a ¨ bk
i¨1 vi Ú¨ v1 `Ý` vk

for some v1ÙÜÙ vk X R
n.

2.3 Properties It is well-known that
é

dimbk ¨�nk�Ù dimb  ¨ 2
nÛ

é for any a X bkÙ b X blÙ any v1Ù ÜÙ vk X R
n and any π X Pk we have

a ` b ¨ �−1�klb ` aÙ bk
i¨1 vπ�i� ¨ sgn�π�bk

i¨1 viÛ (2.2)

é the inner product on R
n extends uniquely to an inner product on b  with the

following two properties:
8
>>><

>>>:

bk þ bl if k © lÙ
�bk

i¨1 ui	ċ�bk
i¨1 vi	 ¨ det �ui ċ vj �1²iÙj²k if k ¨ lÙ

where uiÙ vj X R
nÛ

é each alternating scalar k-form f on R
n has a representation

f �v1ÙÜÙ vk� ¨ a ċ �v1 `Ý` vk� (2.3)

for all v1Ù ÜÙ vk X R
n and some a X bkØ

One possibility to give an index-free definition of the exterior product is the fol-
lowing.
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2.4 Theorem For each open subset Ω of Rn there exists a unique linear map d from

Cð�ΩÙb � into itself such that

d�f a� ¨ ∇f ` aÙ
for every a X bk and every f X Cð�ΩÙR�Ø
The operation d is called the exterior derivative. Here and below we use the standard
notation: if Z is a finite-dimensional vector space then Cð�ΩÙZ� denotes the set
of all indefinitely differentiable Z-valued maps on Ω and by Cð

0 �ΩÙZ� the set of
all indefinitely differentiable Z-valued maps on R

n with compact support which is
contained in ΩØ

A k-form on an open set Ω ⊂ R
n is any map ω Ú Ω rbk.

2.5 Properties We have:
é d2 Ú¨ d � d ¨ 0Û
é the operator d maps smooth k forms into k+ 1 forms; it coincides with the usual

gradient on 0-forms, i.e., on scalar functions;
é if ψ X Cð�ΩÙbk� and ω X Cð�ΩÙbl� then

d�ψ ` ω� ¨ dψ ` ω + �−1�kψ ` dωØ

Alternatively, these the properties can be used as a definition of the exterior derivative,
equivalent to that in Theorem 2.4.

2.6 Definition Let 1 ² pÙ q ² ð and ω X Lq�ΩÙbk�. We say that ω has the
weak interior derivative in Lq if there exists a divω X Lq�ΩÙbk−1� such that

�
Ω

divω ċ χ d x ¨ − �
Ω

ω ċ dχ d x

for every χ X Cð
0 �ΩÙbk−1�. We say that ω has the weak exterior derivative in Lq

if there exists a dω X Lq�ΩÙbk+1� such that

�
Ω

divψ ċω dx ¨ − �
Ω

dω ċ ψ dx

for every ψ X Cð
0 �ΩÙbk+1�.

Alternatively, the divergence (or its multiple by a factor±1) is denoted by δ and
called the interior derivative or codifferential. We use the standard notation: if Z is a
finite-dimensional vector space and 1 ² p ² ð then Lp�ΩÙZ� is the space of all
Z-valued maps on Ω that are Lebesgue integrable with power pØ

2.7 Coordinate expressions If e1ÙÜÙ en is an orthonormal basis in Rn then

dω ¨
n

�
i¨1

ei ` ωÙiØ (2.4)

Further, the k-vectors defined by

ei1ÙÜÙik
¨ ei1 `Ý` eikÙ 1 ² i1 ° Ü° ik ² nÙ

form an orthonormal basis in bk. A k-form ω on Ω has an expansion
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ω ¨ �
1²i1°Ü°ik²n

ωi1ÙÜÙik
ei1ÙÜÙik

Ù (2.5)

where ωi1ÙÜÙik
are real-valued functions on ΩØ Denote by xi Ú R

n r R the i-th
coordinate function, i.e., the function which associates with any x ¨ �x1ÙÜÙ xn� X
R
n the number xiØ Noting that dxi ¨ eiÙ one can rewrite (2.5) more standardly as

ω ¨ �
1²i1°Ý°ik²n

ωi1Ýik
d xi1 `Ý` d xik

Ø

One has

dω ¨
n

�
j¨1

�
1²i1°Ý°ik²n

ωi1ÝikÙj
d xj ` d xi1 `Ý` d xik

Ø (2.6)

3 A-quasiconvexity theory

The purpose of this section is to discuss the notions ofA-quasiaffinity,A-polyconvexity
andΛ-convexity. The A-quasiconvexity theory has been introduced in [11] and fur-
ther developed in many papers, most notably in [19]. Closely related is the compen-
sated compactness theory [28–29]. The reader is referred to [7, 22–23] formore recent
developments and additional literature.

3.1 The differential operator A The following dimensions will be needed in the
subsequent discussion:

n ¨ the number of independent variables, x ¨ �x1ÙÜÙ xn�Ù
d ¨ the number of dependent variables, z ¨ �z1ÙÜÙ zd�Ù

l ¨ the number of differential constrains.

Let Cð
per�RnÙRd� denote the set of all infinitely differentiable Q-periodic maps z Ú

R
n r R

d. We shall consider the first–order differential constraint

Az ¨ 0 (3.1)

on a map z X Cð�RnÙRd� where

Az ¨
n

�
i¨1

A�i�zÙi (3.2)

withA�i� X Lin�RdÙRl�Ù i ¨ 1ÙÜÙ nØ For each ξ ¨ �ξ1ÙÜÙ ξn� X R
n define

A�ξ� ¨
n

�
i¨1

ξiA
�i�Ù

which is an element of Lin�RdÙRl�Ù and make the standing assumption that the rank
of A�ξ� is the same for all ξ © 0Ø The following set will play an important role:

Λ ¨ !z X R
d Ú A�ξ�z ¨ 0 for some ξ X R

nÙ ξ © 0)Ø
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3.2 Definition A continuous function f Ú R
d r R̄ is said to be

