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Abstract For interfacial interactions of “separable type” the existence is proved of stable multiphase

equilibrium states minimizing the total energy which includes a sharp interface contribution along

interfaces separating the phases. The second gradients of deformation do not occur; the theory is

based on interfacial null lagrangians as determined in [11–12]. The interfacial interaction is always of

separable type if the number of phases does not exceed 3Û for the number of phases ³ 4Ù the separable

nature of the interface interaction is an assumption.

1 The interfacial energies

We consider a body that can exist in states consisting of r inhomogeneous solid
phases indexed by a ¨ 1ÙÜ Ù rØ We identify the body with the reference configuration
represented by a bounded open set Ω ⊂ R 3 with lipschitzian boundary. The states
are pairs �yÙP� where y Ú Ω r Rn is a deformation function and P ¨ �E

1
ÙÜ ÙEr�

is a partition of Ω into subsets E
a

of Ω where E
a

is the region occupied by phase aØ
That one or several of the sets E

a
is empty is not excluded. The total energy E�yÙP�

of the state �yÙP� is given by

E�yÙP� ¨ E
b
�yÙP� + E

if
�yÙP� (1.1)

where E
b
�yÙP� and E

if
�yÙP� are the bulk and interfacial energies defined as follows.

The bulk energy is

E
b
�yÙP� ¨

r

�
a ¨ 1

�
Ea

t
a
�∇y� dL 3 (1.2)
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where t
a
Ú Lin + r R is the bulk free energy density of phase a expressed as a

function of the deformation gradient

F ¨ ∇yØ

Throughout, Lin denotes the set of all second order tensors in R 3Ù interpreted as
linear transformations fromR 3 toR 3Ù Lin + is the set of all second order tensors with
positive determinant, and L

3 denotes the Lebesgue measure in R 3Ø The interfacial
energy is given by

E
if
�yÙP� ¨ �

1 ² a ° b ² r
�
B

aÙ b

Ðf
aÙ b

�V yÙn
aÙ b

� dH 2Ø (1.3)

Here H 2 is the 2 dimensional Hausdorff measure, Ðf
aÙ b

Ú Gr R are the densities of
the interfacial energy between the phases a and bÙ defined on the set G of all pairs
�FÙn� X Lin � S 2 (where S 2 is the unit sphere in R 3) satisfying F n ¨ 0Ù

B
a Ù b

Ú¨ bd  Ea
P bd  Eb

is the common part of the measure–theoretic boundaries bd  Ea
and bd  Eb

of phases
a and b, n

aÙ b
the measure theoretic normal pointing from E

a
to E

b
,

F ¨ V y

is the surface deformation gradient [8, 7, 11–12] with V the surface gradient [11–12],
defined on the union of boundaries

U
1² a ° b ² r

B
aÙ b

and satisfying the constraint

F n
aÙ b

¨ 0 on B
a Ù b

as a consequence of the definition of the surface gradient.
The equilibrium states correspond to minimum energy among all states satisfying

the boundary conditions. The present paper considers interface interactions of “sepa-
rable type” as defined below and formulates hypotheses which give the existence of
states of minimum energy. For states of at most 3 phases each interface interaction is
of separable type and the result extends that of [11–12] where the energy minimizers
are proved in the class of 2 phase states. Apart from the separable nature of the inter-
face interaction, the constitutive theory is identical with that of [11–12]; in particular
the interfacial stress and Eshelby tensors are derived from the interfacial energy by
the same formulas.

Appropriate convexity of the response functions t
a

and Ðf
aÙ b

is needed to prove
the minimizers of energy.

