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The article presents a variational theory of sharp phase interfaces bearing a deformation dependent

energy. The theory involves both the standard and Eshelby stresses. The constitutive theory is

outlined including the symmetry considerations and some particular cases. The existence of

phase equilibria is proved based on appropriate convexity properties of the interfacial energy.

Some generalization of the convexity properties is given and a relationship established to the

semiellipticity condition from the theory of parametric integrals over rectifiable currents.
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Introduction

This article presents convexity conditions for the deformation dependent energies
of sharp phase interfaces. The interfaces are modeled as two dimensional surfaces
separating bulk phases of a phase transforming body. For the bulk phases, the sat-
isfaction or violation of the convexity properties [3–4] has proved to be extremely
useful in understanding the behavior of bodies. The latter range from ‘regular’ ones
showing the existing equilibrium states with good properties under favorable con-
vexity properties up to the ‘singular’ ones with no equilibrium states and formation
of microstructures in case of energies missing these convexity properties [4, 21].
The microstructures of different phases or variants of the body are frequently ex-
amined under the approximation that phase interfaces bear no energy, which leads
to a picture of infinitely fine microstructures, mathematically described by Young’s
measures, whereas observations show limited fineness.

In this article it is assumed that the contribution of the interface to the total energy
can be described by a surface density f which depends on the deformation of the
interface via the constitutive equation

f�x� ¨ Ðf�F�x�Ùn�x�� (1)

for each material point x X S of the interface where F is the surface deformation
gradient (see below), n the normal of SÙ and Ðf is a response function. The surface
energy leads to the standard and configurational stresses acting in the interface. The
bulk phases are governed by the standard equations of nonlinear elasticity.

A constitutive theory for the equation (1) and the associated stress relations are
given below, including the symmetry considerations and the discussion of the roles
and interrelations of the two types of stresses. Next we discuss the formal aspects of
the equilibrium of phases with interfaces governed by (1). The equilibrium equations
for standard and configurational stresses are obtained as necessary conditions for
minimum of the total energy. The resulting equations including the constitutive
theory are equivalent to the equilibrium part of the theory developed by Gurtin and
collaborators [16, 13], [14; Chapter 21] although the motivation is slightly different.



4 Introduction

We examine the existence of two phase equilibrium states. We introduce the
interface quasiconvexity of Ðf as the basic convexity property, which is an analog
of the quasiconvexity of the bulk energy, but in contrast, it involves a variation of
the integration domain. Associated are the interface null lagrangians, functions Ðf
such that both Ðf and −Ðf are interface quasiconvex. The interface null lagrangians
admit an explicit description. In dimension 3Ù there are 15 independent interface null
lagrangians. Based on interface null lagrangians are interface polyconvex functions,
defined as the supremum of some family of interface null lagrangians. The interface
convexity properties are related to the continuity properties of the total interface
energy under appropriate weak type convergences. The interface polyconvexity of Ðf,
accompanied by the polyconvexity of the individual bulk phases and by the coercivity,
leads to the existence of the energy minimizing states of coexistent phases.

The theory described so far deals with integral functionals over varying surfaces
of dimension n − 1 in RnØ One can consider, more generally, integrals over surfaces
of dimension r in Rn with 0 ² r ² nØ The interface quasiconvexity easily generalizes
to this situation; the resulting notion is termed quasiconvexity of degree r here. (The
quasiconvexity of degree n in Rn is the classial quasiconvexity of bulk phases.) One
then defines null lagrangians of degree r and polyconvex functions of degree r inRnØ
The null lagrangians and polyconvex functions of degree r admit explicit descriptions.

The variable nature of the integration domains of the integral functionals con-
sidered here also occurs in parametric integrands in the theory of minimal surfaces.
Indeed, there are close relationships. Roughly, each deformed surface of dimension
r gives rise to its graph; if the deformation is lipschitzian, then the graph can be
intepreted as an r dimensional rectifiable current. In this way, each integral functional
gives rise to a degree r parametric integral over rectifiable currents of the type con-
sidered in the theory of minimal surfaces. It turns out that the convexity properties of
the so related functionals essentially coincide.

Thus the degree r quasiconvexity is implied by the semiellipticity of parametric
integrands of degree r introduced by Almgren [1; Section 1] (see also Federer [9; Sub-
section 5.1.2]). Conversely, each integrand that is degree r quasiconvex satisfies the
semiellipticity inequality on rectifiable currents that can be represented as graphs. We
mention that the semiellipticity of a nonnegative parametric integrand is equivalent to
the lowersemicontinuity of the parametric integral under the flat norm. Thus it plays
the same role as the bulk quasiconvexity and our interface quasiconvexity. Pursuing
this relationsip further, one can define the semielliptic null lagrangians of degree r
as parametric integrands such that the integrand and its negative are semielliptic.
Semielliptic null lagrangians admit a simple explicit description giving a one to one
correspondence with the null lagrangians of degree rØ The degree r polyconvexity
then corresponds to the convex parametric integrands. The graph view leads to a
noncalculational proof of the structure of the null lagrangians of degree r ² n − 1 in
Rn and substatializes some propositions dicussed hitherto. It is also recalled that the
graph view is basic to the approach of the elasticity of the bulk matter by Giaquinta,
Modica and Souček [11–12].

Some of the results announced in [27] are proved here.



Chapter 1

Constitutive theory

1.1 Informal description

Consider a deformed body in a state with two coexistent phases separated by a phase
interface. We use a fixed reference configuration represented by a bounded open set
Ω ⊂ R 3 and identify material points of the body with elements x of ΩØ The state of
the body is described by a deformation function y Ú Ω r R 3 and by an open subset
E of Ω occupied by the first phase; the region occupied by the second phase is the
complement of E in Ω. The phase interfaceS is the part of the boundary of E that is
contained in Ω (the rest of the boundary of E being a subset of the boundary of Ω,
possibly empty). The deformation function y gives the actual position y�x� of the
material point x X ΩÙ in particular for x X S the value y�x� ¨ y�x� gives the actual
position of the interface points. We define the bulk deformation gradient F by

F ¨ ∇y

for every x X Ω ∼S and the surface deformation gradient [16, 13]

F ¨ V yÙ F n ¨ 0Ù (1.1.1)

where V denotes the surface gradient (see Section A.1) and n is the interface normal.
The density of energy of the bulk phases α ¨ 1Ù 2 is given by the energy functions

t
α
Ù α ¨ 1Ù 2Ù by

f
α
�x� ¨ t

α
�F�x��Ù x X E

α
Ù E1 Ú¨ EÙ E2 Ú¨ Ω ∼ clE

where throughout, cl and bd denote the closure and boundary. The surface density of
the interface energy is given by the interfacial energy function Ðf by

f�x� ¨ Ðf�F�x�Ùn�x��Ù x X SØ (1.1.2)
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We note that the two arguments of Ðf in (1.1.2) are not independent [see (1.1.1)]; this
has some consequences on the form of the stress relations.

The total energy of the state �yÙE� is

E�yÙE� ¨ Eb�yÙE� + Eif�yÙE�

where
Eb�yÙE� ¨ �

E

t1�F� dL
3 + �

Ω∼E

t2�F� dL
3Ù

Eif�yÙE� ¨ �
S

Ðf�FÙn� dH2

are the bulk and interface energies, with dL 3 the referential volume element and
dH2 the referential area element. Equilibrium states of the system correspond to
minimum energy under the constraints imposed by the environment of the system.
Here the region E is unknown.

The two bulk energies represent two energy wells of the substance. The functions
t
α

give rise to the bulk standard and configurational stresses ÐS and ÐC given by

ÐS
α
¨ D t

α
Ù ÐC

α
¨ t

α
1 − FTD t

α
Ø (1.1.3)

The interfacial energy Ðf leads to the standard and configurational interfacial stresses
ÐS and ÐC given by

ÐS ¨ D1 Ðf PÙ (1.1.4)

ÐC ¨ Ðf P − FTD1
Ðf P + n � �FTD1 Ðf n −D2 Ðf�Ø (1.1.5)

HereD1
Ðf andD2

Ðf denote the ‘partial derivatives’ of Ðf ¨ Ðf�FÙn� with respect to the
first and second variables as defined in Sections 1.2 and A.1, and P ¨ 1−n � n is the
projection onto the tangent spave to the interface and the given point. The forms of
the stress relations (1.1.3), (1.1.4) and (1.1.5) is dictated by the equilibrium equations
for the standard and configurational stresses (see Sections 2.1), which, in turn, are
uniquely determined as necessary conditions for the minima of the total energy.
Our motivation for the standard and configurational stresses is variational, relating
the standard standard stress with outer variations and configurational stress with
inner variations, as explained in Section 2.1. Also, the standard and configurational
stresses exchange their roles under the exchange of the roles of actual and reference
configurations.

The principle of material frame indifference restricts the behavior of the response
functions under the multiplications of the deformation gradients from left; the sym-
metry of the material (such as the isotropy or the crystallographic symmetry) restricts
the behavior of the response functions under the action of the symmetry tensors on the
arguments from right. The last is related to the change of the reference configuration
Ω used to describe the body. These matters are discussed in Section 1.5 where also
the main types of the symmetry are mentioned.

1.2 Response functions

We generalize and formalize the picture of Section 1.1 as follows.
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We denote by Lin�V ÙW � the set of all linear transformations from a vectorspace
V into a vectorspace W Ø Throughout, mÙ n are positive integers and we write Lin Ú
¨ Lin�RnÙRm� unless stated otherwise. Denote by S n − 1 the unit sphere in RnØ We
model the reference configuration of the body by an open bounded subset Ω of Rn

and consider deformations y Ú Ω r RmØ In applications, m ¨ n ¨ 3Ø In the treatment
of the constitutive theory for the interface it is necessary to take into account that
the surface energy Ðf ¨ Ðf�FÙn� is defined on pairs satisfying F n ¨ 0Ù this set G
forms a submanifold of the space Lin � Rn. Thus the derivatives of Ðf belong to the
tangent space of G and hence the “partial derivatives” with respect to F and n are not
independent. The derivative of a map on a manifold is defined in Section A.1.

The system of forces acting in a phase transforming body consists of standard
and configurational forces. The standard forces are represented by the (referential)
bulk stress tensor S and the (referential) interface stress tensor S acting, respectively,
in the bulk matter and in the interface. The configurational forces are described by
the (referential) bulk configurational stress tensor C and by the (referential) inter-
face stress tensor CØ The response functions for all these 4 stresses are completely
determined by the response functions for the free energy.

1.2.1 Definitions (Constitutive information and response functions).
(i) The two bulk phases are indexed by α ¨ 1Ù 2Ù each phase is described by the bulk

energy t
α
Ú U

α
r R where U

α
⊂ Lin is an open set and t

α
are class 2 functions.