(i) A-quasiconvex if
�
Q

f �z + w�x�� d x ³ f �z�

for every z X R
d and every w X Cð

per�RnÙRd� such that

Aw ¨ 0 on R
n and �

Q

w dx ¨ 0Û

(ii) A-quasiaffine if f takes only finite values and both f and−f areA-quasiconvex;
(iii)Λ-convex if

f ��1− t�z1 + tz2� ² �1− t�f �z1� + tf �z2�
for every t X �0Ù 1� and z1Ù z2 X R

d such that z2 − z1 X ΛÛ
(iv)Λ-affine if it takes only finite values and both f and−f are Λ-convex;
(v) A-polyconvex if there exists a finite number ofA-quasiaffine functions f 1ÙÜÙ f q

and a convex lower semicontinuous functionΦ Ú R
q r R̄ such that

f �z� ¨ Φ�f 1�z�ÙÜÙ f q�z��

for each z X R
dØ

The following result is standard but central for the development that follows.

3.3 Theorem ([19; Proposition 3.4]) If f Ú R
d r R is a continuousA-quasiconvex

function then f isΛ-convex; consequently, if f is continuous andA-quasiaffine then

f is Λ-affine.

3.4 Application to closed differential forms Naturally, to apply theA-quasiconvexity
theory to the situation described in Section 1, one identifies the variable z with ω and
the differential constraint (3.1) with (1.3). Explicitly, if we define the sets bk+1 and
bk−1 by

bk±1 Ú¨ bk1±1 �Ý�bks±1Ù
thenA is a map from Cð�RnÙbk� into Cð�RnÙbk+1� defined by

Aω ¨ �dω1ÙÜÙ dωs�

for any ω X Cð�RnÙbk�Ø Referring to (2.4), we find that the transformations A�i�

occurring in (3.2) are linear maps frombk into bk+1 given by

A�i�σ ¨ �ei ` σ1ÙÜÙ ei ` σs�

for any σ ¨ �σ1ÙÜÙσs� X bk. Consequently, if ξ X R
nÙ then A�ξ� is the

transformation frombk into bk+1 given by

A�ξ�σ ¨ ξ ` σ Ú¨ �ξ ` σ1ÙÜÙ ξ ` σs�Ø
The equationA�ξ�z ¨ 0 occurring in the definition of the coneΛ reduces to ξ`σ ¨
0 for any σ X bk where ξ X R

nÙ ξ © 0. It is easy to see that the element σ solves
that equation if and only if it is of the form σ ¨ λ ` ξ for some λ X bk−1 where

λ ` ξ Ú¨ �ξ ` λ1ÙÜÙ ξ ` λs�



4. Characterization of mult. ext. affine functions (proof) 12

for any λ ¨ �λ1ÙÜÙ λs� X bk−1Ø Hence
Λ¨ !λ ` ξ X bk Ú λ X bk−1Ù ξ X R

n)Ø
TheA quasiconvexity, quasiaffinity and polyconvexity in the sense of the general

theory (Definitions 3.2(i), (ii), (v)) reduce to the mult. ext. quasiconvexity, quasiaffin-
ity and polyconvexity introduced in Definitions 1.1. TheΛ convexity and affinity take
the following forms.

3.5 Definition An integrand f of type k is said to be
(i) mult. ext. one convex if

f �ω + tλ ` ξ� ² �1− t�f �ω� + tf �ω + λ ` ξ� (3.3)

for every t X �0Ù 1� and every ω X bk, ξ X R
nÙ and λ X bk−1Ø

(ii) mult. ext. one affine if f takes only finite values and both f and−f are mult. ext.
one convex, i.e., if (3.3) is replaced by

f �ω + tλ ` ξ� ¨ �1− t�f �ω� + tf �ω + λ ` ξ�Ø (3.4)

4 Characterization of mult. ext. affine functions (proof)

The objective of this section is to prove Theorem 1.2, in the following slightly more
detailed form. Recall the standing assumption that the integrand in (1.4) is a contin-
uous function.

4.1 Theorem For an integrand f the following three conditions are equivalent :
(i) f is mult. ext. quasiaffine;
(ii) f is mult. ext. one affine;
(iii) f is given by (1.5) where αq X bdeg�q� for each q X Adm�k�Ø
Here (i) j (ii) is a general assertion, Theorem 3.3, while (iii) j (i) will follow by a
simple application of the Stokes theorem. The main task is the proof of (ii) j (iii)Ù
whichwill be divided into a sequence of lemmas. The proof starts in Lemma4.3 which
asserts certain antisymmetry of partial derivatives and shows that f is a polynomial in
ωØ Then we decompose the polynomial f into a sum of homogeneous polynomials
f q of various degrees in the components of ωØ Each f q inherits the mult. ext. one
affinity from f ØNext, we determine the forms of a homogeneous mult. ext. one affine
polynomials in one variable form ω or two variables ω1Ù ω2Ø Putting these two
particular results together in an iterative way, we obtain Item (iii) of Theorem 4.1.

4.2 Polynomials inω A function f Ú bk r R is said to be a polynomial of degree
m if it is of the form

f �ω� ¨
m

�
j¨0

f j �ω�Ù (4.1)

ω X bkÙ where
f j �ω� ¨ Cj �ωÙÜÙω

| {z }

j times

�Ù

with Cj a symmetric j -linear form on bk for j ¨ 0ÙÜÙmØ Each f j is called a
homogeneous polynomial of degree jØ
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4.3 Lemma Any mult. ext. one affine integrand f Ú bk r R is a polynomial of

degree ² n; moreover, for any integer j ³ 2 and any ω X bk the derivative

ÿ
j f �ω� ¨ ÿ

j f satisfies

ÿ
j f �λ1 ` ξτ�1�ÙÜÙ λj ` ξτ�j �� ¨ sgn�τ�ÿj f �λ1 ` ξ1ÙÜÙ λj ` ξj �Ø (4.2)

for any λ1ÙÜÙ λj X bk−1, ξ1ÙÜÙ ξj X R
n, and τ X Pj .