The bulk response t
a
, a ¨ 1ÙÜ Ù rÙ of the individual phases a is assumed to be

stable in the sense that t
a

is a polyconvex function [2]; hence

t
a
�F� ¨ Φ

a
�FÙ cofFÙdetF� (1.4)

for all F X Linwhere Φ
a
ÚWr RT ð( is a convex function onW ¨ Lin � Lin �

RØ We note that the polyconvexity assumption of t
a

is consistent with the existence
of r wells (one for each phase) of the minimum energy t Ú Lin + r R defined by
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t �F� ¨ min!t
a
�F� Ú a ¨ 1ÙÜ Ù r)Ù

F X Lin + Ø
The interface free energies Ðf

aÙ b
Ù 1 ² a ° b ² rÙ are assumed to satisfy

Ðf
aÙ b

�FÙn� ¨ Ðf
aÙ b

�FÙ −n�

for each �FÙn� X G; the separable nature of the interface interaction is the assumption
that

Ðf
aÙ b

¨ Ðg
a
+ Ðg

b
(1.5)

if 1 ² b ° a ² r for some functions Ðg
a
Ú G r RÙ a ¨ 1ÙÜ Ù rØ We note that the

functions Ðg
a

automatically exist if r ² 3 Ú one can put Ðg
1
¨ Ðf

1Ù 2Ù Ðg2 ¨ 0 if r ¨ 2 and if
r ¨ 3 then Ðg

a
are unique and given by

Ðg
a
¨ 1

2
�Ðf

aÙ b
+ Ðf

aÙ c
− Ðf

bÙ c
�

for each a X  1Ù 2Ù 3(where bÙ c X  1Ù 2Ù 3(∼ a(, b © c and we have set Ðf
aÙ b

¨ Ðf
bÙ a

if 1 ² b ° a ² 3Ø
Returning to the case of a general rÙwe make the basic convexity assumption about

the interface response by requiring that the functions Ðg
a

are interface polyconvex [11]
for a ¨ 1ÙÜ Ù r in the sense that

Ðg
a
�FÙn� ¨ Ψ

a
�nÙF � nÙ cofF n� (1.6)

where Ψ
a

is a positively 1 homogeneous convex nonnegative function and F � n is
a second order tensor defined by �F � n�a ¨ F�n � a� for each a X R 3Ø

For the existence theory, states are pairs �yÙP� as before where y satisfies the
requirements necessary to apply the existence theorems based on bulk polyconvexity
and such that the expressions F � n and cof F n exist in a weak sense. See Definition
3.1 below; note that every pair �yÙP� where y is lipschitzian and P a partition into
sets of finite perimeter is a state. For this generalized notion of states and under the
hypotheses outlined above one can define the total energy which is an extension of
(1.1), (1.2) and (1.3). Assuming appropriate coercivity of t

a
and Ðg

a
and imposing

the Dirichlet boundary conditions, we prove the existence of global minimizers of
energy.

The existence of minimizers of energy is in a sharp contrast with the theory in
which the interface energy is neglected: in the latter theory the minimizers generally
do not exist. As is well known, in the sequence of states approaching the infimum
energy the phases form a mixture which is finer and finer [3–4] with more and more
complicated interface. In the present approach the interfacial energy penalizes the
formation of the interfaces and thus induces limited fineness of the microstructure.

The framework discussed above assumes a separate bulk energy for each of
the phases. Moreover, the regions E

a
are treated as unknowns independent of y.

This differs from an alternative view in which all the phases are described at once
by a single stored energy and the only unknown is the deformation yØ In the later
theory, one can, in principle, distinguish the phases constitutively and spatially. On the
constitutive level, individual phases correspond to various subregions of the space of
all deformation gradients. Spatially, phases are regions separated by interfaces defined
as sets of material points of the jump of the deformation gradient. The coercivity of
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the model requires the dependence of the bulk energies on the second deformation
gradient

∇F ¨ ∇2y

and the solution is to be sought in the space of deformations y with bounded hessian.
The reader is referred to [5] for a consistent model of this type. The interface part of
the constitutive theory of the present model and that of [5] are rather disjoint.

