Peridynamics and Coleman & Noll's retardation theorem

M. Šilhavý Institute of Mathematics Academy of Sciences of the Czech Republic Prague

For Paolo, with a deep esteem

I Prologue: Coleman & Noll's retardation theorem, 1960

An Approximation Theorem for Functionals, with Applications in Continuum Mechanics, [Coleman and Noll, 1960]

Viscoelasticity theory (rheology): The present value of the stress T(x,t) at x depends on the history $F^{t}(x,s) = F(x,t-s), s \ge 0$ of the deformation gradient F from $-\infty$ up to t,

$$\boldsymbol{T}(\boldsymbol{x},t) = \mathfrak{T}(\boldsymbol{F}^t(\boldsymbol{x},\cdot))$$

where \mathfrak{T} is generally a nonlinear functional, obeying

the hypothesis of fading memory

remote past of F has a negligible influence on the present value of T.

For a functional \mathfrak{T} of unspecified structure this is expressed by

- choice of the mathematical space of histories
- continuity and differentiability of \mathfrak{T} .

 \Downarrow

for slow motions \mathfrak{T} can be approximated:

 $\mathfrak{T}(\boldsymbol{F}^{t}(\boldsymbol{x},\cdot)) \sim \boldsymbol{f}(\boldsymbol{F}(\boldsymbol{x},t), \dot{\boldsymbol{F}}(\boldsymbol{x},t), \ddot{\boldsymbol{F}}(\boldsymbol{x},t), \dots)$

e.g., for an incompresible fluid the first approximation

$$T \sim -p\mathbf{1} + 2\eta D + \lambda(\operatorname{tr} D)\mathbf{1}$$
 where $D = \frac{1}{2}(\operatorname{grad} v + \operatorname{grad} v^{\mathrm{T}}).$

Spatial version: On Retardation Theorems, [Coleman, 1971].

time derivatives replaced by spatial gradients

Goal of the talk:

- recapitulate Coleman's theorem
- apply it to an isotropic solid

[r-02]

Remark I Paolo Podio-Guidugli informed me after I had announced the title of this talk that he and Gianfranco Capriz planned a similar work, which, though, never materialized. **Remark 2** Victor J. Mizel draw my attention to the paper [Coleman, 1971] in 1992.

2 Introduction

Peridynamics is a nonlocal continuum theory that does not use the spatial derivatives of the displacement field

S. A. Silling in [Silling, 2000],

S. A. Silling, M. Epton, O. Weckner, J. Xu & E. Askari in [Silling et al., 2007] revised and broadened; Predecessors I. A. Kunin in [Kunin, 1982], [Kunin, 1983] and by A. C. Eringen in [Eringen, 2002].

The equation of motion: $\Omega \subset \mathbb{R}^n$ reference configuration $\xi = \xi(x, t)$ deformation, b = b(x, t) body force, ρ is the density,

$$\rho \ddot{\boldsymbol{\xi}} = \mathfrak{F}(\boldsymbol{\xi}) + \boldsymbol{b}$$

 $\mathfrak{F}(\xi)(x)$ force at x exerted on x by the rest of the body.

The exact form of the operator \mathfrak{F} often differs in different authors. [Silling, 2000] and [Silling et al., 2007] proposes the following forms:

$$\mathfrak{F}(\xi)(x) = \int_{\Omega} f(\xi(y) - \xi(x), y - x) \, dV_y,$$
$$\mathfrak{F}(\xi)(x) = \int_{\Omega} \left(T(\xi(y) - \xi(x)) - T(\xi(x) - \xi(y)) \right) \, dV_y,$$

respectively, where f and T are materially dependent functions

3 Asymptotic expansion for vanishing nonlocality

Does the theory reduce to the classical local or higher-grade continuum theory under certain circumstances? What are these "cicumstances?"