By Subsection 2.1, the alternating property (4.2) is equivalent to the condition

ÿ
j f �λ1 ` ξ1ÙÜÙ λj ` ξj � ¨ 0 (4.3)

whenever ξ1ÙÜÙ ξj are linearly dependent. In the broader context of the theory of
compensated compactness, the analog of (4.3) is a necessary, and under the constant
rank assumption also sufficient condition for the weak continuity of the composite
function u w f �u� (see [35; Theorem 18], [29; Theorem 3.4]). Alternatively, the
analog of (4.3) is necessary for f to be quasiaffine in the context of higher-order
variational problems (see [2; Theorem 3.4]) and of A-quasiconvexity [11; Section
1.2]. Nevertheless we give complete proof of Lemma 4.3, if only since our proof is
shorter.

Proof (Cf. [32; Proof of Propositions 13.5.2 and 13.5.3].) Let f be a mult. ext. one
affine integrand of type k. Prove first the assertion of the lemma under the additional
assumption that f is infinitely differentiable.

Differentiating the mult. ext. one affinity condition (3.4) we obtain

ÿ
2f �λ1 ` ξÙ λ2 ` ξ� ¨ 0

for any ξ X R
n and λ1Ù λ2 X bk−1Ø As an easy consequence of the polarization

identity (or by Subsection 2.1) we obtain

ÿ
2f �λ1 ` ξ1Ù λ2 ` ξ2� +ÿ

2f �λ1 ` ξ2Ù λ2 ` ξ1� ¨ 0Ø
Differentiating the last identity j − 2 times in the directions λ3 ` ξ3ÙÜÙ λj ` ξj ,
we obtain

ÿ
j f �λ1 ` ξ1Ù λ2 ` ξ2Ù ÜÙ λj ` ξj �

+ÿ
j f �λ1 ` ξ2Ù λ2 ` ξ1ÙÜÙ λj ` ξj � ¨ 0Ø

This establishes (4.2) for the special case of the permutation τ which interchanges the
first two indices in  1Ù 2ÙÜÙ p(Ù and hence any two indices by the symmetry of
partial derivatives. Since any permutation is a composition of these special permuta-
tions, one concludes that (4.2) holds generally.

Applying (4.2) with j ¨ n + 1 and fixing λ1ÙÜÙ λn+1, we see that the n + 1

form
�ξ1ÙÜÙ ξn+1�w ÿ

n+1f �λ1 ` ξ1ÙÜÙ λn+1 ` ξn+1�
on Rn is alternating and hence in vanishes. Since

span!λ ` ξ Ú λ X bk−1Ù ξ X R
n) ¨ bkÙ

we deduce that
ÿ

n+1f �σ1ÙÜÙσn+1� ¨ 0
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for any σ1ÙÜÙσn+1 X bk by the n+1-linearity ofÿn+1f Ø Thus f is a polynomial
of degree at most nØ

This proves the lemma under the assumption that f is infinitely differentiable. If
f is merely continuous, we approximate it by the sequence f ρÙ ρ ± 0Ù of mollifi-
cations of f Ø Clearly, the functions f ρ are mult. ext. one affine also. Thus each f ρ is
a polynomial of degree ² n and hence the limit f is again a polynomial of degree
² n. è

4.4 Decomposition of f into homogeneous polynomials The notion of a polyno-
mial as introduced in Subsection 4.2 applies to a function on any vector space V in
place ofbkØWe now use the fact that the arguments ω X bk are s-tuples of objects
ω1Ù ÜÙ ωs which belong to vector spaces. This allows to decompose each homo-
geneous polynomial into smaller blocks of degree q1 in ω1Ù of degree q2 in ω2Ù Ü
If q ¨ �q1ÙÜÙ qs� is an s-tuple of nonnegative integers, we say that a polynomial
g Ú bk r R is homogeneous of degree q if

g�t1ω1ÙÜÙ tsωs� ¨ t
q1
1
Ý tqss g�ω1ÙÜÙωs� (4.4)

for any �ω1ÙÜÙωs� X bk and any t1Ù ÜÙ ts X RØ Combining (4.4) with the
assumption that g is a polynomial, one finds that g has a representation

g�ω� ¨ A�ω1ÙÜÙω1
| {z }

q1 times

ÙÜÙωsÙÜÙωs
| {z }

qs times

� (4.5)

with A a multilinear form on

bk1 �Ý�bk1
| {z }

q1 times

�Ý�bks �Ý�bks
| {z }

qs times

of degree

j Ú¨
s

�
i¨1

qi (4.6)

that is symmetric under permutations of the arguments belonging to the same brace
in the right-hand side of (4.5). An easy argument based on a multinomial theorem
shows that any homogeneous polynomial of degree j can be decomposed into a sum
of homogeneous polynomials of degrees q satisfying (4.6).

Thus by Lemma 4.3, any mult. ext. one affine integrand f has a representation

f �ω� ¨ �
qXP�n�

f q�ω� (4.7)

where each f q is a q-homogeneous polynomial, and the sum extends over the set P�n�
of all s-tuples q ¨ �q1ÙÜÙ qs� of nonnegative integers satisfying

s

�
i¨1

qi ² nØ

It is easy to see that each f q is mult. ext. one affine separately. Indeed, if t ¨
�t1ÙÜÙ ts� is an s-tuple of real numbers and f is mult. ext. one affine then the
function f �t�Ù given by

f �t��ω1ÙÜÙωs� ¨ f �t1ω1ÙÜÙ tsωs�Ù
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ω X bkÙ is mult. ext. one affine also. Indeed, the mult. ext. one affinity condition for
f �t� reads

f �t��ω + tλ ` ξ� ¨ �1− t�f �t��ω� + tf �t��ω + λ ` ξ�
for every tÙ ω, ξÙ and λ as in Definition 3.5. The scaling (4.4) provides

�
qXP�n�

t
q1
1 Ý tss f q�ω+tλ`ξ� ¨ �

qXP�n�

t
q1
1 Ý tss��1−t�f q�ω�+tf q�ω+λ`ξ�	Ø

This is an equality of two polynomials in the scalar variables t1Ù ÜÙ tsØ Equating
the coefficients, we obtain the mult. ext. one convexity of f q :

f q�ω + tλ ` ξ� ¨ �1− t�f q�ω� + tf q�ω + λ ` ξ�Ø
Thus it suffices to examine the mult. ext. one convexity of each f q separately. How-
ever, we shall split the considerations into subcases further.We realize that the specific
form on the mult. ext. one convexity in the s-tuple ω ¨ �ω1ÙÜÙωs� implies the
mult. ext. one convexity in any subgroup of the group of variables ω1ÙÜÙωs.