2 Interface quasi– and poly–convexity and interface null lagrangians

We start the detailed exposition with a discussion of the convexity properties of the

interface energy functions Ðf
aÙ b

and Ðg
a

occurring in (1.5). The basic notions are the
interface null lagrangians and interface polyconvex functions to be introduced below;
these, in turn, are based on interface quasiconvexity. The last appears to be the right

convexity notion for the interfacial energies Ðf Ú¨ Ðf
aÙ b

Ø

2.1 Definition. A continuous function Ðf Ú G r R T  ð( is said to be interface
quasiconvex if

�
S

Ðf�V yÙn� dH 2 ³ H
2�T�Ðf�GÙm� (2.1)

for every �GÙm� X GÙ every planar 2 dimensional region T of normal m, every
(curved) surface S of normal n and every smooth map y Ú S r R 3 such that

bdS ¨ bdTÙ y�x� ¨ GxÙ x X bdTØ

Here bdS and bdT denote the (relative) boundaries of the 2 dimensional
surfaces S and T in R 3Ø We emphasize that the surface S is not the deformed
interface T but instead a different interface consisting of material points different
from those of TØ Thus testing (2.1) involves implicitly a change of the interface.
This is mathematically reflected by the variation of the integration domain, from T

toSÙ withH 2�S� ³ H
2�T�, and physically reflected by the transformation of one

phase into another. The variation of domain of integration, which has no counterpart
in the standard bulk quasiconvexity notion, has strong consequences which we shall
mention below. Here we note that while the constant bulk energies are trivially
quasiconvex, a constant interfacial energy Ðf is interface quasiconvex if and only if
the constant value of Ðf is nonnegative. The interface quasiconvexity rules out surface
wrinkling and prefers homogeneous surface deformations over the inhomogeneous
ones.

Working in a different format of the interfacial energy than the present one, Parry
[10] and Fonseca [6] established two related but weaker quasiconvexity properties of
the interfacial energy; we refer to a discussion in [11; Introduction].

Approaching the notion of interface polyconvex functions, we introduce the
interface null lagrangians and determine their form.

2.2 Definition. A function Ðf Ú Gr RT  ð( is said to be interface null lagrangian
if it is finite-valued, continuous and both Ðf and −Ðf are interface quasiconvex.
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2.3 Theorem. A function Ðf Ú Gr R is an interface null lagrangian if and only if

Ðf�FÙn� ¨ c ċ n + Ω ċ �F � n� + a ċ cofF n (2.2)

for each �FÙn� X G where c and a are constant vectors and Ω a constant second

order tensor.

Recall that we work in the space of dimension 3Û see [12; Proposition 3.5.2] for a
general dimension and proof. (2.2) shows that the triple

nÙ F � nÙ cofF n (2.3)

is the basic list of 15 scalar interface null lagrangians.

2.4 Definition. A continuous function Ðf Ú G r R T  ð( is said to be interface
polyconvex if it is the supremum of some family of interface null lagrangians.

Clearly, any interface polyconvex function is interface quasiconvex.

2.5 Theorem. A function Ðf Ú G r R is an interface polyconvex if and only if and

only if
Ðf�FÙn� ¨ Φ�nÙF � nÙ cofF n�

for any �FÙn� X G where Φ Ú Xr R is a positively 1 homogenous convex function

on X ¨ R 3 � Lin � R 3Ù where the positive 1 homogeneity of Φ means

Φ�tA� ¨ t Φ�A�

for each t ³ 0 and each argument A X XØ

3 The main result

We introduce the state space for the existence theory, i.e., the competitors in the
minimum energy principle.

3.1 Definition. Let Ω ⊂ R 3 be a bounded open set with Lipschitz boundary, and let
2 ² p ° ðÙ 3/2 ² q ° ð and let r be an integer 1 ² r ° ðØ We denote by G

pÙ q
r �Ω� the

set of all pairs �yÙP� where
(i) y X W 1Ù p�ΩÙR 3�Ù cof∇y X L q�ΩÙLin�,
(ii) P ¨ �E