We define the response functions for the standard and configurational stresses
ÐS
α
Ú U

α
r Lin�RnÙRm�Ù ÐC

α
Ú U

α
r Lin�RnÙRn� by

ÐS
α
¨ D t

α
Ù ÐC

α
¨ t

α
1 − FTD t

α

for each F X U
α
Ù where ÐS

α
Ù ÐC

α
Ù t
α

and its derivatives are evaluated at FØ
(ii) The interface is described by the interfacial energy Ðf Ú U r R where U is a

(relatively) open subset of the class ð manifold

G ¨ !�FÙn� X Lin � S n − 1 Ú F n ¨ 0)

and Ðf is a class 2 function. The derivative of Ðf at �FÙn� X G is an element of the
tangent space Tan�GÙ �FÙn�� of G at �FÙn� given by

Tan�GÙ �FÙn�� ¨ !�GÙm� X Lin � Rn Ú Gn + Fm ¨ 0Ù m ċ n ¨ 0)Û (1.2.1)

we write D Ðf ¨ �D1 Ðf ÙD2 Ðf� for its components in Lin and RnÙ respectively.
We define the response functions for the standard and configurational stresses
ÐS Ú Gr Lin�RnÙRm� and ÐC Ú Gr Lin�RnÙRn� by

ÐS ¨ D1 Ðf PÙ (1.2.2)

ÐC ¨ Ðf P − FTD1
Ðf P + n � �FTD1 Ðf n − D2 Ðf� (1.2.3)

for every �FÙn� X G where P ¨ 1 − n � n and ÐSÙ ÐC, Ðf and its derivatives are
evaluated at �FÙn�Ø

The form of the stress relations (1.2.2) and (1.2.3) is motivated by the variations for-
mulas for the total energy, (2.1.5) and (2.1.6), by the correponding balance equations
(2.1.7) and (2.1.8), and by the fact that with the above definitions ÐS and ÐC neatly
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exchange their roles under the exchange of the actual and reference configurations,
Section 1.3 (below). The ‘partial derivatives’ D1

Ðf and D2
Ðf satisfy

D1
Ðf�FÙn�n + FD2

Ðf�FÙn� ¨ 0Ù n ċD2 Ðf�FÙn� ¨ 0

by (1.2.1).

1.3 The exchange of the actual and reference configurations

This section discusses the exchange of the roles of the standard and configurational
stresses under the exchange of the actual and reference configurations. We consider
the format the energy of Section 1.2 with m ¨ n.

Given a state �yÙE� with y injective, the actual configuration of the body is ÏΩ Ú¨
y�Ω�, the actual configuration of the interface is ÏS Ú¨ y�S�, and the spatial interface
normal Ïn � y ¨ cofF n/@ cof F n @ ¨ cofF n/@ cof F @Ø The fields of referential
energy densities f , f can be transformed to the actual configuration of the body via
the formulas

É � y ¨ f /J Ù Ïf � y ¨ f/JÙ

where
J ¨ @ detF@Ù J ¨ @ cof F @

are the bulk and interface jacobians. The deformation y is replaced by its inverse
y − 1 and hence the bulk deformation gradient F is replaced by the inverse F − 1, the
surface deformation gradient F by the pseudoinverse F − 1 (see Section A.1) and the
referential interface normal n by the spatial normal ÏnØ

Letting t stand for any of the energy functions t
α
Ù α ¨ 1Ù 2Ù we thus find that

under the exchange of the actual and reference configurations the response functions
t and Ðf change to the response functions t ¡ Ú U ¡ r R and Ðf ¡ Ú U

¡ r R given by

t ¡�F� ¨ detF t �F − 1�Ù

Ðf ¡�FÙn� ¨ @ cof F @Ðf�F − 1Ù Ïn�

where Ïn ¨ cof F n/@ cofF @, whenever

F X U ¡ Ú¨ !F X Lin Ú F − 1 X U)Ù

�FÙn� X U
¡ Ú¨ !�FÙn� X Lin � S n − 1 Ú �F − 1Ù Ïn� X U)Ø

In these definitions, we have denoted by F and �FÙn� the natural variables of t ¡ and
Ðf ¡Ù i.e. the variables previously denoted by F − 1 and �F − 1Ù Ïn�Ø We furthermore let ÐSÙ
ÐCÙ ÐS and ÐC denote the response functions for the stresses calculated from t and Ðf and
the same letters with the superscript ¡ denote the response functions for the stresses

calculated from t ¡ and Ðf ¡ according to Definition 1.2.1.

1.3.1 Proposition. Under the passage from the response functions from t and Ðf to

t ¡ and Ðf ¡ the standard and configurational stresses exchange their roles according

to
ÐS¡�F� ¨ detF ÐC�F − 1�F − TÙ ÐC¡�F� ¨ detF ÐS�F − 1�F − TÙ
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for each F X U ¡ and

ÐS¡�FÙn� ¨ @ cof F @ ÐC�F − 1Ù Ïn�F − TÙ ÐC¡�FÙn� ¨ @ cof F @ ÐS�F − 1Ù Ïn�F − T

for each �FÙn� X U
¡.

See [27; Proposition 4.1] for the proof.

1.4 Frame indifference

Mechanically realistic energy functions must satisfy the principle of material frame
indifference. Letting t Ú U r R stand for any of the response functions t

α
Ù α ¨ 1Ù 2Ù

this requires that for every F X U Ù �FÙn� X U and Q X SO�n� we have

QF X U Ù �QFÙn� X UÙ

t �QF� ¨ t �F�Ù ÐS�QF� ¨ QÐS�F�Ù ÐC�QF� ¨ ÐC�F�Ù (1.4.1)

Ðf�QFÙn� ¨ Ðf�FÙn�Ù ÐS�QFÙn� ¨ QÐS�FÙn�Ù ÐC�QFÙn� ¨ ÐC�FÙn�Ø (1.4.2)

We note that of (1.4.1) and (1.4.2) only (1.4.1)1 and (1.4.2)1 are independent, (1.4.1)2Ù 3
and (1.4.2)2Ù 3 follow from the stress relations.

1.5 Change in the reference configuration and the symmetry group

Another restriction of the response functions comes from the symmetry of the ma-
terial. The latter include, e.g., the isotropy and the crystal symmetries of crystalline
materials; the symmetry also distinguishes fluids from solids etc. Roughly, the sym-
metry group of a material is the set of all changes of the reference configurations
that leave the response functions unchanged. There may be different symmetries of
the bulk responses of the phases α ¨ 1Ù 2Ù and yet another symmetry of the interface
response. We consider the format the energy of Section 1.2, let t Ú U r R stand for
any of the functions t

α
Ù α ¨ 1Ù 2Ù and assume

m ¨ nÙ U ¨ Lin + Ú¨  F X Lin Ú detF ± 0(Ù U ¨  �FÙn� X G Ú rank F ¨ n − 1(

for simplicity.
We first derive the change of the response functions under a change in the

reference configuration. We thus consider a passage from the reference configuration
Ω to ÏΩ ¨ H − 1Ω whereH X Lin + Ø Assume that in the reference configuration Ω the
global state of the body is described by the pair �yÙE� consisting of the deformation
y Ú Ω r Rm and the region E ⊂ Ω occupied by the phase α ¨ 1Ø In the reference

configuration ÏΩÙ the same state is described by the pair �ÏyÙ ÏE� where

Ïy�Ïx� ¨ y�HÏx�Ù ÏE ¨ H − 1EÙ

Ïx X ÏΩØ The interface is given by ÏS ¨ bd ÏE in the new reference configuration; hence

ÏS ¨ H − 1
S
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and the deformations of the interface in the original and new reference configurations
are related by

Ïy�Ïx� ¨ y�HÏx�Ù

Ïx X ÏSØ At the points x and Ïx related by x ¨ HÏxÙ the deformation gradients F ¨ ∇y,
ÏF ¨ ∇ÏyÙ F ¨ V yÙ ÏF ¨ V Ïy and the interface normals n and Ïn to S and ÏS are related
by

ÏF ¨ FHÙ �ÏFÙ Ïn� ¨ �F   HÙn   H�

where we define

n   H ¨ HTn/@HTn@Ù F   H ¨ FH�1 − n   H � n   H�

for any �FÙn� X G and any H X Lin + . One easily finds that

F   �HK� ¨ �F   H�   KÙ n   �HK� ¨ �n   H�   K

for any �FÙn� X G andHÙK X Lin + ØGenerally, the expressions for F   H and n   H
are nonlinear in F, n and HÛ only if H ¨ Q is orthogonal, we have F   Q ¨ FQ,
n   Q ¨ QTn and thus

�ÏFÙ Ïn� ¨ �FQÙQTn�Ø

The change of variables formula for the volume and surface integrals shows that
in the reference configuration ÏΩ the material is described by the bulk and surface

energies
Ït Ú ¾ r RÙ

ÏÐf Ú ÏU r R given by

Ït �ÏF� ¨ t �ÏFH − 1�/J Ù
ÏÐf�ÏFÙ Ïn� ¨ Ðf�ÏF   H − 1Ù Ïn   H − 1�/J

whenever ÏF X U Ù �ÏFÙ Ïn� X U where

J ¨ detH − 1Ù J ¨ @ cofH − 1 Ïn@Ø

The stress relations then imply that the standard stress response functions in the
reference configuration ÏΩ are given by

ÏÐS�ÏF� ¨ ÐS�ÏFH − 1�H − T/J Ù ÏÐC�ÏF� ¨ HT ÐC�ÏFH − 1�H − T/J Ù

ÏÐS�ÏFÙ Ïn� ¨ ÐS�ÏF   H − 1Ù Ïn�H − T/JÙ
ÏÐC�ÏFÙ Ïn� ¨ HT ÐC�ÏF   H − 1Ù Ïn�H − T/JØ

We define symmetry group of the bulk response as the set of all H X Lin + such

that the response functions in the reference configuration ÏΩ ¨ H − 1Ω coincide with
the original ones; in view of the stress relations it suffices to require the invariance
of the response functions for the free energy.

1.5.1 Definition. The symmetry group G�t � of the bulk response is the set of all
H X Lin+ satisfying

t �FH� ¨ t �F�/J

for all F X U where J ¨ detH − 1Ø
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1.5.2 Definition. The symmetry group G�Ðf� of the interface response is the set of
all H X Lin + satisfying

Ðf�F   HÙn   H� ¨ Ðf�FÙn�/JÙ

for all �FÙn� X U where J ¨ @ cofH − 1 n@Ø

One easily finds that G�t � and G�Ðf� are subgroups of Lin + Ø Let G stand for

G�t � orG�Ðf�. The common types of symmetry are
• isotropy: G ] SO�n�Û
• fluidity: G ] !H X Lin + Ú detH ¨ 1)Û
• crystal symmetry:G is one of the 32 crystallographic point groups [24; Chapters

3 and 5].

1.5.3 Proposition. Consider bulk and interface responses t Ú U r R and Ðf Ú U r
R that satisfy the principle of material frame indifference.