We shall start the proof from themult. ext. one convexity in a single homogeneous
polynomial in one variable.

4.5 Lemma If f Ú bk r R is a mult. ext. one affine function given by

f �ω� ¨ A�ωÙÜÙω
| {z }

q times

�

where A is a q-linear form on bk �Ý�bk
| {z }

q times

Ù then there exists an α X bkq such

that

f �ω� ¨ α ċ ωq (4.8)

for every ω X bkØ
Proof We shall prove this by evaluating the second derivative of f and employing
the antisymmetry condition (4.2) with j ¨ 2Ø One finds that the second derivative
ÿ

2f �ω��σ1Ùσ2� at ω X bk corresponding to the increments σ1Ùσ2 X bk is
given by

ÿ
2f �ω��σ1Ùσ2� ¨ q�q − 1�A�σ1Ùσ2Ùω′�

where we abbreviate ω′ ¨ �ωÙÜÙω� X bk �Ý�bk
| {z }

q−2 times

Ø Assuming that the

increments take the forms σ1 ¨ λ1` vkÙ σ2 ¨ λ2` v2kÙ where λ1Ù λ2 X bkÙ and
vkÙ v2k X R

nÙ and employing antisymmetry condition (4.2), we obtain

A�η1 ` vkÙ η2 ` v2kÙω′� ¨ −A�η1 ` v2kÙ η2 ` vkÙω′�Ø (4.9)

This implies the same equationwithω′ ¨ �ωÙÜÙω� replaced byω′ ¨ �ω3ÙÜÙωp�
where ω3ÙÜÙωp X bk by polarization. Putting η1 ¨ v1 ` Ý ` vk−1Ù η2 ¨
vk+1`Ý`v2k−1Ù where vi are vectors from R

nÙ we deduce that the 2k-linear form
carrying �v1ÙÜÙ v2k� into

A�v1 `Ý` vkÙ vk+1 `Ý` v2kÙω′� (4.10)



4. Characterization of mult. ext. affine functions (proof) 16

is alternating. Indeed, the alternating property under permutations of v1ÙÜÙ vk fol-
lows from the alternating property of the wedge product v1 `Ý ` vk; the alternat-
ing property under permutations of vk+1ÙÜÙ v2k follows similarly. Equation (4.9)
provides the antisymmetry under the pairwise exchange vk p v2kØ Since the per-
mutations just described generate the group of all permutations of v1ÙÜÙ v2k, the
alternating property of (4.10) follows. One obtains in the same way that the 2k-linear
form carrying �vk+1ÙÜÙ v3k� into

A�ω1Ù vk+1 `Ý` v2kÙ v2k+1 `Ý` v3kÙω4ÙÜÙωp�
is alternating, etc. Hence the kq-form carrying v1ÙÜÙ vkq into

A�v1 `Ý` vkÙ vk+1 `Ý` v2kÙÜÙ vk�q−1� `Ý` vkq� (4.11)

is alternating. The representation theorem (2.3) provides the existence of a covector α
of degree kq such that the value in (4.11) is given by αċ�v1`Ý`vkq�Ø In particular,
taking

�v1ÙÜÙ vk� ¨ �vk+1ÙÜÙ v2k� ¨ Ü¨ �vk�q−1�ÙÜÙ vkq�Ù
and setting ω ¨ v1 `Ý` vk, we obtain

f �ω� ª A�ωÙωÙÜÙω� ¨ α ċωqØ
This establishes the representation (4.8) for each simple k-vectorω . The extension to
general arguments ω follows by multilinearity. è

Next we consider a homogeneous polynomial in two variables.

4.6 Lemma Let f Ú bk1 �bk2 r R be a mult. ext. one affine function given by

f �ω� ¨ A�ω1ÙÜÙω1
| {z }

q1 times

@ ω2ÙÜÙω2
| {z }

q2 times

� (4.12)

for each ω ¨ �ω1Ùω2� X bk1 �bk2Ù with A a q1 + q2-linear form on

bk1 �Ý�bk1
| {z }

q1 times

�bk2 �Ý�bk2
| {z }

q2 times

Ø

Then there exists an α X bq1k1+q2k2 such that

f �ω1Ùω2� ¨ α ċ �ωq1
1
` ω

q2� (4.13)

for every �ω1Ùω2� X bk1 �bk2Ø
In (4.12) we separate the two groups of arguments by a vertical bar to ease the local-
ization of the arguments in the proof.

Proof As in the preceding lemma, we prove this by evaluating the second derivative
of f and employing the antisymmetry condition (4.2) with j ¨ 2Ø For our purpose
it suffices to evaluate the second derivative

ÿ
2f �ω���σÙ0�Ù �0Ù τ��

corresponding to the increments �σÙ0�Ù �0Ù τ� X bk1 �bk2Ø Then
ÿ

2f �ω���σÙ0�Ù �0Ù τ�� ¨ q1q2A�σÙω′

1 @τÙω′

2�
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wherewe abbreviateω′

i ¨ �ωiÙÜÙωi�Ù i ¨ 1Ù 2Ø Stillmore specially, we assume
that the increments take the forms