1
ÙÜ ÙEr� is a partition of Ω into sets of finite perimeter E

a
Ù a ¨ 1ÙÜ Ù rÙ

i.e., the sets E
a
Ù a ¨ 1ÙÜ Ù rÙ are pairwise disjoint and

r

U
a ¨ 1
E

a

differs from Ω by a set of Lebesgue measure 0Û
(iii) for each a X  1ÙÜ Ù r( there exist measures H

a
and p

a
on Ω with values in LinÙ

and R 3Ù respectively, such that

− �
Ea

∇y curl v dL 3 ¨ �
Ω

dH
a
vÙ �

Ea

cof∇y ċ ∇v dL 3 ¨ �
Ω

v ċ dp
a

for every v X C ð
0
�ΩÙR 3�Ø
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We call the elements �yÙP� of G pÙ qr �Ω� states. The measure H
a

and p
a

are uniquely
determined by �yÙP� and we write H

a
�yÙP� and p

a
�yÙP� to indicate the depen-

dence on �yÙP�Ø
If �yÙP� is a state with y is smooth then the integration by parts and the identities

curl∇y ¨ 0Ù div�cof∇y� ¨ 0

show that the measures H
a

and p
a

as in Definition 3.1(iii) automatically exist and
are given by

H
a
¨ F � n

a
H
2

S
a
Ù p

a
¨ cofF n

a
H
2

S
a

(3.1)

where H
2

S
a

is the area measure restricted to the interface S
a
Ú¨ Ω P bd  Ea

with bd  Ea
the measure theoretic boundary of E

a
Ø Hence in the general case the

measures
b

a
¨ n

a
H
2

S
a
Ù H

a
Ù p

a

provide measure theoretic generalizations of the basic interface null lagrangians
(2.3). The requirement (i) in the above definition comes from the refinement of Ball’s
existence theory [2] given in [9].

We now introduce the interface energy of separable type for states at the level of
generality of Definition 3.1.

3.2 Definition. Let pÙ qÙ and r be as in Definition 3.1. Let Ðg
a
Ú Gr RÙ a ¨ 1ÙÜ Ù rÙ

be functions satisfying
Ðg

a
�FÙ −n� ¨ Ðg

a
�FÙn�

for each �FÙn� X G and assume that Ðg
a

are interface polyconvex in the sense that
there exist even convex functions Ψ

a
Ú X r RÙ a ¨ 1ÙÜ Ù rÙ such that (1.6) holds.

We define the interfacial energy E
if
Ú G pÙ qr �Ω� r R by

E
if
�yÙP� ¨

r

�
a ¨ 1

�
Ω

Ψ
a
�A

a
� d @J

a
@ (3.2)

for each �yÙP� X G
pÙ q
r �Ω�Ù where A

a
and @J

a
@ are as follows. We associate with

�yÙP� the measures H
a

and p
a

as in Definition 3.1, define b
a
Ú¨ n

a
H
2

S
a
Ù

where n
a

is the measure theoretic normal to S
a
¨ Ω P bd  Ea

, interpret the triplet
J

a
Ú¨ �b

a
ÙH

a
Ùp

a
� as a measure with values in X, denote by @J

a
@ the total variation

measure of J
a

and let A
a
Ú Ω r X be a vectorfield such that we have the polar

decomposition identity J
a
¨ A

a
@J

a
@Ø

We note that the individual terms

�
Ω

Ψ
a
�A

a
� d @J

a
@

in (3.2) are the convex functions Ψ
a

of the measure J
a

under the standard definition.
We refer to [1; Corollary 1.29] for the discussion of the polar decomposition of a
measure in a general context and to [1; Section 2.6] for the function of a measure. If
�yÙP� is a state with y sufficiently smooth then (3.1) show that

E
if
�yÙP� ¨

r

�
a ¨ 1

�
Ea

Ψ
a
�n

a
ÙF � n

a
Ù cof F n

a
� dH 2 ¨

r

�
a ¨ 1

�
Ea

Ðg
a
�FÙn

a
� dH 2
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where n
a

is the measure theoretic normal toE
a

and F ¨ V y is the surface deformation

gradient defined for H 2 a.e. point of U raEa
. This in turn, using the even nature of Ðf

a

and the formulas (3.1) enables one to rewrite E
if
�yÙP� in the initial form (1.3).