The concrete form of the functional ${\mathcal F}$ often contains a physical parameter, called the horizon by S. A. Silling, of dimension of length

 \Rightarrow the limit of vanishing viscosity.

For a general, formally unspecified \mathfrak{F} , one has to apply

B. D. Coleman's spatial retardation.

4 Influence Functions

Assume

- $\Omega = \mathbb{R}^n$
- the force $\mathfrak{F}(\boldsymbol{\xi})$ calculated at $\boldsymbol{x} = \boldsymbol{0}$

We assume that the values of the deformation $\xi(x)$ for $|x| \to \infty$ influence $\mathfrak{F}(\xi)$ in a negligible way. This is expressed by working in the Banach space

$$\mathscr{L}_{p,h} = \{ \boldsymbol{\xi} : \mathbb{R}^n \to \mathbb{R}^n \text{ measurable, } \int_{\mathbb{R}^n} (\boldsymbol{\xi}(\boldsymbol{x})h(\boldsymbol{x}))^p \, dV_{\boldsymbol{x}} < \infty \}$$

with the norm

$$\left|\boldsymbol{\xi}\right|_{p,h} = \left(\int_{\mathbb{R}^n} (\boldsymbol{\xi}(\boldsymbol{x})h(\boldsymbol{x}))^p \, dV_{\boldsymbol{x}}\right)^{1/p}$$

where $1 \le p \le \infty$ and $h : \mathbb{R}^n \to (0, \infty)$, an influence function. h is said to be of order $s \ge 0$: if for each $\sigma > 0$ there exists a constant M_{σ} such that

$$\sup\left\{\frac{h(\boldsymbol{x}/\alpha)}{\alpha^{s}h(\boldsymbol{x})}:\boldsymbol{x}\in\mathbb{R}^{n},\,|\boldsymbol{x}|\geq\sigma\right\}\leq M_{\sigma}$$

for all $\alpha \in (0,1]$.

Remark I. If *h* is an influence function of order *s* then

$$h(\mathbf{x}) \leq c|\mathbf{x}|^{-s}, \quad \mathbf{x} \in \mathbb{R}^{n}.$$

The function

$$h(\mathbf{x}) = \frac{1}{1 + |\mathbf{x}|^s}$$

is an influence function of order *s*, while an exponential,

$$h(\mathbf{x}) = e^{-\gamma |\mathbf{x}|}, \quad \gamma > 0$$

is an influence function of all orders.

5 Fields and their Taylor Approximations

Lemma 2. Let *h* be an influence function of order *s*. Let $\xi : \mathbb{R}^n \to \mathbb{R}^n$ such that

 $|\boldsymbol{\xi}(\boldsymbol{x})| \leq K |\boldsymbol{x}|^k$

for all $x \in \mathbb{R}^n$ and some $K, k \ge 0$. If

$$k < \begin{cases} s - n/p & \text{if } 1 < p < \infty, \\ s & \text{if } p = \infty, \end{cases}$$

then $\xi \in \mathscr{L}_{p, h}$.

A field $\xi : \mathbb{R}^n \to \mathbb{R}^n$ is said to be *m*-times differentiable at x = 0, if

$$\boldsymbol{\xi}(\boldsymbol{x}) = \sum_{k=0}^{m} \frac{1}{k!} \nabla^{k} \boldsymbol{\xi} \cdot \boldsymbol{x}^{k} + \mathrm{o}(|\boldsymbol{x}|^{m})$$

where $\nabla^k \boldsymbol{\xi}$ is a tensor of order k + 1, symmetric in the las k indices,

$$\boldsymbol{x}^{k} = \boldsymbol{x} \otimes \cdots \otimes \boldsymbol{x}.$$

The Taylor transformation Π_m is a linear transformation defined for all fields which are *m*-times differentiable at x = 0:

$$\Pi_m \boldsymbol{\xi} = \sum_{k=0}^m \frac{1}{k!} \nabla^k \boldsymbol{\xi} \cdot \boldsymbol{x}^k.$$