(i) If the bulk response is isotropic then there exists a function É Ú �0Ù ð�n r R that

is symmetric under the permutation of arguments such that

t �F� ¨ É �λ1ÙÜ Ù λn�

for each F X U where λ 1 ³ Ý ³ λn are the singular values of FÛ if the interface

response is isotropic then there exists a function Îf Ú �0Ù ð�n − 1 r R that is

symmetric under the permutation of arguments such that

Ðf�FÙn� ¨ Îf�λ1ÙÜ Ù λn − 1� (1.5.1)

for each �FÙn� X U where λ1 ³ Ý ³ λn − 1 ± 0 are the singular values of FÛ
(ii) if the bulk response is of fluid type then there exists a function É Ú �0Ù ð� r R

such that

t �F� ¨ É �detF�

for each F X U; if the interface response is of fluid type then there exists a σ X R
such that

Ðf�FÙn� ¨ σ@ cofF @ (1.5.2)

for each �FÙn� X UØ

Proof (i): We omit the simple and standard proof in case of the bulk response.
Consider the case of an isotropic interface response. Let É Ú �0Ù ð�n − 1 r R be
defined by

É �λ 1ÙÜ Ù λn − 1� ¨ Ðf�F0Ùn0�

for each λ1ÙÜ Ù λn − 1 X �0Ù ð�
n − 1 where

F0 ¨ diag�λ 1ÙÜ Ù λn − 1Ù 0�Ù n0 ¨ �0ÙÜ Ù 0Ù 1�Ø

Elementary considerations show that if �FÙn� X G is a pair such that F has the singular
values �λ1ÙÜ Ù λn − 1Ù 0� with λ 1 ³ Ý ³ λn − 1 ³ 0 then there exist QÙ R X SO�n� such
that

QFR ¨ diag�λ1ÙÜ Ù λn − 1Ù 0�Ù RTn ¨ �0ÙÜ Ù 0Ù 1�Ø

Here the existence of QÙ R X O�n� follows from the singular value decomposition
theorem and the choice of QÙ R X SO�n� is achieved using F n ¨ 0Ø Then the above
relations and
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Ðf�QFRÙRTn� ¨ Ðf�FÙn�

yield (1.5.1).
(ii): We omit the simple and standard proof in case of the bulk response. Consider

the case of a fluid like interface response. In particular, the response is isotropic and
thus the conclusions of (i) are available. Thus we have (1.5.1). Let �λ 1ÙÜ Ù λn − 1� X
�0Ù ð�n − 1 be fixed, let F ¨ diag��λ1ÙÜ Ù λn − 1Ù 0�Ù H ¨ diag�λ1ÙÜ Ù λn − 1Ù 1/λ1 Ý
λn − 1�Ù n ¨ �0ÙÜ Ù 0Ù 1�Ù and F0 ¨ diag�1ÙÜ Ù 1Ù 0�Ø Then H X Lin + , detH ¨ 1, and

F0   H ¨ FÙ n   H ¨ n

and thus we have
Ðf�FÙn� ¨ Ðf�F0Ùn�/J

where J ¨ @ cofH − 1n@ ¨ 1/λ1Ý λn − 1 which reads

Îf�λ 1ÙÜ Ù λn − 1� ¨ σ λ1Ý λn − 1 ¨ σ @ cofF @

where σ ¨ f�1ÙÜ Ù 1�Ø Thus (1.5.1) gives (1.5.2). è

1.6 Particular cases of interface response

In this section we consider some particular cases of the interface response: isotropic
materials, surface tension, Wulff’s energy, and energies depending on F � n and on
cofF nÙ which are motivated by the polyconvexity condition to be defined in Chapter
2. When the response reduces to surface tension the surface configurational stress
vanishes identically; when the free energy depends only on the referential interface
normal (the Wulff energy), the standard interface standard stress vanishes identically.
We describe the particular cases in Examples 1.6.1–1.6.5 below. In Proposition 1.6.6
we determine all energy functions leading to vanishing configurational stress and
show that among them only the surface tension is frame indifferent. We shall also
show that the Wulff energy is the only energy with vanishing standard stress. We
assume m ¨ n.

1.6.1 Example (Isotropy). Let Ðf Ú U r R be a frame indifferent isotropic response
with

U ¨ !�FÙn� X G Ú rankF ¨ n − 1) (1.6.1)

and with the representation

Ðf�FÙn� ¨ Îf�λ 1ÙÜ Ù λn − 1�

for each �FÙn� X U where λ1 ³ Ý ³ λn − 1 ± 0 are the singular values of FÛ where Îf
is a continuously differentiable function. Let �FÙn� X U be such that

F ¨ Q diag�λ1ÙÜ Ù λn − 1Ù 0�RÙ n ¨ RT�0ÙÜ Ù 0Ù 1�

for some QÙ R X SO�n�Ø Then

ÐS�FÙn� ¨ Q diag�D1 Îf ÙÜ ÙDn − 1 ÎfÙ 0�RÙ (1.6.2)

ÐC�FÙn� ¨ RT diag�Îf − λ 1D1 ÎfÙÜ Ù Îf − λn − 1Dn − 1 ÎfÙ 0�R (1.6.3)
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where Îf and its derivatives are evaluated at �λ1ÙÜ Ù λn − 1�Û in particular, the configu-
rational stress tensor is symmetric.

Proof Let É Ú O � Rn r R be defined by defining O as the set of all second order
tensors with at most one singular value 0Ù and setting

É �FÙ p� ¨ Îf�λ1ÙÜ Ù λn − 1�

for each �FÙ p� X O � Rn with of the form

F ¨ Q diag�λ1ÙÜ Ù λn�R

with QÙ R X SO�n� and λ1 ³Ü³ λn ³ 0Ø A well known result on the derivatives of
isotropic functions gives that t is continuously differentiable and hence

D t �FÙ p� ¨ �Q diag�D1 ÎfÙÜ ÙDn − 1 ÎfÙ 0�RÙ 0	

where Îf and its derivatives are evaluated at �λ1ÙÜ Ù λn − 1�Ø Since the function t is

an extension of Ðf , we have D Ðf�FÙn� ¨ ΠD É �FÙn� where Π Ú Lin � Rn r
Tan�GÙ �FÙn�� is the orthogonal projection onto the tangent space of G at �FÙn�Ø
One finds from (1.2.1) that D t �FÙ p� is already in the tangent space and thus
ΠD t �FÙn� ¨ D t �FÙn� and

D Ðf�FÙn� ¨ �Q diag�D1 ÎfÙÜ ÙDn − 1 Îf Ù 0�RÙ 0	Ù

i.e.,
D1

Ðf�FÙn� ¨ Q diag�D1 Îf ÙÜ ÙDn − 1 ÎfÙ 0�RÙ D2
Ðf�FÙn� ¨ 0Ø

The stress relations then give (1.6.2) and (1.6.3). è

1.6.2 Example (Surface tension (i.e., fluid–like interface response)). Let Ðf Ú U r R
be a frame indifferent, fluid like inteface response with U given by (1.6.1) and

Ðf�FÙn� ¨ σ@ cof F @ (1.6.4)

for each �FÙn� X U where σ is a constant. Then a particular case of Example 1.6.1

with Îf�λ1ÙÜ Ù λn − 1� ¨ λ 1Ý λn − 1 gives

ÐS ¨ σ@ cof F @F − TÙ ÐC ¨ 0

and the spatial surface stresses by

ÐÏS�FÙ θ� ¨ σ ÏP

for all �FÙn� X U where ÏP ¨ 1 − Ïn � Ïn and Ïn is the spatial interface normal, i.e.,
any of the two unit vectors such that FT Ïn ¨ 0Ø

1.6.3 Example (Wulff energy). Let Ðf Ú Gr R be given by

Ðf�FÙn� ¨ ��n� (1.6.5)

for each �FÙn� X G and � Ú S n − 1 r R is a function; we call Ðf the Wulff energy. It is
used to model the growth of crystals, with � restricted by the symmetry of the lattice.
One finds thatD1

Ðf ¨ 0ÙD2 Ðf ¨ D � and hence the standard stress response functions
are

ÐS ¨ 0Ù ÐC ¨ ��n�P − n � D ��n� (1.6.6)
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where P ¨ 1 − n � nØ The energy (1.6.5) produces no standard stress, the interface
equilibrium is governed solely by the configurational stress. Already the special case

Ðf�FÙn� ¨ τ ¨ const ± 0

leads to nontrivial phenomena with ÐC ¨ τPØ The orientation dependent interface
energies � were introduced by Wulff [30].

Proof The derivative of Ðf is an element of the tangent space to G at �FÙm� [see
(1.2.1)] such that

D1
Ðf ċG +D2 Ðf ċm ¨ D � ċm

for all �GÙm� from the tangent space, i.e., for all �GÙm� such that

Gn + Fm ¨ 0Ø

The theorem on Lagrange multipliers gives a λ X Rn such that

D1
Ðf ċ G + D2 Ðf ċ m ¨ D � ċ m + λ ċGn + λ ċ Fm

for all �GÙm� X Lin � RnØ This gives

D1
Ðf ¨ λ � nÙ D2

Ðf ¨ D � + FTλØ

One finds that λ ¨ −�1 + FFT� − 1FD �Ù but this is not needed; indeed the stress
relations with undetermined λ give (1.6.6). è

1.6.4 Example (“Self–dual” energy). Let n ¨ 3 and let Ðf Ú Gr R be given by

Ðf�FÙn� ¨ Ψ�F � n�Ø (1.6.7)

for each �FÙn� X G where Ψ Ú Linr R. The stress relations read

ÐS ¨ −D Ψ � nÙ (1.6.8)

ÐC ¨ ΨP + FTDΨ � n + n � P�FTDΨ� � (1.6.9)

where for anyM X Linwe define the axial vectorM � X R 3 of a tensorM X Lin by
M �ċa ¨ tr�M � a� for any a X R 3Ø If Ψ is positively 1 homogeneous function then the

function Ðf ¡ corresponding to the exchange of the actual and reference configurations

(Section 1.3) is of the same format as Ðf in (1.6.7), viz.,

Ðf ¡�FÙn� ¨ Ψ D�F � n� (1.6.10)

for each �FÙn� X GÙ where Ψ T Ú Linr R is given by

Ψ D�A� ¨ Ψ�−AT�

for each A X LinØ In this sense Ðf is self–dual.