The following is the main result of the paper. We refer to [11–12] for the case
r ¨ 2Ø

3.3 Theorem. Let 2 ² p ° ðÙ 3/2 ² q ° ð and let r be an integer, 1 ² r ° ðÙ let

t
a
Ú Linr �0Ù ð�, Ψa

Ú Xr �0Ù ð�, a ¨ 1ÙÜ Ù rÙ be given functions. Assume that

(i) t
a
, a ¨ 1ÙÜ Ù rÙ are polyconvex in the sense of (1.4) where Φ

a
Ú W r �0Ù ð� are

continuous convex functions;

(ii) the functionsΨ
a

are positively 1 homogeneous even convex functions, a ¨ 1ÙÜ Ù rÛ
(iii) for all a ¨ 1ÙÜ Ù r all F X LinÙ all A X X, some c ± 0 and some d X R we have

t
a
�F� ³ c�@F@ p + @ cofF@ q� + dÙ Ψ

a
�A� ³ c@A@Ù

(iv) t
a
�F� ¨ ð if detF ² 0Ø

Let the energy functional E Ú G pÙ qr �Ω� r �0Ù ð� be defined by (1.1) where E
b

is given

by (1.2) and E
if

is as in Definition 3.2. If z
0
X W 1Ù p�ΩÙR 3� and E is finite for some

element of the set

A�z
0
� ¨ !�zÙQ� X G

pÙ q
r �Ω� Ú z ¨ z

0
on bdΩ)

then there exists an �yÙP� X A�z
0
� such that

E�yÙP� ² E�zÙQ�

for all �zÙQ� XA�z
0
�Û we have

det∇y ± 0 for L
3 a.e. point of ΩØ (3.3)

We allow t
a

to take the value ð not only to incorporate Condition (iv), which leads
to the orientation preserving property (3.3), but also to allow the effective domains

eff dom t
a
¨  F X Lin Ú t

a
�F� ° ð(

be proper subsets of the set Lin + . Thus one may assume that the effective domains
are disjoint, and/or exclude states with deformation gradient in the spinodal region.

Proof Let M�ΩÙV � denote the space of measures on Ω with values in a finite dimen-
sional vectorspaceV and letM�µ� denote the mass of the measure µ X M�ΩÙV �Ù i.e.,
M�µ� ¨ @µ@�Ω� where @µ@ denotes the total variation of µØ Let �y iÙP i� X A�z

0
�

be a minimizing sequence where we write P
i ¨ �E i

a
ÙÜ ÙE ir�. By the coerciv-

ity assumptions on t
a

and Ψ
a

the sequences @∇y i@L p , @ cof∇y
i@L q , H

2�bd  E
i
a
�,

M�H
a
�y iÙP i�� and M�p

a
�y iÙP i�� are bounded. Combining the boundedness of

@∇y i@L p with the Dirichlet boundary data, one obtains the boundedness of @y i@
W 1Ù p

Ø
Standard compactness theorems for Sobolev space and for the spaces of measures
give that for some subsequence of �y iÙP i�Ù denoted again �y iÙP i�Ù we have

y
i u y in W 1Ù p�ΩÙR 3�Ù (3.4)

cof∇y i u C in L q�ΩÙLin�

�n i
a
H
2
bd  E

i
a
ÙH

a
�y iÙP i�Ùp

a
�y iÙP i�	 u  

∆
a

in M�ΩÙX� (3.5)
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a ¨ 1ÙÜ Ù r, for some y X W 1Ù p�ΩÙR 3�, C X L q�ΩÙLin�Ù and ∆ X M�ΩÙX�
where n i

a
is the measure theoretic normal to E i

a
Ø The boundedness of n i

a
H
2 E i

a

says that the sequence of the derivatives of the characteristic functions 1
E ia

of E i
a

in

Ω is bounded in M�ΩÙR 3�Ø The imbedding theorem from BV functions (e.g., [1;
Corollary 3.49, Chapter 3]) implies