Theorem 3. If the order of the influence function h is s, then the Taylor transformation Π_m maps the set \mathscr{D}_m of all m times differentiable functions into $\mathscr{L}_{p,h}$ provided that

$$m < \begin{cases} s - n/p & \text{if } 1 < p < \infty, \\ s & \text{if } p = \infty. \end{cases}$$

6 Retardation

The retardation operator Γ_{α} with retardation factor $\alpha(0,1]$ is the linear transformation $\xi \to \xi_{\alpha}$ defined by

$$\Gamma_{\alpha}\xi(\mathbf{x}) = \xi_{\alpha}(\mathbf{x}) = \xi(\alpha \mathbf{x}).$$

Theorem 4. Γ_{α} maps $\mathscr{L}_{p,h}$ into itself. Let *h* be an influence function of order *s*. Suppose that *m* and *p* satisfy

$$m < \begin{cases} s - n/p & \text{if } 1 < p < \infty, \\ s & \text{if } p = \infty. \end{cases}$$

Then

$$\lim_{\alpha \to 0} \frac{1}{\alpha^m} |\xi_{\alpha} - \Pi_m \xi_{\alpha}|_{p,h} = 0$$

or each $\xi \in \mathscr{D}_m$.

7 **Response Functions**

A function $\mathfrak{F}: \mathscr{L}_{p,h} \to \mathbb{R}^n$ is said to be *m*-times Fréchet-differentiable at **0** if bounded homogeneous polynomials $\delta^k \mathfrak{F}$, of degree k = 0, ..., m, such that

$$\mathfrak{F}(\boldsymbol{\xi}) = \sum_{k=0}^{m} \frac{1}{k!} \delta^{k} \mathfrak{F}(\boldsymbol{\xi}) + \mathrm{o}(|\boldsymbol{\xi}|_{p,h}^{m})$$

for all $\xi \in \mathcal{L}_{p,h}$. If ω is a tensor of order k+1, symmetric in the last k indices, we define a homogeneous monomial ω^{\dagger} of of degree k of n variables $z = (z_1, \dots, z_n)$ by

$$\boldsymbol{\omega}^{\dagger}(\boldsymbol{z}) = \boldsymbol{\omega} \cdot \boldsymbol{z}^{k}/k!.$$

Also

$$\binom{k}{j_1,\ldots,j_s} = \frac{k!}{j_1!\cdots j_s!}$$

Theorem 5. If *h* is an influence function of order *s*, \mathfrak{F} is *s* times differentiable on $\mathscr{L}_{p,h}$ and $\xi \in \mathscr{D}_s$ a deformation then

$$\mathfrak{F}(\boldsymbol{\xi}_{\alpha}) = \sum_{k=1}^{s} \frac{\alpha^{k} c_{k}(\nabla \boldsymbol{\xi}, \dots, \nabla^{s} \boldsymbol{\xi})}{k!} + \mathrm{o}(\alpha^{s})$$

as $\alpha \to 0$ where

$$c_{k}(\nabla \boldsymbol{\xi}, \dots, \nabla^{s} \boldsymbol{\xi}) = \sum_{\substack{j_{1} \in \mathbb{N}_{0}, \dots, j_{s} \in \mathbb{N}_{0} \\ j_{1} + \dots + j_{s} = k \\ j_{1} + 2j_{2} \dots + sj_{s} \leq s}} \binom{k}{j} \delta^{k} \mathfrak{F}\left(\underbrace{\nabla^{1} \boldsymbol{\xi}^{\dagger}, \dots, \nabla^{1} \boldsymbol{\xi}^{\dagger}}_{j_{1} - \mathsf{times}}, \dots, \underbrace{\nabla^{s} \boldsymbol{\xi}^{\dagger}, \dots, \nabla^{s} \boldsymbol{\xi}^{\dagger}}_{j_{s} - \mathsf{times}}\right)$$