Proof Differentiating the relation (1.6.7) one obtains that the derivatives of Ðf at
�FÙn� X U and the derivative of Ψ at F � n satisfy

D1
Ðf ċ G +D2 Ðf ċm ¨ −�DΨ � n� ċ G + �FTD Ψ� � ċm (1.6.11)

for every �GÙm� belonging to the tangent space to G at �FÙm� [see (1.2.1)]. If
�GÙm� ¨ �APÙ 0� where A X Lin is arbitrary then the identity (1.6.11) gives
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D1
Ðf P ¨ −D Ψ � nØ

If �GÙm� ¨ �Fa � nÙ −Pa�where a X R 3 is arbitrary then the identity (1.6.11) gives

FTD1
Ðf −D2 Ðf ¨ P�FTDΨ� � Ø

The stress relatinos then give (1.6.8) and (1.6.9). Assume now that Ψ is positively 1
homogeneous and prove (1.6.10). To this end, we note that

F − 1 � cofF n ¨ −�F � n�T (1.6.12)

for each �FÙn� X GØ By the singular value decomposition theorem we have

�FÙn� ¨ �QURÙRT Ïn�

for some QÙR X SO�3� where U ¨ diag�λ 1Ù λ2Ù 0� and n ¨ Ïn ¨ �0Ù 0Ù 1�. Using the
formula AR � RTa ¨ �A � a�R one finds that (1.6.12) reduces to

U − 1 � cofU Ïn ¨ −�U � n�T

which is easily verified. With (1.6.12), the definition of Ðf ¡ gives immediately (1.6.10).
è

1.6.5 Example (Generalized surface tension). Let Ðf Ú Gr R be given by

Ðf�FÙn� ¨ ψ�cof F n�Ù (1.6.13)

for each �FÙn� X G, where ψ Ú Rn r R is a given function. One obtains

ÐS ¨ ��v ċD ψ�ÏP − v � D ψ	F − TÙ (1.6.14)

ÐC ¨ �ψ − �v ċD ψ�	P (1.6.15)

where v ¨ cofF n, ÏP is the projector onto vþ and ψ and its derivative are evaluated

at vØ One finds that if Ðf is of the form (1.6.13) with ψ positively 1 homogeneous then
Ðf ¡ is of the form considered in Example 1.6.3, with � ¨ ψÙ i.e.,

Ðf ¡�FÙn� ¨ ψ�n�

for each �FÙn� X GØ In this sense the present example and Example 1.6.3 are dual
to each other. However, unlike Example 1.6.3, in the present example for a realistic
model the function ψ in (1.6.13) cannot be arbitrary. Namely, the objectivity requires
ψ�Rv� ¨ ψ�v� for each v X R 3Ù R X SO�3� which implies that ψ is a multiple of the
euclidean norm,

ψ�v� ¨ σ@v@

for each v X R 3 where σ is a constant. We thus obtain the surface tension.

Proof Let Ðv Ú Gr Rn be defined by

Ðv�FÙn� ¨ cof F n

for each �FÙn� X GØ Then for any �GÙm� from the tangent space of G at �FÙn� we
have

D Ðv�GÙm� ¨ Ðv F − T ċG − F − TGTÐvØ (1.6.16)

Indeed, differentiating
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FTÐv ¨ 0Ù @Ðv@ ¨ @ cofF @

and using DF @ cofF @ ¨ @ cofF @F − T one obtains

FTD Ðv �GÙm� + GT Ðv ¨ 0Ù Ðv ċD Ðv �GÙm� ¨ @ cof F @ 2F − T ċGØ

The first relation gives
D Ðv�GÙm� ¨ λÐv − F − TGTÐv

for some λ X R and the second relation λ ¨ F − T ċ GÙ which proves (1.6.16). Hence
the differentiation of (1.6.13) gives

D Ðf ċ �GÙm� ¨ Ðv ċD ψ �F − T ċG� −D ψ ċ F − TGTÐv

for all �GÙm� from the tangent space of G at �FÙn�Ø As in the proof of Example
1.6.3 we obtain the existence of λ X Rn such that

D1
Ðf ¨ ��Ðv ċD ψ�ÏP − Ðv � D ψ	F − T + λ � nÙ D2

Ðf ¨ FTλØ

The stress relations then give (1.6.14) and (1.6.15). The rest is immediate. è

1.6.6 Proposition. Consider an interface described by the free energy function Ðf Ú
U r R and by the response functions ÐSÙ ÐC Ú U r Lin for the standard stress and

configurational stress. Then

(i) the configurational stress ÐC vanishes identically if and only if there exists a class

1 function ψ Ú S n − 1 r R

Ðf�FÙn� ¨ @ cof F @ψ�Ïn�Ù (1.6.17)

�FÙn� X UÙ where Ïn ¨ cofF n/@ cof F n@; the response (1.6.17) is frame in-

different if and only if there exists a σ X R such that (1.6.4) holds for each

�FÙn� X UÛ
(ii) the standard stress ÐS vanishes identically if and only if there exists a class 1

function � Ú S n − 1 r R such that (1.6.5) holds for each �FÙn� X UØ

The classes of energy functions in (i) and (ii) are dual each to other: in (i) the
response depends on the spatial interface normal while in (ii) on the referential
interface normal; they are mapped to each other by the exchange of the actual and
reference configurations described in Proposition 1.3.1.

Proof (ii): Assume that the inteface standard stress vanishes identically; i.e.,D1
Ðf P ¨

0Û hence D1
Ðf ¨ a�FÙn� � n where a Ú U r Rn is some function. Let us prove

that Ðf�FÙn� ¨ Ðf�GÙn� whenever �FÙn�Ù �GÙn� X UØ Given such two tensors, there
exists a class 1 curve H Ú �0Ù 1� r Lin with endpoints FÙ G such that �H�t�Ùn� X U

for each t X �0Ù 1�Ø A differentiation gives ËH�t�n ¨ 0 and hence

dÐf�H�t��
dt

¨ � ËH�t�n ċ a�H�t�� ¨ 0

and the integration provides Ðf�FÙn� ¨ Ðf�GÙn�. Thus there exists a function � Ú
S n − 1 r R such that Ðf�FÙn� ¨ ��n� for and �FÙn� X U. The proof of the direct

implication is complete. Conversely, if Ðf is of the form (1.6.5) then Example 1.6.3
gives that the standard stress vanishes identically.
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(i): For the given Ðf let Ðf ¡Ù ÐS¡Ù ÐC¡ be given as in Proposition 1.3.1; then the standard

stress tensor of Ðf vanishes identically if and only if the configurational stress of Ðf ¡

vanishes identically. By (ii) the last occurs if and only if Ðf ¡ is of the form

Ðf ¡�FÙn� ¨ ��n� (1.6.18)

for each �FÙn� X U where n is any of the two unit vectors satisfying F n ¨ 0 and

where � Ú S n − 1 r R is an even function. The defining relation of Ðf ¡ gives

Ðf�FÙn� ¨ @ cof F @Ðf ¡�F − 1�

for each �FÙn� X U where we have used @ cof F − 1@ − 1 ¨ @ cofF @Û a combination with
(1.6.18) then gives (1.6.17). This completes the proof of the equivalence asserted in
(i). The rest of (i) is immediate. è



Chapter 2

Equilibrium states

To obtain the existence of minimizers of energy, appropriate convexity conditions for
the bulk and interface energy have to be assumed. In case of the bulk response the
polyconvexity of each of the energy functions t

α
Ù α ¨ 1Ù 2Ù appears appropriate. The

mutual relation of the minima of t
α

is arbitrary, so that the geometric incompatibility
induced by symmetry can occur and the gross bulk response, given by the energy
function t0Ù

t0�F� ¨ min  t1�F�Ù t2�F�(Ù

detF ± 0Ù exhibits two wells corresponding to the two phases of the material.
The existence theory for a single phase minimizers with polyconvex energy is well
understood [3, 11, 22, 12].

In case of two or more energy wells, in the absence of interfacial energy �Ðf ª 0)
the problem of minimum energy state generally does not have a solution, since in
the approach to the least energy, the body exhibits states �y iÙE i� with finer and finer
microstructure of coexistent phases and with the interfacial area tending to infinity.
As the theory does not have any length scale, there is no limit on the fineness of the
microstructure, i.e., it is infinitely fine in the limit. The Young measure minimizers
represent the idealized limiting states. The least energy is given by the quasiconvex
envelope t qc0 (see [6; Section 6.3] for the definition) of the minimum energy t0. In
particular, under the affine boundary conditions

y�x� ¨ AxÙ x X bdΩÙ

where A is a prescribed constant affine deformation gradient, one has

inf !E�yÙE� X G Ú y�x� ¨ Ax on bdΩ) ¨ t qc0 �A�

where we assume the referential volume of Ω equal to 1 for simplicity; however, the
infimum is generally not achieved.
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The interface energy has a regularizing effect so that the minimizers of the total
energy E can exist. As in case of the bulk response, the interfacial energy has to
posses the right convexity properties. These are discussed in Sections 2.2 and 2.3,
and, from a more general viewpoint, in Chapter 3.

The interface quasiconvexity of Ðf ensures the stability of a planar homogeneously
deformed interfaceT against curved inhomogeneously deformed interfaces S with
the same boundary data. An interface null lagrangian is an interfacial energy Ðf such
that Ðf and −Ðf are interface quasiconvex. An explicit form is given below [(2.2.2)]. An
interface polyconvex surface energy is a convex, positively 1 homogeneous function of
interface null lagrangians; it is automatically interface quasiconvex, and our existence
result is based on the interface polyconvexity. We note that Parry [23] and Fonseca
[10] establish some particular cases of the present notion of interface quasiconvexity
as necessary conditions for metastable minima.

2.1 States, minimizers of energy and equilibrium equations

We now use the constitutive information from Definitions 1.2.1 to introduce global
states of the phase transforming body Ω, the fields of mechanical/thermodynamic
quantities over the bulk phases and on the phase interface, and the total energy. The
smoothness assumed in this section allows us to obtain the equilibrium equations for
standard and configurational stresses in the classical form. A less restrictive definition
of states is needed for the existence theory; that definition is given in Section 2.3
(below).

2.1.1 Definition (States). We say that �yÙE� is a state if y Ú Ω r Rm is a continuous
map and E is an open subset of Ω such that
(i) S Ú¨ Ω P bdE is a class 2 surface of dimension n − 1 of normal n Ú Sr S n − 1;
(ii) with the notation

E1 Ú¨ EÙ E2 ¨ Ω ∼ clE

the maps y
α
Ú¨ y@E

α
Ù α ¨ 1Ù 2Ù and y Ú¨ y@S are of class 2 with their gradients

∇y
α
Ù and V y having continuous extensions F

α
and F to the closure of their

respective domains;
(iii) we have ranF

α
⊂ U

α
Ù α ¨ 1Ù 2Ù and ranF ⊂ UØ

Here f @M denotes the restriction of a map f to a subset M of its domain of definition
dom f and ran f ¨  f �x� Ú x X dom f ( denotes the range of f Ø One has

F1 ¨ ∇y in E, F2 ¨ ∇y in Ω ∼ clE, (2.1.1)

and the values of F
α

on clE
α
∼ E

α
are the limits of the gradients in (2.1.1). In

particular, F
α

are well defined onS and we denote by �F� Ú¨ F1@S − F2 @S the jump
of the deformation gradient across the interface. However, let us emphasize that y is
continuous. Also,

F ¨ V y ¨ V y on S (2.1.2)

and F Ú clSr Lin is the continuous extension of the surface gradient in (2.1.2).
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2.1.2 Definition (Energy and stresses associated with states). Let �yÙE� be a state.
We define
(i) the energy E�yÙE� of the state by

E�yÙE� ¨ Eb�yÙE� + Eif�yÙE� (2.1.3)

where
Eb�yÙE� ¨ �

E

t1�∇y� dL
n + �

Ω∼E

t2�∇y� dL
nÙ (2.1.4)

Eif�yÙE� ¨ �
S

Ðf�V yÙn� dHn − 1

are the bulk and interfacial energies, respectively;
(ii) the bulk standard stress SÙ the bulk configurational stress C and the bulk energy

density f on Ω ∼S by

S ¨



















ÐS1 � F1 on EÙ
ÐS2 � F2 on Ω ∼ clEÙ

and similarly for C and f Û here and below ÐS1 � F1 denotes the composition of the
maps ÐS1 and F1Ù i.e., �ÐS1 � F1��x� ¨ ÐS1�F1�x�� for each x X domF1 ¨ clE and
similarly for compositions of general maps;