σ ¨ η ` vk1Ù τ ¨ θ ` vk1+k2
Ù

where η X bk1−1Ù θ X bk2−1Ù and vk1Ù vk1+k2
X R

nØ The antisymmetry con-
dition (4.2) under the exchange vk1 p vk1+k2

gives

A�η ` vk1Ùω
′

1 @θ ` vk1+k2
Ùω′

2� ¨ −A�η ` vk1+k2
Ùω′

1 @θ ` vk1Ùω
′

2�Ø

The polarization provides the same equation with ω′

1 ¨ �ρ2ÙÜÙρk1�Ù ω′

2 ¨
�σ2ÙÜÙσk2�. We now write η ¨ v1 `Ý` vk1−1Ù θ ¨ vk1+1 `Ý` vk1+k2−1Ù
and employ the same argument as that in the analogous part of the proof of Lemma
4.5. In this way we see that the k1 + k2 form carrying �v1ÙÜÙ vk1+k2

� into

A�v1 `Ý` vk1Ùω
′

1 @vk1+1 `Ý` vk1+k2
Ùω′

2�

is alternating. Consequently, putting

ρα ¨ vk1�α−1�+1 `Ý` vk1αÙ α ¨ 1ÙÜÙ q1Ù

σβ ¨ vk1q1+k2�β−1�+1 `Ý` vk1q1+k2β
Ù β ¨ 1ÙÜÙ q2Ù

we deduce that the expression

A�ρ1ÙÜÙρk1 @σ1ÙÜÙσk2�

is alternating under all permutations of the totality of vector arguments

v1ÙÜÙ vk1q1+k2q2
Ø

Using the representation theorem (2.3) in a way similar to that in the proof of Lemma
4.5, we obtain the representation (4.13) if the argumentsω1 andω2 are simple. Hence
for general arguments by multilinearity. è

4.7 Lemma Let f q Ú bk r R be a mult. ext. one affine function given by (4.5) with
g identified with f qØ Then

f q�ω� ¨ αq ċωq

for all ω X bk and some αq X bdeg�q�Ø
Proof By applying Lemma 4.6 to every pair of variables ωαÙ ωβ of f �ω� ¨
f �ω1ÙÜÙωαÙÜÙωβÙÜÙωs�Ù one obtains that the form

�v1ÙÜÙ vdeg�q��w A�v1 `Ý` vk1ÙÜÙ vdeg�q�−ks+1 `Ý` vdeg�q��

is alternating. The representation follows in the same way as in the preceding two
lemmas. è

4.8 Proof of the implication �ii� j �iii� in Theorem 4.1 This is a combination of
Equation (4.7) and Lemma 4.7. è
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4.9 Proof of the implication �iii� j �i� in Theorem 4.1 Our goal is to prove that
if f is a polynomial of the form (1.5), then we have

�
Q

f �ω + ψ�x�� d x ¨ f �ω� (4.14)

for every ω X bk and every ψ X Cð
per�RnÙbk� such that

dψα ¨ 0 on R
n and �

Q

ψα�x� d x ¨ 0Ø (4.15)

We shall first prove the particular case ω ¨ 0 in (4.14), i.e., that

�
Q

ψq�x� d x ¨ 0

for every ψ X Cð
per�RnÙbk� satisfying (4.15) and every q X Adm�k�. The case

q ¨ 0 being trivial, we assume q © 0Ù i.e., at least one component of q is nonzero.
Suppose q1 ³ 1 for definiteness. Then

ψq�x� ¨ ψ1�x� ` ψq′�x�
where q′ ¨ �q1 − 1Ù q2ÙÜÙ qs�Ø By (4.15) with α ¨ 1Ù there exists a � X
Cð
per�RnÙbk1� such that ψ1 ¨ d� . Then d�� ` ψq�x�	 ¨ ψq�x� and hence the

Stokes theorem gives

�
Q

ψq�x� d x ¨ �
Q

d ���x� ` ψq�x�	dx ¨ �
ãQ

ν`���x� ` ψq�x�	 d x

where ν is the outer normal to the boundary ãQ . Noting that the boundary integral
vanishes since ��x� ` ψq�x� is periodic, we have (4.14) in the case ω ¨ 0.

We now prove (4.14) generally. Any function given by (1.5) is a polynomial in ω
in the sense of (4.1). We shall give a proof by induction on the power m of f in (4.1).
The case m ¨ 0 is immediate. Let m ³ 1Ø Fixing ψÙ let F Ú bk r R be defined
by

F�ω� ¨ �
Q

f �ω + ψ�x�� d xÙ

ω X bkØ Then
ÿF�ω��σ� ¨ �

Q

ÿf �ω + ψ�x���σ� d x ¨ÿf �ω��σ� (4.16)

for each σ X bk by induction hypothesis sinceÿf �ċ��σ� is a polynomial of degree
m−1. The integration of the equality of the two derivatives in (4.16) providesF�ω� ¨
f �ω�+C for all ω X bk and some C X RÛ in particular F�0� ¨ f �0�+CØ The
proof in the special case ω ¨ 0 shows that F�0� ¨ f �0� and hence F�ω� ¨ f �ω�
which is (4.14). è

5 Existence of minimizers of energy under mult. ext. polyconvexity

In this section we present a simple theorem on the existence of a minimizer for an
integral functional (5.1) with a mult. ext. polyconvex integrand. The only goal is to
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show that the standard arguments of the direct method of the calculus of variations,
well known in the case of the standard polyconvexity, can be modified to work also
if mul. ext. polyconvexity is used. A more detailed treatment, with special cases, will
be given elsewhere.

We introduce the following terminology and notation. We define the scalar prod-
uct on bk by putting

ψ ċω ¨
s

�
α¨1

ψα ċ ωα

for every ψ ¨ �ψ1ÙÜÙψs�Ù ω ¨ �ω1ÙÜÙωs� X bk. Furthermore, if p ¨
�p1ÙÜÙ ps� is a collection of numbers satisfying 1 ² pα ² ðÙ we introduce the
Banach space

Lp�ΩÙbk� ¨ Lp1�ΩÙbk1� �Ý� Lps�ΩÙbks�
with the norm

@ω@Lp�ΩÙbk� ¨
s

�
α¨1

@ωα@Lpα�ΩÙbkα�Ø

We write

dω Ú¨ �dω1ÙÜÙ dωs�Ù divω Ú¨ �divω1ÙÜÙ divωs�
for any ω Ú Ω r bk.