Remark 6 (Particular cases). (i) If s = 1 then

 $\mathfrak{F}(\boldsymbol{\xi}_{\alpha}) \sim \mathfrak{F}(\boldsymbol{0}) + c_1(\nabla \boldsymbol{\xi})$

where

$$c_1(\nabla \boldsymbol{\xi}) = \delta \mathfrak{F}(\nabla \boldsymbol{\xi}^{\dagger}).$$

(ii) If s = 2 then

$$\mathfrak{F}(\boldsymbol{\xi}_{\alpha}) \sim \mathfrak{F}(\boldsymbol{0}) + c_1(\nabla \boldsymbol{\xi}, \nabla^2 \boldsymbol{\xi}) + \frac{1}{2}c_2(\nabla \boldsymbol{\xi}, \nabla^2 \boldsymbol{\xi})$$

where

$$\begin{split} c_1(\nabla\xi,\nabla^2\xi) &= \delta\mathfrak{F}(\nabla\xi^{\dagger}) + \delta\mathfrak{F}(\nabla^2\xi^{\dagger}), \\ c_2(\nabla\xi,\nabla^2\xi) &= \delta^2\mathfrak{F}(\nabla\xi^{\dagger},\nabla\xi^{\dagger}). \end{split}$$

(iii) If s = 3 then

$$\mathfrak{F}(\boldsymbol{\xi}_{\alpha}) \sim \mathfrak{F}(\boldsymbol{0}) + c_1(\nabla \boldsymbol{\xi}, \nabla^2 \boldsymbol{\xi}, \nabla^3 \boldsymbol{\xi}) + \frac{1}{2}c_2(\nabla \boldsymbol{\xi}, \nabla^2 \boldsymbol{\xi}, \nabla^3 \boldsymbol{\xi}) + \frac{1}{3!}c_3(\nabla \boldsymbol{\xi}, \nabla^2 \boldsymbol{\xi}, \nabla^3 \boldsymbol{\xi})$$

where

$$\begin{split} c_1(\nabla\xi,\nabla^2\xi,\nabla^3\xi) &= \delta\mathfrak{F}(\nabla\xi^{\dagger}) + \delta\mathfrak{F}(\nabla^2\xi^{\dagger}) + \delta\mathfrak{F}(\nabla^3\xi^{\dagger}), \\ c_2(\nabla\xi,\nabla^2\xi,\nabla^3\xi) &= \delta^2\mathfrak{F}(\nabla\xi^{\dagger},\nabla\xi^{\dagger}) + 2\delta^2\mathfrak{F}(\nabla\xi^{\dagger},\nabla^2\xi^{\dagger}), \\ c_3(\nabla\xi,\nabla^2\xi,\nabla^3\xi) &= \delta^3\mathfrak{F}(\nabla\xi^{\dagger},\nabla\xi^{\dagger},\nabla\xi^{\dagger}). \end{split}$$

8 Linear isotropic peridynamic materials

Now for any $x \in \mathbb{R}^n$, he first derivative of \mathfrak{F} is a linear function of the form

$$\delta \mathfrak{F}(\boldsymbol{u})(\boldsymbol{x}) = \int_{\Omega} \boldsymbol{K}(\boldsymbol{y} - \boldsymbol{x}) (\boldsymbol{u}(\boldsymbol{y}) - \boldsymbol{u}(\boldsymbol{x})) dV_{\boldsymbol{y}}$$

where the form of the kernel K is dictated by the representation theorem of isotropic functions, i.e.,

$$K(p) = \psi(p)|p|^{2}\mathbf{1} + \omega(p)p \otimes p$$

 $p \in \mathbb{R}^n$, where ψ and ω are radial scalar functions determined by the properties of the material. We write $\psi(r)$ and $\omega(r)$ for $\tilde{\psi}(r)$ and $\tilde{\omega}(r)$, e.g., $\int_0^{\infty} \psi(r) dr := \int_0^{\infty} \tilde{\psi}(r) dr$. No confusion can arise. Further, for any bounded function g on \mathbb{R}^n with values in any normed space with the norm $|\cdot|$ we put

$$\|g\|_{\infty} := \sup \{|g(p)| : p \in \mathbb{R}^n\} < \infty.$$

Let, finally, κ_{n-1} be the area of the unit sphere $\mathbb{S}^{n-1} := \{ p \in \mathbb{R}^n : |p| = 1 \}$ in \mathbb{R}^n .