(iii) the jumps �S�Ù �C� �f � of the bulk stresses onS and of the bulk energy on S by

�S� ¨ ÐS1 � F1 @S − ÐS2 � F2@S

and similarly for �C�, �f � and �Sn ċ Fn�;
(iv) the interfacial standard stress S, interfacial configurational stress C, and the

interfacial energy density f on S by

S ¨ ÐS � �FÙn�

and similarly for CÙ and fÙ where we use the notation of Definition 2.1.1.
As in case of the jump of FÙ the jumps defined in (iii) are the differences of the limits
of the corresponding bulk fields from the two sides of the interface. Note that S and
C are superficial tensors, i.e., Sn ¨ Cn ¨ 0Ø

2.1.3 Definition (Local perturbations and minima).
(i) A state �zÙ F� is said to be a local perturbation of the state �yÙE� if there exists

a compact subset K of Ω with

z@�Ω ∼ K� ¨ y@�Ω ∼ K�Ù F P �Ω ∼ K� ¨ E P �Ω ∼ K�Ø

(ii) The state �yÙE� is said to be a local minimizer of energy if E�yÙE� ² E�zÙ F�
for each local perturbation �zÙ F� of �yÙE�Ø

Thus a local perturbation �zÙ F� is identical with the state �yÙE� near the boundary
of Ω and (ii) considers the minima of total energy in this class of states. For the
considerations below, and in particular for the validity of the interfacial configuration
force balance, it is crucial that the interface in the state �zÙ F� can be different from
that of �yÙE� (apart from the mentioned coincidence near the boundary of Ω). Thus
in passing from �yÙE� to �zÙ F�Ù part of the phase 1 is transformed into the phase
2 and/or conversely. A stronger notion of minimum is considered in the existence
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theorems in Section 2.3. The reader is referred to [23] and [10] for different but
related notions of minima.

The following proposition [27; Lemma 3.2] clarifies the roles of the standard and
configurational force systems by evaluating the variation of total energy under outer
and inner variations.

2.1.4 Lemma (Outer and inner variations). Let �yÙE� be a state. With the notation

of Definitions 2.1.1 and 2.1.2 we have the following statements, in which t X R is a

parameter and δ ± 0 a number with @t@, δ sufficiently small:

(i) Let α X C ð
0 �ΩÙR

m� and let yt Ú Ω r Rm be defined by

yt ¨ y + tαØ

Then �ytÙE� is a state that is a local perturbation of �yÙE�, the function t w
E�ytÙE� is continuously differentiable and

dE�ytÙE�
dt

∣

∣

∣

t ¨ 0
¨ �
Ω∼S

S ċ ∇α dLn + �
S

S ċV α dHn − 1Ø (2.1.5)

The family  �ytÙE� Ú @t@ ° δ( is said to be an outer variation of �yÙE�Ø
(ii) Let β X C ð

0 �ΩÙR
n� and let φ t Ú Ω r Rn be defined by

φt�x� ¨ x + t β�x�Ù

x X ΩØ Then φ t maps Ω bijectively onto Ω; if we define

yt ¨ y � φ
− 1
t Ù Et ¨ φ t�E�

then �ytÙEt� is a state that is a local perturbation of �yÙE�, the function t w
E�ytÙEt� is continuously differentiable and

dE�ytÙEt�
dt

∣

∣

∣

t ¨ 0
¨ �
Ω∼S

C ċ ∇β dLn + �
S

C ċV β dHn − 1Ø (2.1.6)

The family  �ytÙEt� Ú @t@ ° δ( is said to be an inner variation of �yÙE�Ø

The forms (2.1.5) and (2.1.6) justifies the particular forms of the interfacial stress
relations postulated above. The stress relations continue to hold also in dynamical
situations, although the variational arguments do not suffice [14, 26].

The minimum of energy then leads to equilibrium equations.

2.1.5 Proposition. If �yÙE� is a local minimizer of energy then

divS ¨ 0Ù divC ¨ 0 in Ω ∼SÙ (2.1.7)

div S + �S�n ¨ 0Ù div C + �C�n ¨ 0 on SÙ (2.1.8)

where we use the notation of Definitions 2.1.1 and 2.1.2. Equation (2.1.7)2 and the

tangential component of (2.1.8)2 is a consequence of (2.1.7)1 and (2.1.8)1Ø Granted

(2.1.8)1Ù the normal component of (2.1.8)2 is equivalent to

�f − Sn ċ Fn� − �fP − FTS� ċ L + div t ¨ 0 on SÙ

where L ¨ V n is the curvature tensor and t Ú Sr Rn is given by

t ¨ FTD1
Ðf � �FÙn�n −D2 Ðf � �FÙn�Ø
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See [7–8, 15, 17, 16, 13–14, 25–26, 28]. See also [14] for further references.
Assuming m ¨ n and the invertibility of the deformation y, we can introduce the

spatial configuration ÏΩ ¨ y�Ω� of the body and the spatial interface ÏS ¨ y�S�Ù and
the spatial stress tensors

ÏS � y ¨ SFT/J Ù ÏC � y ¨ CFT/J Ù

ÏS � y ¨ SFT/JÙ ÏC � y ¨ CFT/JÙ

where

J ¨ detFÙ J ¨ @ cof F @Ø

The equilibrium equations take the forms

Div ÏS ¨ 0Ù Div ÏC ¨ 0 in ÏΩ ∼ ÏSÙ

Div ÏS + �ÏS�Ïn ¨ 0Ù Div ÏC + � ÏC�Ïn ¨ 0 on ÏSÙ

where DivÙDiv denote the spatial bulk and surface divergences.

2.2 Interface quasiconvexity, null lagrangians and polyconvexity

Let n ³ 2 and put

s Ú¨ min mÙ n(Ù t Ú¨ min mÙ n − 1(Ø

For the purpose of the following definition, by an oriented surface S of normal
n we mean a bounded class ð surface in Rn of dimension n − 1 for which n is a
continuous field of unit normal, such that the boundary bdS Ú¨ clS ∼S is a class
ð surface of dimension n − 2, with the orientation of bdS dictated by the Stokes
theorem. We say thatT is a planar surface of normal m ifT is a subset of some n− 1
dimensional hyperplane in RnØ

2.2.1 Definitions. Let Ðf Ú Gr RT  ð( be a continuous function. We say that Ðf is
(i) interface quasiconvex if

�
S

Ðf�V yÙn� dHn − 1 ³Hn − 1�T�Ðf�GÙm� (2.2.1)

for every �GÙm� X G, every planar surfaceT of normal m, every orented surface
S of normal n and every continuous map y Ú clS r Rm that is class 1 on S
such that

bdS ¨ bdT and y�x� ¨ Gx if x X bdTÛ

(ii) an interface null lagrangian if Ðf is finite valued and± Ðf are interface quasiconvex
[in other words, (2.2.1) holds with the equality sign for each collection of objects
listed in (i)];

(iii) interface polyconvex if Ðf is the supremum of some family of interface null
lagrangians.
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2.2.2 Remarks.

(i) If Ðf is the supremum of some family of interface quasiconvex functions then Ðf
is interface quasiconvex; in particular any interface polyconvex function is interface
quasiconvex. Any standard (bulk) polyconvex function is also the supremum of some
family of standard (bulk) null lagrangians.

(ii) In Chapter 3 we will introduce generalizations of the notions in Definition
2.2.1 which involve integrations on surfaces of dimension r wirh 0 ² r ² n in RnØ
Also the surfaces as considered above will be replaced by more general objects, viz.,
integral currents, etc.

(iii) The main motivation of the interface quasiconvexity comes from the low-
ersemicontinuity of the surface energy Eif with respect to a suitable convergence of
states �yÙE� with migrating interface. These matters are counterparts of the corre-
sponding “bulk” assertions [19–20, 3, 5]. We refer to Section 3.6 for a simple result
of this type.

We now give a complete description of interface null lagrangians as linear com-
binations, with constant tensorial coefficients, of the members of the list

bkF ` nÙ k ¨ 0ÙÜ Ù t

for each �FÙn� X GØ The reader is referred to Section A.2 (below) for the notation.
In particular,

b0 F ` n ¨ nÙ
and if m ¨ n then

bn − 1 F ` n ¨   �cofF n�Ø

2.2.3 Theorem. A function Ðf Ú Gr R is an interface null lagrangian if and only if

it is of the form

Ðf�FÙn� ¨
t

�
k ¨ 0

Ωk ċ �bkF ` n�

for all �FÙn� X G where

Ωk X Lin�bk + 1R
nÙ bkR

m�

are constants for all k ¨ 0ÙÜ Ù tØ If m ¨ n ¨ 3 then a general form of an interface

null lagrangian is

Ðf�FÙn� ¨ c ċ n + Ω ċ �F � n� + a ċ cofF n (2.2.2)

for each �FÙn� X G where cÙ a X R 3 and Ω X Lin�R 3ÙR 3� are constants.

Here F � n is a second order tensor defined by

�F � n�t ¨ F�n � t�

for any vector tÛ in components,

�F � n�iA ¨ εABCFiBnC
where εABC is the permutation symbol, summation convention applies, and FiB, nC

are the components of F and n with i ¨ 1Ù 2Ù 3 the spatial indices and AÙBÙC ¨ 1Ù 2Ù 3
the referential indices. Since F n ¨ 0 we have

F ¨ −�F � n� � nÛ

thus F � n carries the same information as FÛ however, it is F � n, and not FÙ
that enters the interface null lagrangians. The reader is referred to Proposition 3.5.2
(below) for a general form of Theorem 2.2.3.
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2.2.4 Theorem. A function Ðf Ú Gr RT  ð( is interface polyconvex if and only if

there exists a positively 1 homogeneous function Ψ Ú Yr RT  ð( defined on

Y Ú¨
t

�
k ¨ 0
Lin�bk + 1R

nÙ bkR
m� (2.2.3)

such that
Ðf�FÙn� ¨ Ψ�b0 F ` nÙ b1F ` nÙÜ Ùbt F ` n�

for each �FÙn� X G. If m ¨ n ¨ 3 then Ðf is interface polyconvex if and only if there

exists a positively 1 homogeneous convex function Φ on the space X such that

Ðf�FÙn� ¨ Φ�nÙF � nÙ cofF n�

for each �FÙn� X G.

The reader is referred to Proposition 3.5.3 (below) for a general form of this result.

We now consider some particular cases.

2.2.5 Proposition. Let m ¨ n and let Ðf Ú Gr R be an interface energy function.

(i) Let n ¨ 3 and let g Ú �0Ù ð� 3 � R 3 r R be a positively 1 homogeneous convex

function such that

– for each s ³ 0Ù p X R 3 the function g�ċÙ ċÙ sÙ p� is symmetric under the

exchange of its two arguments,

– for each p X R 3 the function g�ċÙ ċÙ ċÙ p� is nondecreasing.