We shall minimize the integral functional

I�ω� ¨ �
Ω

�f �ω� − φ ċω	 d x (5.1)

depending on the collection ω ¨ �ω1ÙÜÙωs� of closed differential forms on an
open bounded region Ω ⊂ R

n. The external influences, such as the body forces and
boundary tractions in elasticity, are modeled by the second term in the integral in
(5.1). In that term, φ ¨ �φ1ÙÜÙφs� Ú Ω r bk is a prescribed function.

To formulate the assumptions, we let let p1ÙÜÙ ps be numbers in �1Ùð�Ù and
consider the following conditions:

H1 f is a mult. ext. polyconvex (continuous) integrand;
H2 f satisfies

f �ω� ³ c�@ω1@p1 +Ü+ @ωs@ps − 1�
for some c ± 0 and all �ω1ÙÜÙωs� X bk where the numbers p1ÙÜÙ ps
satisfy

q1¤p1 +Ü+ qs¤ps ² 1 for all �q1ÙÜÙ qs� X Adm�k�Û

H3 φ X Lp
′�ΩÙbk�Ù where

p′ ¨ �p′1ÙÜÙ p′s�Ù p′α ¨ pα¤�pα − 1�Ø

For the purpose of the treatment below, we define the domain D of the functional I
to be the set of all ω X Lp�ΩÙbk� which satisfy

dω ¨ 0 on Ω (5.2)

in the weak sense, see Definition 2.6.
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It is not assumed that the integrand f is finite. Condition H2 implies that f is
bounded from below and thus the integral in (5.1) is well defined as a finite number
or ðØWe denote by

dom f ¨  σ X bk Ú f �σ� ° ð(
the effective domain of f Ø The assumed continuity of f (which is a part of the defi-
nition of an integrand) implies that dom f is an open subset of bkØ

The following theorem presents an existence result for a minimizer of I under
inhomogeneous Neumann’s boundary conditions.

5.1 Theorem Suppose that Hypotheses H1–H3 hold. Then

(i) if I is not identically equal to ð on D then I has a minimizer ω in DÙ i.e., an

element such that

I�ω� ² I�σ�
for all σ X DÛ

(ii) each minimizer ω satisfies f �ω�x�� ° ð for almost every x X ΩÛ
(iii) if f is differentiable on dom f and ω is a minimizer whose range is contained in

a compact subset of dom f then we have the weak form of the Euler-Lagrange

equations

div�ÿω f − φ� ¨ 0 on R
nÙ (5.3)

where div denotes the weak divergence (Definition 2.6).

5.2 Remarks
é In contrast to Theorem 5.1, the existence theorem under the weaker condition of

mult. ext. quasiconvexity requires finitely-valued integrand since the prerequisite
lower semicontinuity theorem [19; Theorem 3.7] requires conditions of the type

c1�@ω@p − 1� ² f �ω� ² c2�@ω@p − 1�
for some p ± 1, c1 ± 0, c2 ± 0 and all ωØ

é Theorem 5.1 or its minor modifications contains the existence theorems in non-
linear elasticity [1] and in nonlinear electro-magneto-elasticity [34].

é The coercivity hypothesisH2 may be unnecessarily strong in concrete cases. For
example, in nonlinear elasticity (see Section 6, below), the unknownω is a triplet
1-forms in n ¨ 3 and thus H3 requires

p1 ³ 3Ù p2 ³ 3Ù p3 ³ 3Ù
i.e., condituion of type

W�F� ³ c�@F@p − 1�Ù p ³ 3Ù
where F is the deformation gradient. However, weaker coercivity conditions suf-
fice to establish existence theorems in nonlinear elasticity [1, 27].

é Since the weak form of the Euler–Lagrange equation (5.3) holds on R
nÙ it in-

cludes the inhomogeneous Neumann-type boundary conditions.

To prove the existence of the solution, we need the compensated compactness
and the lower semicontinuity results in Theorems 5.3 and Theorem 5.5.
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5.3 Theorem Let q ¨ �q1ÙÜÙ qs� X Adm�k� and let p ¨ �p1ÙÜÙ ps�Ù r ¨
�r1ÙÜÙ rs� be s-tuples that satisfy

1 ° pα ² ðÙ rα ³ 1Ù npα¤�n + pα� ° rα ² pαÙ
and

q1¤p1 +Ü+ qs¤ps ² 1Ø (5.4)

Ifωj , j ¨ 1ÙÜÙ is a sequence in Lp�ΩÙbk� andω an element of Lp�ΩÙbk� such
that¡

ωj u ω as j rð in Lp�ΩÙbk�Ù (5.5)

and
sup!@dωj @Lr�ΩÙbk+1�

Ú j ¨ 1ÙÜ) ° ð
then

ω
q
j o ω in M�ΩÙbdeg�q��Ø (5.6)

If (5.4) holds with the strict inequality sign, then (5.6) can be strengthened to assert

ω
q
j u ω in Lp�ΩÙbdeg�q��

where p is defined by

1¤p + q1¤p1 +Ü+ qs¤ps ¨ 1Ø

5.4 Remarks
é Theorem 5.3 is due to Robbin, Rogers & Temple [31; Theorem 1.1] and Iwaniec

& Lutoborski [21; Theorem 5.1].
The weak continuity of the exterior product of differential forms has been considered
previously:
é In a forgotten result, Whitney [36; Chapter IX, Theorem 17A] establishes, in

1957, the case s ¨ 2, k ¨ �k1Ù k2� arbitrary, q ¨ �1Ù 1� and p ¨ r ¨ �ðÙð�
of Theorem 5.3. This seems to be the first compensated compactness result ever

proved. This, however, went unnoticed, as emphasized in my earlier paper [33].
Since the product of any elements of Lð is in LðÙ an obvious iteration of Whit-
ney’s result provides the case of a general s ³ 2, k ¨ �k1ÙÜÙ ks� and
p ¨ r ¨ �ðÙÜÙð�Ø