Theorem 7. Let $k \ge 1$ be an integer and let $u : \mathbb{R}^n \to \mathbb{R}^n$ have bounded continuous derivatives of all orders $\le 2k + 1$. Then

$$\mathfrak{F}(\boldsymbol{u}_{\alpha}) = \sum_{s=1}^{k} \alpha^{2s-2} \mathfrak{N}^{(s)} \boldsymbol{u} + \alpha^{2k} \mathfrak{S}_{\alpha}^{(k)} \boldsymbol{u} \quad \text{on } \mathbb{R}^{n}$$
where $\|\mathfrak{S}_{\alpha}^{(k)} \boldsymbol{u}\|_{\infty} \leq c \|\nabla^{2k+1} \boldsymbol{u}\|_{\infty}$ with c independent of α
and \boldsymbol{u} ;
$$\left\{ \mathfrak{S}_{\alpha}^{(k)} \boldsymbol{u} \right\}_{\infty} \leq c \|\nabla^{2k+1} \boldsymbol{u}\|_{\infty} \text{ with } c \text{ independent of } \alpha$$

here

$$\mathfrak{N}^{(s)} \boldsymbol{u} = (\lambda_s + \mu_s) \Delta^{s-1} \nabla \operatorname{div} \boldsymbol{u} + \mu_s \Delta^s \boldsymbol{u}$$

are the Navier operators of order 2s with the Lamé moduli of order s given by the equations

$$\lambda_s = \iota_s ((2s-1)\omega_s - (n+2s)\psi_s), \quad \mu_s = \iota_s (\omega_s + (n+2s)\psi_s)$$

that involve a normalization constant ι_s and moments ψ_s and ω_s ,

[r-06]

$$\iota_s = \kappa_{n-1} / 2^s! \prod_{i=0}^{s-1} (2i+n), \quad \eta_s := \int_0^\infty \eta(r) r^{n+2s+1} dr, \text{ with } \eta := \psi, \omega.$$

Remark 8. The first member of the sum in $_1$ is the classical Navier operator $\mathfrak{N}^{(1)}\equiv\mathfrak{N}$ from , with the Lamé moduli

$$\lambda, \mu = \frac{\kappa_{n-1} \int_{0}^{\infty} (\omega(r) \mp (n+2)\psi(r))r^{n+3} dr}{2n(2+n)}.$$

9 References

[Coleman, 1971] Coleman, B. D.: On Retardation Theorems Arch. Rational Mech. Anal. 43 (1971) I-23

[Coleman and Noll, 1960] Coleman, B. D.; Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics Arch. Rational Mech. Anal. 6 (1960) 355–370
[Edited and Continuum Continuum Control of the sector (2002)]

[Eringen, 2002] Eringen, A. C.: Nonlocal continuum field theories New York, Springer (2002)

[Kunin, 1982] Kunin, I. A.: Elastic media with microstructure I Berlin, Springer (1982)

[Kunin, 1983] Kunin, I. A.: Elastic media with microstructure II Berlin, Springer (1983)

[Silling, 2000] Silling, S. A.: Reformulation of elasticity theory for discontinuities and long-range forces Journal of the Mechanics and Physics of Solids **48** (2000) 175–209

[Silling et al., 2007] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E.: Peridynamic States and Constitutive Modeling J Elasticity 88 (2007) 151–184