If
Ðf�FÙn� ¨ g�λ1Ù λ2Ù λ 1λ2Ùn�

for each �FÙn� X G where λ1Ù λ2Ù 0 are the singular numbers of F, then Ðf is

interface polyconvex; in particular, if g is independent of n then Ðf is an isotropic

interface polyconvex function.

(ii) Let
Ðf�FÙn� ¨ σ@ cofF @

for each �FÙn� X U where σ is a constant. Then Ðf is interface polyconvex if and

only if σ ³ 0Ø
(iii) Let

Ðf�FÙn� ¨ ��n�

for each �FÙn� X Gwhere � Ú S n − 1 r R is a positively 1 homogeneous function;

then Ðf is interface polyconvex if and only if � is convex.

(iv) Let n ¨ 3 and
Ðf�FÙn� ¨ Ψ�F � n�

for each �FÙn� X G where Ψ Ú Linr R is a positively 1 homogeneous function.

Then Ðf is interface polyconvex if and only if Ψ is convex.

(v) Let
Ðf�FÙn� ¨ ψ�cofF n�Ù

for each �FÙn� X G, where ψ Ú Rn r R is a given positively 1 homogeneous

function. Then Ðf is interface polyconvex if and only if ψ is convex.

Proof (i): Let Ψ Ú R 3 � Lin � R 3 r R be defined by
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Φ�pÙHÙ q� ¨ g�λ1Ù λ2Ù @q@Ù p�

for each pÙ q X R 3 and each H X Lin where λ 1 ³ λ2 ³ λ3 ³ 0 are the singular values
of HØ If �FÙn� X G and F has the singular values λ1 ³ λ2 ³ 0 then F � n also has
the singular values λ 1 ³ λ2 ³ 0 and cofF n@ ¨ λ1λ2Ø Hence

Ðf�FÙn� ¨ Φ�nÙF � nÙ cofF n�

for each �FÙn� X GØ The symmetry and convexity of g imply thatD1 g ³ D2 g and the
nondecreasing character that D2 g ³ 0 and D3 g ³ 0Ø The von Neumann and Cauchy

inequalities give that Φ is a convex function and thus Ðf is polyconvex.
(ii): The sufficiency of σ ³ 0 is a particular case of (i). The necessity is immediate.
(iii): If � is convex and positively 1 homogeneous (by hypothesis) then the

definition immediately gives that Ðf is interface polyconvex. Conversely assume that
Ðf is interface polyconvex so that there exists a positively 1 homogeneous convex
function Φ such that

��n� ¨ Φ�nÙ b1F ` nÙÜ Ùbn − 1F ` n�

for each �FÙn� X GØ For �0Ùn� X G this gives

��n� ¨ Φ�nÙ 0ÙÜ Ù 0�

which must hold for each unit vector nØ The positive 1 homogeneity of � and Φ then
implies that

��v� ¨ Φ�vÙ 0ÙÜ Ù 0�

for each v X Rn and the convexity of Φ implies that � is convex.
(iv) and (v) are proved analogously. è

2.3 The existence of equilibrium states

This section outlines the existence theory for the minimizers of energy. We first
enlarge the state space in Definition 2.3.1. The reader is referred to Section A.2 for the
necessary notions of multilinear algebra (in particular the notion of interior derivative
of a k vectorfield occurring in (2.3.1) below); furthermore,M�Ω ÙV � denotes the set
of all measures on an open set Ω ⊂ Rn with values in a finite dimensional vectorspace
V Ø Throughout the section we assume m ¨ n and consider the constitutive data of
Definition 1.2.1.

2.3.1 Definitions (State space for the existence theory). Let Ω ⊂ Rn be a bounded
open set with lipschitzian boundary and n − 1 ² p ² ðÙ 1 ² q ² ðØ We denote by
G
pÙ q�ΩÙRn� the set of all pairs �yÙE� such that

(i) y X W 1Ù p�ΩÙRn�,

bn − 1∇y X L
q�ΩÙLin�bn − 1R

nÙ bn − 1R
n��Ù

(ii) E is anLn measurable subset of ΩÛ
(iii) for each k with 0 ² k ² n − 1 there exists a measure Bk in the space
M�Ω ÙLin�bk + 1R

nÙ bkR
n�� satisfying
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�
E

bk∇y ãξ dL
n ¨ �−1�k + 1 �

Ω

d Bk ξ (2.3.1)

for each ξ X Dk + 1�Ω� [in the integral on the right hand side of (2.3.1) the
integration measure Bk precedes the integrand ξ for algebraic reasons].

We call the elements �yÙE� X G pÙ q�ΩÙRn� states. We call the measure Bk the
interface null lagrangian of order k corresponding to �yÙE�. We write Bk ¨ Bk�yÙE�
to indicate the dependence on �yÙE�Û we abbreviate L�yÙE� ¨ �B0ÙÜ ÙBn − 1�Ø
Underlying the definition of the interface null lagrangians is the vanishing of the
exterior derivative of the bulk jacobian minors bk∇yØ Namely, if y X W 1Ù p�ΩÙRn�
with p ³ k then

�
Ω

bk∇y ãξ dL
n ¨ 0 (2.3.2)

for each ξ X Dk + 1�Ω�Û we here recall that the interior derivative ã is dual (formal ad-
joint) of the exterior derivative. The reader is referred to [12; Corollary 2, Subsection
3.2.3] for a coordinate version of (2.3.2). Since (2.3.1) involves the bulk integral over
EÙ one expects that the integration by parts will result in an object Bk concentrated
on the boundary of EØ This is indeed the case, as we shall show now.

2.3.2 Remark. If �yÙE� X G pÙ q�ΩÙRn� with p ³ n − 1Ù q ³ 1 then E is a set of finite

perimeter and

B0 ¨ nHn − 1 bd �EÙΩ� (2.3.3)

where bd �EÙΩ� Ú¨ Ω P bd  E and bd  E is the measure theoretic boundary of EØ
Moreover, if 1 ² k ² n − 1 then

sptBk ⊂ cl bd �EÙΩ�Ø

Proof For k ¨ 0 Equation (2.3.1) reads

�
E

div v dLn ¨ − �
Ω

d B0v

for each v X C ð
0 �ΩÙR

n� where B0 X M�ΩÙLin�RnÙR��Ø This shows that the
perimeter of E in Ω is finite and as the rest of the perimeter of E can be only a subset
of bdΩ, the lipschitzian character of bd Ω implies that E is a set of finite perimeter.
Equation (2.3.3) is then a consequence. If 1 ² k ² n − 1 and ξ X D k + 1�Ω� satisfies
spt ξ P cl bd  E ¨ ó then ξ ¨ ξ1 + ξ2 where spt ξ1 ⊂ E and spt ξ2 ⊂ Ω∼ E and thus

�
E

bk∇y ãξ dL
n ¨ �

E

bk∇y ãξ1 dL
n ¨ �

R n
bk∇y ãξ1 dL

n ¨ 0

by (2.3.2). è

2.3.3 Remark. If �yÙE� is a pair where y Ú Ω r Rn is lipschitzian and E ⊂ Ω is

a set of finite perimeter then �yÙE� X G pÙ q�ΩÙRn� for all p ³ n − 1 and q ³ 1Û the

measures Bk are given by

Bk ¨ bkV y ` nHn − 1 bd �EÙΩ� (2.3.4)

were y ¨ y@ bd �EÙΩ� and V y is the approximate surface gradient of the lipschitzian

map y on theHn − 1 rectifiable set bd �EÙΩ�Ø

Thus Bk are the measure theoretic generalizations of the interface null lagrangians.
See Section 3.6 (below) for the proof of (2.3.4).
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2.3.4 Definition (Energy functional for the existence theory). Let t
α
Ú Linr �0Ù ð�,

α ¨ 1Ù 2Ù be functions of the forms

t
α
�F� ¨ Φ

α
�b1FÙÜ ÙbsF� (2.3.5)

for all α ¨ 1Ù 2 and all F X LinÙ where Φ
α
Ú Z r �0Ù ð� are continuous convex

functions on

Z ¨
s

�
k ¨ 1
Lin�bkR

nÙ bkR
n�Ø

Let Ðf Ú Gr �0Ù ð� be a function of the form

Ðf�FÙn� ¨ Φ�b0 F ` nÙÜ Ùbn − 1 F ` n� (2.3.6)

for each �FÙn� X G where Φ Ú Y r �0Ù ð� is a positively 1 homogeneous convex
function. If n − 1 ² p ² ð, we define the total energy E Ú G pÙ q�ΩÙRn� r �0Ù ð� by
(2.1.3) for each �yÙE� X G pÙ q�ΩÙRn� where Eb is given by (2.1.4) and

Eif�yÙE� ¨ �
R n
Φ�A� d @L�yÙE�@ (2.3.7)

where @L�yÙE�@ is the total variation of L�yÙE� and A Ú Ω r Y satisfies L�yÙE� ¨
A @L�yÙE�@Û cf. [2; Corollary 1.29 and Section 2.6].
The definition (2.3.7) reduces to

Eif�yÙE� ¨ �
bd �EÙ Ω�

Ðf�V yÙn� dHn − 1

if �yÙE� consists of a lipschitzian map y and a set of finite perimeter E ⊂ ΩØ

2.3.5 Theorem. Let n − 1 ² p ° ðÙ n/�n − 1� ² q ° ð and assume that

(i) t
α
, α ¨ 1Ù 2Ù are polyconvex in the sense of (2.3.5) where Φ

α
are continuous

convex �0Ù ð� valued functions, Ðf is interface polyconvex in the sense of (2.3.6)
where Φ is a positively 1 homogeneous convex �0Ù ð� valued function,

(ii) for all α ¨ 1Ù 2Ù all F X LinÙ all A X Y, some c ± 0 and some d X R we have

t
α
�F� ³ c�@F@ p + @ cofF@ q� + dÙ Φ�A� ³ c@A@Ù

(iii) t
α
�F� ¨ ð if detF ² 0Ø

Given z0 X W
1Ù p�ΩÙRn�, consider the Dirichlet class

A�z0� ¨ !�yÙE� X G pÙ q�ΩÙRn� Ú y ¨ z0 on bdΩ)

and let E be given by Definition 2.3.4. If E is finite at some element of A�z0� then

there exists an �yÙE� XA�z0� such that

E�yÙE� ² E�zÙ F�

for all �zÙ F� XA�z0�Ø Each solution �yÙE� of the problem satisfies

det∇y ± 0 for Ln a.e. point of ΩØ

Proof Let M�µ� denote the mass of the measure µ X M�ΩÙV �Ù i.e., M�µ� ¨
@µ@�Ω� where @µ@ denotes the total variation of µØ Let �y iÙE i� X A�z0� be a
minimizing sequence. By the coercivity assumptions on t

α
and Φ the sequences

@∇y i@L p and M�L�y iÙE i�� are bounded. Combining the boundedness of @∇y i@L p
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with the Dirichlet boundary data, one obtains the boundedness of @y i@
W 1Ù p