é The div-curl lemma by Murat [28] and Tartar [35] is s ¨ 2Ù k ¨ �1Ù n − 1�,
p ¨ r ¨ �tÙ t ′�, 1 ° t ° ðØ

5.5 Theorem (Reshetnyak [30], Ball & Murat [3]) Let Φ Ú R
h r R̄ be convex,

lower semicontinuous and bounded below. If θÙ θk X L1�ΩÙRh� satisfy
θk o θ in M�ΩÙRh�

then
lim inf
jrð

�
Ω

Φ�θk� d x ³ �
Ω

Φ�θ� d xØ

¡ Equation (5.5) denotes the weak (weak ) convergence of the components of ωj , i.e.,

�Ω ψ ċ ωj d x r �Ω ψ ċ ω d x for every ψ X Lp
′�ΩÙbk�Ø Similarly, (5.6) (below) denotes

the weak convergence in the sense of measures, i.e., �Ω γ ċ ωq
j d x r �Ω γ ċ ωq d x for every

γ X C0�ΩÙbdeg�q��Ø
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Proof of Theorem 5.1 (i): Let ωj X D be a minimization sequence, which is

bounded in Lp�ΩÙbk� by H2. By reflexivity, there exists a subsequence, again de-
noted by ωj Ù such that we have the weak convergence (5.5). Then

ω
q
j o ωq in M�ΩÙbdim�r�� (5.7)

for every q X Adm�k� by Theorem 5.3. ByH1 and Theorem 1.3 there exists a convex
lower semicontinuous function Φ Ú bdeg�q1� �Ý�bdeg�qr� r R̄ such that

f �ω� ¨ Φ�ωq1ÙÜÙωqr�
or eachω X bkÙwhere q1ÙÜÙ qr is a fixed collection of distinct, nonzero elements
of Adm�k�. By Theorem 5.5 and (5.7),

lim inf
jrð

�
Ω

Φ�ωq1
j ÙÜÙωqr

j � d x ³ �
Ω

Φ�ωq1ÙÜÙωqr� d xÙ

i.e.,
lim inf
jrð

�
Ω

f �ωj � d x ³ �
Ω

f �ω� d xØ

As also
lim
jrð

�
Ω

φ ċ ωj d x ¨ �
Ω

φ ċ ω d xÙ

we have
lim inf
jrð

I�ωj� ³ I�ω�Ø

Since the condition (5.2) survives the limit, we see thatω is inD and thus it minimzes
I onDØ The proof of (i) is complete.

(ii): Follows immediately form I�ω� ° ðØ
(iii): If ψ X Cð

0 �RnÙbk� then ω + tψ X dom f for all sufficiently small @t@
by the hypothesis of (iii). Then

�
Ω

ψ ċ �ÿω f − φ� d x ¨ 0

by a standard argument. Taking ψ ¨ d χ and invoking Definition 2.6 we obtain (5.3).
è

6 Example A: Classical calculus of variations and nonlinear

elasticity

The goal of this section is to discuss the relationship of the weakened convexity and
affinity notions of this paper to their original counterparts from the calculus of varia-
tions.

6.1 The integrand and its variables The classical calculus of variations deals with
the integral functionals of the form

I�u1ÙÜÙ us� ¨ �
Ω

f �∇u1ÙÜÙ∇us� d x
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where Ω is a bounded open subset of Rn as always and u ¨ �u1ÙÜÙ us� is an
s-tuple of scalar functions on Ω. We obtain the format (1.1)–(1.3) with

ωα ¨ uαÙi dxiØ (6.1)

The formsωα are closed since the combination of (2.6) with dxi`dxj ¨ −dxj `dxi
provides

dωα ¨
1

2
�ωα j Ùi −ωα iÙj � dxi ` dxj ¨

1

2
�uα Ùj i − uα Ùij � dxi ` dxj ¨ 0Ø

The domain of f is bk Ú¨ b1 �Ý�b1
| {z }

s times

Ø

6.2 Quasiconvexity and rank one convexity The reader is referred to [24–25, 1, 26]
for theweakened notions of convexity in the calculus of variations. It is immediate that
in the present case the mult. ext. quasiconvexity coincides with the quasiconvexity,
mult. ext. quasiaffinity with the quasiaffinity derived from the quasiconvexity. Also
the mult. ext. one convexity and mult. ext. one affinity coincide with the rank one
convexity and rank one affinity, respectively. Indeed, the discussion in Subsection 3.4
shows that in the present case, the components of λ ¨ �λ1ÙÜÙ λs� are real numbers,
λα X RØ Thus λα ` ξ ª λαξ X R

n and λ ` ξ ¨ �λ1ξÙÜÙ λsξ� ¨ λ� ξØ Thus
Formulas in (3.3) and (3.4) from the definition of mult. ext. one convexity and mult.
ext. one affinity coincide with those in the definition of the rank one convexity and
rank one affinity, respectively.

We now turn to the central notion of this paper, polyconvexity.

6.3 Mult. ext. polyconvexity and Ball’s polyconvexity According to the construc-
tion described after the statement of Theorem 1.2, the set of all nonconstant and
nonzero mult. ext. quasiaffine integrands is the span of the list

ωα1
`Ý` ωαk

Ù 1 ² k ² rÙ 1 ² α1 ° Ü° αk ² mÙ (6.2)

where r Ú¨ min mÙ n(ØAn integrand f Ú bk r R̄ is mult. ext. polyconvex if it is
a convex function of the forms occurring in (6.2). The standard rules for the exterior
product and (6.1) show that