1
E ia

r 1E a
in L 1�Ω�Ø (3.6)

for some set E
a
⊂ Ω of finite perimeter, i.e.,

L
n�∆�E i

a
ÙE

a
�� r 0Ù (3.7)

where ∆�E i
a
ÙE

a
� is the symmetric difference of E i

a
and E

a
Ø Moreover, the limit in

� ra1E ia ¨ 1 on Ω gives � ra1E a
¨ 1 and thus P Ú¨ �E

1
ÙÜ ÙEr� is a partition of Ω into

sets of finite perimeter. Furthermore, if we write

∆
a
¨ �∆ 1

a
Ù ∆ 2

a
Ù ∆ 3

a
� (3.8)

for the components of theX valued measure ∆
a

in the productX Ú¨ R 3 � Lin � R 3,
then

n i
a
H
2
bd  E

i
a
u  

∆
1

a
in M�ΩÙR 3� (3.9)

and
∆
1

a
¨ n

a
H
2
bd  Ea

where n
a

is the measure theoretic normal to E
a
Ø The condition E�y iÙP i� ° ð for

each i and Hypothesis (iv) imply that det∇y i ± 0 for every i and L
n a.e. point of ΩØ

From (3.4) by [9; Lemma 4.1] then

cof∇y i u cof∇y in L q�ΩÙLin�, (3.10)

det∇y i u det∇y in L 1�K ÙR� (3.11)

for each compact subset K of ΩÛ recall also that [see (3.4)]

∇y i u ∇y in L p�ΩÙLin�. (3.12)

The equiintegrability of the sequences ∇y i and cof∇y i and (3.12) and (3.7) yield

1
E ia
∇y i u 1E a

∇yÙ 1
E ia
cof∇y i u 1E a

cof∇y in L 1�ΩÙLin�

and in particular,

�
Ω

dH�y iÙP i�v ¨ �
E ia

∇y i curl v dL n r �
Ea

∇y curl v dL nÙ

�
Ω

d p�y iÙP i�v ¨ �
E ia

cof∇y i ċ ∇v dL nr �
Ea

∇y ċ ∇v dL n

for each v X C ð
0
�ΩÙR 3�Ø Hence (3.5) yields

�
Ea

∇y curl v dL n ¨ �
Ω

d∆
2

a
vÙ �

Ea

cof∇y ċ ∇v dL n ¨ �
Ω

d∆
3

a
v

where we use the notation (3.8). Thus �yÙP� X G
pÙ q
r �Ω� and H

a
�yÙP� ¨ ∆ 2

a
and

p
a
�yÙP� ¨ ∆ 3

a
. Equations (3.5) and (3.9) give
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�n i
a
H
2
bd  E

i
a
ÙH

a
�y iÙP i�Ùp

a
�y iÙP i�	 u  

�n
a
H
2
bd  Ea

ÙH
a
�yÙP�Ùp

a
�yÙP�	 in M�ΩÙX�Ø

(3.13)

We now recall that Φ
a

is nonnegative and convex and apply the Ioffe lowersemi-
continuity theorem [1; Theorem 5.8, Chapter 5]. One then deduces from the weak
convergences (3.12), (3.10) and (3.11) and the strong convergence (3.6) that for any
compact subset K of Ω we have

lim inf
irð

�
E ia

t
a
�∇y i� dL n ³ lim inf

irð
�

E ia PK

Φ
a
�∇y iÙ cof∇y iÙdet∇y i� dL n

³ �
Ea P K

Φ
a
�∇yÙ cof∇yÙdet∇y�

¨ �
Ea PK

t
a
�∇y� dL nØ

The arbitrariness of K then gives

lim inf
irð

�
E ia

t
a
�∇y i� dL n ³ �

Ea

t
a
�∇y� dL nÙ

which implies

lim inf
irð

E
b
�y iÙP i� ³ E

b
�yÙP�Ø (3.14)

Using (3.13) and the Reshetnyak lowersemicontinuity theorem (e.g., [1; Theorem
2.38, Chapter 2]), one obtains

lim inf
irð

E
if
�y iÙP i� ³ E

if
�yÙP�Ø (3.15)

Thus (3.14) and (3.15) provide

lim inf
irð

E�y iÙP i� ³ E�yÙP�Ø

Clearly, �yÙP� X A�z
0
�Ø è
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