Ø Standard
compactness theorems for Sobolev space and for the spaces of measures give that for
some subsequence of �y iÙE i�Ù denoted again �y iÙE i�Ù and some y X W 1Ù p�ΩÙRn�,
∆ XM�ΩÙY� we have the following facts:

y i u y in W 1Ù p�ΩÙRn�Ù (2.3.8)

bn − 1∇y
i ' cof∇y i bounded in L q�ΩÙLin�bn − 1R

nÙ bn − 1R
n��

L�y iÙE i� u   ∆ in M�ΩÙY� (2.3.9)

whereY is defined by (2.2.3). From B0�y
iÙE i� ¨ nE

i
H
n − 1 bd �E

iÙΩ�we deduce
that the sequence D 1

E i
is bounded inM�ΩÙRn�Ø The imbedding theorem from BV

functions (e.g., [2; Corollary 3.49, Chapter 3]) implies

1E i r 1E in L 1�Ω�Ø (2.3.10)

for some set E ⊂ Ω of finite perimeter, i.e.,

L
n�∆�E iÙE�� r 0Ù (2.3.11)

where ∆�E iÙE� is the symmetric difference of E i and EØ The inequality p ³ n − 1Ù
Equation (2.3.8) and the weak sequential continuity of minors (e.g., [21; Theorem
2.3(ii)]) gives

bk∇y
i u bk∇y in L p/�n − 1��ΩÙLin�bkR

nÙ bkR
n��, 0 ² k ° n − 1Ø (2.3.12)

The condition E�y iÙE i� ° ð for each i and Hypothesis (iii) imply that det∇y i ± 0
for every i andLn a.e. point of ΩØ By [22; Lemma 4.1] then

bn − 1∇y
i u bn − 1∇y in L q�ΩÙLin�bn − 1R

nÙ bn − 1R
n��, (2.3.13)

det∇y i u det∇y in L 1�K ÙR�

for each compact subset K of ΩØ
The equiintegrability of the sequence bk∇y

i and (2.3.11) yield

1E i bk ∇y
i u 1E bk ∇y in L 1�ΩÙLin�bkR

nÙ bkR
n��, 0 ² k ² n − 1

and in particular,

�
E i
bk∇y

i ãξ dLn r �
E

bk∇y ãξ dL
n

for each ξ X Dk + 1�Ω�Ù which can be rewritten as

�
Ω

d Bk�y
iÙE i�ξ r �

E

bk∇y ãξ dL
nØ (2.3.14)

Hence (2.3.9) yields

�
E

bk∇y ãξ dL
n ¨ �

Ω

d∆k ξ

where we write ∆ ¨ �∆0ÙÜ Ù ∆s� for the components of ∆. Thus �yÙE� X
G
pÙ q�ΩÙRn� and Bk�yÙE� ¨ ∆k. Equations (2.3.14) and (2.3.13) reduce to

L�y iÙE i� u   L�yÙE� in M�ΩÙY�Ø (2.3.15)

Let Ξ Ú R � Zr �0Ù ð� be defined by
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Ξ�τÙM� ¨ @τ@Φ1�M�

for each τ X R and M X Z; note that the function Ξ�τÙ ċ� is convex for each τ X R.
For each compact subset K of Ω we have

�
E i PK

t1�∇y
i� dLn ¨ �

K

Ξ�1E i Ù b1∇y
iÙÜ Ùbs∇y

i� dLnØ

The Ioffe lowersemicontinuity theorem [2; Theorem 5.8, Chapter 5] and (2.3.10) and
(2.3.12) then give

lim inf
irð

�
K

Ξ�1E i Ù b0∇y
iÙÜ Ùbs∇y

i� dLn ³ �
K

Ξ�1EÙ b0∇yÙÜ Ùbs∇y� dL
nØ

Thus the nonnegativity of t
α

gives

lim inf
irð

�
E i
t1�∇y

i� dLn ³ �
E PK
t1�∇y� dL

nÙ

lim inf
irð

�
Ω∼E i

t2�∇y
i� dLn ³ �

K ∼E

t2�∇y� dL
n

where the last relation is obtained analogously. The arbitrariness of K then gives

lim inf
irð

�
E i
t1�∇y

i� dLn ³ �
E

t1�∇y� dL
nÙ (2.3.16)

lim inf
irð

�
Ω∼E i

t2�∇y
i� dLn ³ �

Ω∼ E

t2�∇y� dL
nØ (2.3.17)

Using (2.3.15) and the Reshetnyak lowersemicontinuity theorem (e.g., [2; Theorem
2.38, Chapter 2]), one obtains

lim inf
irð

Eif�y
iÙE i� ³ Eif�yÙE�Ø (2.3.18)

Thus (2.3.16), (2.3.17) and (2.3.18) provide

lim inf
irð

E�y iÙE i� ³ E�yÙE�Ø

Clearly, �yÙE� XA�z0�Ø è



Chapter 3

Graphs, currents, and quasiconvexity of degree r

This chapter deals with the convexity properties of integral functionals of the form

F�MÙ θÙ α� ¨ �
M

Ðf�∇θÙ α� dH r (3.0.1)

whereM is an r dimensional oriented surface inRnÙwith 0 ² r ² nÙ θ is a lipschitzian
map from a bounded open subset Ω of Rn to RmÙ ∇θ is the surface gradient of θ
relative to M and α is a vectorfield on M with values in r vectors on Rn giving the
surface M an orientation. The surface M is varying, it is an independent variable of

the functional F Ø The function Ðf is called a standard integrand here. Quasiconvex and
polyconvex standard integrands will be defined and also standard integrands that are
null lagrangians will be introduced. The interface quasiconvexity and polyconvexity
and interface null lagrangians defined above in Section 2.2 will become particular
cases of the present notions corresponding to r ¨ n−1 and the standard “bulk” notions
of quasiconvexity, polyconvexity, and null lagrangians correspond to r ¨ nØ

The general form of the null lagrangians and of polyconvex functions will be
established and a lowersemicontinuity theorem for sequences with varying surfaces
MiÙ αi and θ i will be established. The proof of the structure of null lagrangians is
essentially noncomputational, but is based on a lifting of the picture of the map θ on
M to the graph of θ onM Ø The integral (3.0.1) can be expressed as

�
S

Φ�γ� dH r (3.0.2)

where S Ú¨ graph�MÙ θ� is interpreted as a surface of dimension r in Rm + nÙ γ
is an r vectorfield giving graph�MÙ θ� an orientation and Φ is some integrand
that is uniquely determined by Ðf Ø Following Federer [9; Subsection 5.1.2] we call
Φ a parametric integrand of degree rØ The correspondence between the standard
integrands Ðf and the parametric integrands is essentially bijective and a question
arises how the convexity properties of standard integrands translate into the language



3.1. Rectifiable currents 31

of parametric integrands. The central convexity notion for the parametric integrands
is the semiellipticity by Almgren [1; Section 1] (also Federer [9; Subsection 5.1.2]),
which is equivalent to the semiconvexity of the functionals (3.0.2) on surfaces under
the flat norm. The relationship between the semiellipticity of Φ and quasiconvexity
of Ðf is rather direct: the semiellipticity of Φ implies the quasiconvexity of Ðf and
conversely the quasiconvexity of Ðf implies the semiellipticity inequality on surfaces
that can be represented as graphs. In case of null lagrangians and of polyconvex
functions the relationship is even simpler: Ðf is a null lagrangian if and only if both
Φ and −Φ are semielliptic; Ðf is polyconvex if and only if Φ has a convex extension
onto the convex hull of domΦØ

3.1 Rectifiable currents

Our model of a surface of dimension r in R d is a rectifiable r dimensional current.
These will be our integration domains. Let U be an open subset of R d Ø

3.1.1 Definition (Cf. [9]). An r dimensional current T in U (0 ² r ² d) is an brR
d

valued distribution on U Ù i.e., a continuous linear function T on the space D r�U� of
infinitely differentiable r forms on R d with compact support which is contained in
U Ù endowed with the Schwartz topology. We denote the value of T on ω X D r�U�
by 〈T Ù ω 〉Ø We define the boundary ãT of an r dimensional current T in U as an r − 1
dimensional current defined by

〈ãT Ù σ 〉 ¨ 〈T ÙD σ 〉

for each σ X D r − 1�U� where D σ X D r�U� is the exterior derivative of σ and we
putD s�U� ¨  0( if s ² 0Ø

We now introduce special classes of currents which will play leading roles in
the developments below. We say that a subset M of R d isH r rectifiable if M isH r

measurable,H r�M� ° ð andH r almost all of M is contained in the set
ð
U
i ¨ 1
φ i�R

r�

where φ i Ú R
r r R d are lipschitzian maps. It follows that the approximate tangent

space Tan r�MÙx� is an r dimensional linear subspace of R d forH r a.e. x X M Ø We
say that an r vectorfield α Ú M r brR

d on aH r rectifiable set M ⊂ R d is tangential
if α�x� is the product of r vectors from Tan r�MÙx� forH r a.e. x X M Ø LetN denote
the set of all positive integers.

3.1.2 Definition (Cf. [9]). An r dimensional current T in U is said to be
(i) rectifiable if

〈T Ù ω 〉 ¨ �
M

〈αÙ ω 〉 dH r (3.1.1)

for each ω X D r�U� where

M is aH r rectifiable subset of U ,

α Ú M r brR
d is aH r integrable,

α is tangential to MÙ

ran @α@ ⊂ NÛ















































(3.1.2)
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we write
T ¨ αH r MÛ (3.1.3)

(ii) integral if T and ãT are rectifiable.
We note that the objects in (3.1.2) and the formula (3.1.1) defines a rectifiable current
in any open subset of R d containingMÛ the currents corresponding to different choices
of U then differ by their domain of definition D r�U�Ø The integrality of the current
T depends strongly on the choice of U since the boundary ãT depends on U Ø Indeed,
if T0 Ú D

r�R d� r R is a current on R d defined by

〈T0Ù ω 〉 ¨ �
M

〈 αÙ ω 〉 dH r

for each ω X D r�R d� while if T Ú D r�U� r R is given by (3.1.1) for every
ω X D r�U� then ãT Ú D r − 1�U� r R is the restriction of ãT0 Ú D

r − 1�R d� r R to
the set D r − 1�U�Ø One may say, informally, that ãT is the part of the boundary of T0
that is contained in U Ø

3.1.3 Definition. We say that an r dimensional current S represents a planar region

if there exists an r dimensional plane P ⊂ R d (i.e., and r dimensional affine subspace
of U) and a boundedH r measurable subset N of P such that

S ¨ βH r N

where β is constant and equal to any of the two unit vectors associated with PØ

Each r dimensional rectifiable current T is an r dimensional flat chain as defined
in [29, 9] and thus T can be put into the duality pairing 〈T Ù ω 〉 with flat r dimensional
forms ωÙ i.e., essentially bounded L d measurable forms on R d such that the weak
exterior derivative of ω is essentially boundedL d measurable. In the particular case
the flat form ω is continuous, the duality pairing reduces to the integration

〈T Ù ω 〉 ¨ �
M

〈αÙ ω 〉 dH r

where 〈αÙ ω 〉 denotes the duality pairing between r vectors and r covectors. If
φ Ú R d r R e is a lipschitzian map and σ a flat r form on R e we define the pullback
φ #σ as an r form on R d by