ωα1
`Ý` ωαk

¨ �
1²i1°Ý°ik²n

Mα1ÙÜÙαkÛi1ÙÜÙik
dxi1 `Ý` dxik

where for each α1ÙÜÙ αk and i1ÙÜÙ ik we denote by

Mα1ÙÜÙαkÛi1ÙÜÙik
¨ det �uαaÙib�1²aÙb²k

the minor of the n� m matrix

F Ú¨ �uαÙi�1²α²mÙ 1²i²n

corresponding to the rows and columns labeled by α1ÙÜÙ αk and i1ÙÜÙ ikÙ re-
spectively. This shows that the list of exterior products (6.2) is linearly isomorphic
with the collection of all minors of the matrix FØ Consequently, the mult. ext. poly-
convexity coincides with the standard polyconvexity, defined as a convex function of
minors of F ¨ ∇uÛ [2, 26].
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Nonlinear elasticity [1] is a particular case m ¨ n ¨ 3; then we have a convex
function of FÙ cofF and detFØ Recalling that

�cofF�pq ¨
1

2
εpij εqklFikFj lÙ detF ¨ 1

6
εpij εqklFpqFikFj l

we obtain the following explicit relationship between the lists in (1.8) and (1.9):

ωj ` ωk ¨ 1

2
εj kqεqrs�cof F�pq dxr ` dxsÙ (6.3)

ω1 ` ω2 ` ω3 ¨ �detF� dx1 ` dx2 ` dx3Ø (6.4)

7 Example B: Electro-magneto-elastostatics

As mentioned in the introduction, the statics of electro- and magneto-sensitive elas-
tomers has received considerable attention in recent years [8, 14–17, 9–10, 13, 20].
The main point in modeling these materials is the coupling of the nonlinear mechan-
ical response with the electric or magnetic response. The goal of this section is to
determine the mult. ext. polyconvexity corresponding to this case; the reader is re-
ferred to [34] for more details. Let Ω⊂ R

n where n ¨ 2 or 3Ø
The basic electromagnetic variables are the referential (lagrangean) electric dis-

placement DÙ magnetic induction B satisfying the static Maxwell’s equations

divD ¨ 0Ù divB ¨ 0Ø
The mechanical variables are the deformation u Ú Ω r R

n and the deformation
gradient F ¨ ∇uØ

To formulate the constitutive equations, we note that many choices of indepen-
dent/dependent variables are possible. We take the triplet �FÙDÙB� and start from
the free energy function f Ú M

n�n � R
n � R

n r R̄, i.e., f ¨ f �FÙDÙB�Ø
The energy of the body is given by

I�uÙDÙB� ¨ �
Ω

f �FÙDÙB� d xÛ (7.1)

the total energy then consists of this term plus the energy of the vacuum electromag-
netic field in the exterior ofΩ and the term describing the loads. The integral in (7.1)
falls within the format (1.1) under the identifications which we now describe sepa-
rately for n ¨ 3 and 2Ø

7.1 Dimension three Here s ¨ 5 and the the variable ω ¨ �ω1ÙÜÙω5� is
formed by ω1Ù ω2Ù ω3 as in (1.7) and by ω4Ù ω5 as in (1.10). That the forms ω1Ù
ω2Ùω3 are closed has been explained in Section 6. In the case ofω4 andω5 Formula
(2.6) provides

dω4 ¨
1

2
εij kDiÙl dxl ` dxj ` dxk ¨ DiÙidx1 ` dx2 ` dx3

because
1

2
εij k dxl ` dxj ` dxk ¨ δil dx1 ` dx2 ` dx3
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and as a consequence of

dxl ` dxj ` dxk ¨ εlj k dx1 ` dx2 ` dx3Ø
Referring to Theorem 4.1 and to the rule that follows it, we form the complete

list of mult. ext. quasiaffine functions by taking all mutual products of ω1ÜÙω5 of
degree² 3 (since n ¨ 3). This gives the set of differential forms which consists of
the constant form of degree 0 equal to 1 identically and of the forms

ωαÙ ωβ ` ωγÙ ω1 ` ω2 `ω3Ù 1 ² α ² 3Ù 1 ² β ° γ ² 3Ù (7.2)

ω4Ù ω5Ù ωα ` ω4Ù ωα ` ω5Ù 1 ² α ² 3Ø (7.3)

This is isomorphic to

FÙ cofFÙ detFÙ DÙ BÙ FDÙ FBØ (7.4)

Indeed, it was shown in Section 6 that (7.2) is isomorphic to the first three members
of (7.4); the first two members of (7.3) of course correspond to D and B, and for the
remaining two members it suffices to note that

ωα ` ω4 ¨ �FD�α dx1 ` dx2 ` dx3Ù ωα ` ω5 ¨ �FB�α dx1 ` dx2 ` dx3Ø
The list (7.4) was determined by a direct calculation in [34]. Thus the free energy
f ¨ f �FÙDÙB� is mult. ext. polyconvex if and only if there exists a convex function
Φ such that

f �FÙDÙB� ¨ Φ�FÙ cofFÙ detFÙDÙBÙFDÙFB�
for each �FÙDÙB� XM

n�n � R
n � R

n [34; Theorem 6.5].

7.2 Dimension two Then (7.1) takes the form (1.1) with s ¨ 4 and with the 1-forms
ω1ÙÜÙω4 given by

ωα ¨ FαidxiÙ 1 ² α ² 2Ù
ω3 ¨ D1dx2 −D2dx1Ù ω4 ¨ B1dx2 − B2dx1Ø

The reader will have no difficulty to check that the list of mult. ext. quasiaffine func-
tions is

ω1Ù ω2Ù ω3Ù ω4Ù ωb `ωcÙ 1 ² b ° c ² 4Ù
which is isomorphic to

FÙ det FÙ DÙ BÙ FDÙ FBÙ D � BØ (7.5)

We note that the term D � B comes from the product ω3 `ω4, which is a 2-form in
dimension 2Ù since ω3 and ω4 are 1-forms. This has no analog in dimension n ¨ 3

since the corresponding term ω4 ` ω5 (where ω4Ù ω5 are as in (1.10)), being a
product of two 2-forms, is a 4-form in dimension 3, and hence ω4 ` ω5 vanishes.
From (7.5) one finds that f ¨ f �FÙDÙB� is mult. ext. polyconvex if and only if
there exists a convex functionΦ such that

f �FÙDÙB� ¨ Φ�FÙ detFÙDÙBÙFDÙFBÙD � B�
[34; Theorem 6.5].
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