φ #σ ¨ br�∇φ�
  σ � φ

for L d a.e. x X R dÙ where ∇φ is the derivative of φÙ which exists for L d a.e.
point of R d , �∇φ�  �x� Ú b1R

e r b1R
d denotes the adjoint of ∇φ�x�Ù so that

br�∇φ�
 �x� Ú brR

e r brR
d. It turns out that φ #σ is a flat form and the fundamental

formula
D�φ #σ� ¨ φ #D σ

relating the weak exterior derivatives holds. Dualizing, one defines the pushforward
φ#T of a flat r dimensional chain T on R d by a lipschitzian map φ Ú R d r R e as a
current that satisfies

〈φ#T Ù σ 〉 ¨ 〈T Ù φ #σ 〉

for each σ X D r�R e�Ø It is possible to prove that φ#T is a flat chain. The following
proposition describes the pushforward in the particular case of rectifiable currents.
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3.1.4 Proposition (Cf. [9; Subsection 4.1.30]). Let T be an r dimensional rectifiable

current in U of the form (3.1.3) where M and α satisfy (3.1.2). Let φ Ú R d r R e be

a lipschitzian map and put η Ú¨ φ @M Ø Then S Ú¨ φ#T is an r dimensional rectifiable

current on R e of the form
S ¨ βH r η�M�

where forH r point y of η�M�Ù

β�y� ¨ �
x X η − 1� y(�

�brV η�x�� α�x�/Jrη�x�

is a simple r vector tangential to η�M� at x and

�brV η�x�� α�x�/Jrη�x� ¨ ± @α�x�@β�y�/@β�y�@

for every x X η − 1� y(�Ø

Here and below V η�x� is the approximate surface gradient of the lipschitzian map η
relative to theH r rectifiable setM (see Section A.1, below) and Jrη�x� ¨ @brV η�x�@
is the jacobian. We see that S ¨ φ#T is completely determined by η Ú¨ φ@M and we
write S ¨ η#T Ø

3.2 Parametric integrands and semiellipticity

Let sibrR
d denote the cone of all simple vectors from brR

d.

3.2.1 Definitions (Cf. [9; Subsection 5.1.1]).
(i) We say that Φ is a parametric integrand of degree r in R d if Φ is a positively 1

homogeneous borelian function with values in R T  ð( defined on some cone
contained in sibrR

d and the negative part of Φ is locally bounded.
(ii) If Φ is a parametric integral of degree r in R d, we denote by dom 〈ΦÙ ċ〉 the

set of all rectifiable currents T in R d with compact support, of the form (3.1.3)
where MÙ α satisfy (3.1.2) and ran α ⊂ domΦÛ for any such a T we define

〈ΦÙT 〉 ¨ � Φ � α dH r

and call 〈ΦÙT 〉 the parametric integral of the current T ; we note that 〈ΦÙT 〉 X
R T  ð(Ø

3.2.2 Definitions. Let Φ be a parametric integrand of degree r onR d Ø The integrand
Φ is said to be
(i) elliptic if there exists a c ± 0 such that

〈ΦÙT 〉 − 〈ΦÙ S 〉 ³ c�M�T� −M�S�	 (3.2.1)

whenever T Ù S X dom 〈ΦÙ ċ〉 satisfy ãT ¨ ãS and S represents a planar region.
HereM�T� is the mass (total variation) of the measure T Û

(ii) semielliptic if
〈ΦÙT 〉 ³ 〈ΦÙ S 〉

for any T Ù S as above;
(iii) a semielliptic null lagrangian if domΦ ¨ sibrR

dÙ ranΦ ⊂ RÙ Φ is continuous
and both Φ and −Φ are semielliptic;

(iv) semielliptic polyconvex if domΦ ¨ sibrR
d and Φ is the supremum of some

family of semielliptic null lagrangians.
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3.2.3 Proposition. Let Φ be a semielliptic integrand of degree r on R d with r ° dØ
Let a0ÙÜ Ù ar X R

d be linearly independent and define

Ða i Ú¨ �−1� i
r

b
k ¨ 0Ù k© i

akÙ (3.2.2)

0 ² i ² rØ Then

Φ�
r

�
i ¨ 0

Ða i� ²
r

�
i ¨ 0
Φ�Ða i� (3.2.3)

provided Ða i and �ri ¨ 0 Ða
i belong to domΦØ If Φ is continuous and domΦ ¨ sibrR

d

then the requirement that a1ÙÜ Ù ar be linearly independent can be relaxed.

Proof We have
r

�
i ¨ 0

Ða i ¨ �−1�k + 1
r

b
i ¨ 0Ù i© k

�ai − ak�

for each k ¨ 0ÙÜ Ù rÛ thus γ Ú¨ �ri ¨ 0 Ða
i is a simple vector. If ∆ is an r + 1 simplex in

R d with vertices 0Ù a0ÙÜ Ù ar then the r vector −Ða i is tangent to the face Fi opposite
to the vertex ai and �ri ¨ 0 Ða

i is tangent to the face M opposite to 0Ø Putting

Ti ¨ ÐaiH
r FiÙ i ¨ 0ÙÜ Ù rÙ T Ú¨

r

�
i ¨ 0
Ti Ù S ¨ γH r MÙ

we observe that the current represeting the boundary of ∆ is S − T and hence
ã�S −T� ¨ 0Ù i.e., ãT ¨ ãSØ Applying the semiellipticity condition to the testcurrents
T and S, we obtain (3.2.3). Finally, if Φ is continuous and dom Φ ¨ sibrR

d then
since r ° dÙ one approximates a given r+ 1 tuple of vectors by an r+ 1 tuple of linearly
independent vectors and uses the continuity. è

3.2.4 Proposition ([29; Theorem 9A, Chapter 5]). Let Φ be a real valued function

defined on sibrR
d such that

Φ�tα� ¨ tΦ�α� (3.2.4)

for any t X R and any α X sibrR
d and

r

�
i ¨ 0
Φ�Ða i� ¨ Φ�

r

�
i ¨ 0

Ða i� (3.2.5)

for any r + 1 tuple of vectors a0ÙÜ Ù ar X R
dÙ where Ða i are given by (3.2.2). Then there

exists a unique ω X b rR d such that Φ�α� ¨ 〈αÙ ω 〉 for any α X sibrR
d.

Proof The uniqueness is clear. To prove the existence, set

ω�v1ÙÜ Ù vr� Ú¨ Φ�v1 `Ý ` vr�

for any v1ÙÜ Ù vr X R
d Ù and show that ω is an r covector. Equation (3.2.4) implies that

ω is antisymmetric with respect to premutations of v1ÙÜ Ù vr and homogeneous in
each argument. Thus to show that ω is an r form we have to prove that ω is additive
in each argument. It suffices to prove that ω is additive in the first argument. Hence
let v2ÙÜ Ù vr be given and show that

ω�v1 + v
′
1 Ù v2ÙÜ Ù vr� ¨ ω�v1Ù v2ÙÜ Ù vr� + ω�v

′
1 Ù v2ÙÜ Ù vr� (3.2.6)

for any v1Ù v
′
1 X R

dØ Let an r + 1 tuple of vectors a0ÙÜ Ù ar X R
d be defined by

a0 Ú¨ v1Ù a1 ¨ v
′
1 and ai ¨ vi for 2 ² i ² rØ One finds that
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Ða0 ¨ v ′1 `Ý ` vrÙ Ða 1 ¨ −v1 ` v2 `Ý ` vr

and thus (3.2.5) reads

Φ�v ′1 ` v2 `Ý ` vr� − Φ�v1 ` v2 `Ý ` vr� +
r

�
r ¨ 2
Φ�Ða i� ¨ Φ�γ� (3.2.7)

where

γ ¨ v ′1 ` v2 `Ý ` vr − v1 ` v2 `Ý ` vr +
r

�
r ¨ 2

Ða iØ

Let an r + 1 tuple of vectors b0ÙÜ Ù br X R
d be defined by b0 Ú¨

1

2
�v1 + v

′
1�Ù b1 ¨ v

′
1

and bi ¨ vi for 2 ² i ² rØ One finds that

Ðb0 ¨ v ′1 `Ý ` vrÙ Ðb 1 ¨ − 1
2
�v1 + v

′
1� ` v2 `Ý ` vrÙ

Ðb i ¨ 1

2
Ða i if 2 ² i ² rÙ

r

�
i ¨ 0

Ðb i ¨ 1

2
γØ

Thus (3.2.5) reads

Φ�v ′1 `Ý ` vr� −
1

2
Φ��v1 + v

′
1� ` v2 `Ý ` vr� +

1

2

r

�
r ¨ 2
Φ�Ða i� ¨ 1

2
Φ�γ�

Multiplying by 2 and subtracting from (3.2.7) one obtains (3.2.6). è

3.2.5 Proposition. Let Φ be a parametric integrand of degree r with domΦ ¨
sibrR

d Ø Then

(i) Φ is a semielliptic null lagrangian if and only if

Φ�α� ¨ 〈αÙω 〉

for any α X sibrR
d and some ω X b rR dØ

(ii) Φ is semielliptic polyconvex if and only if Φ has a convex extension to brR
dØ

Proof (i): If Φ is a semielliptic null lagrangian, then the assumed continuity and
domΦ ¨ sibrR

d imply that (3.2.3) holds with the equality sign for any r + 1 tupe of
vectors a0ÙÜ Ù ar X R

dØ Assuming thst a0 ¨ −a1 we then obtain

Φ�0� ¨ Φ�α� + Φ�−α�

where α ¨ �ri ¨ 1 aiØ It follows that Φ�−α� ¨ −Φ�α� for each simple r vector α. Thus
Φ�tα� ¨ tΦ�α� for each simple r vector α and each t X RØ Furthermore, we have
(3.2.3) with the equality sign and thus the restriction of Φ to the set of all simple
r vectors satisfies the hypotheses of Proposition 3.2.4 and (i) follows. (ii): Follows
immediately from (i). è

3.3 Standard integrands and degree r quasiconvexity

Throughout this section, let mÙ nÙ r be integers with mÙ n positive and 0 ² r ² nØ We
denote by H�mÙ nÙ r� the set of all pairs �FÙ α� where α is a simple unit r vector in
Rn and F X Lin�RnÙRm� is such that F n ¨ 0 for each n X Rn that is orthogonal to
α (the last means α n ¨ 0).
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3.3.1 Definitions.

(i) An Rm valued map on an r current is any pair �T Ù g� consisting of an integral
r current T in Rn with compact support and a lipschitzian map g with spt T ⊂
dom g ⊂ Rn and ran g ⊂ RmØ

(ii) A Rm valued map on an r current �SÙh� is said to be affine if S represents a
planar region and h has an affine extension to a map from Rn to RmØ

(iii) We say that two Rm valued maps on r currents �T Ù g� and �SÙh� have matching

boundaries if
ãT ¨ ãSÙ

g ¨ h on spt ãSØ

3.3.2 Definition.

(i) A function Ðf Ú H�mÙ nÙ r� r R T  ð( is said to be a standard integrand of
degree r if Ðf is borelian and locally bounded from below.

(ii) If �T Ù g� be a Rm valued map on an r current and Ðf Ú H�mÙ nÙ r� r R T  ð( a
standard integrand we put

I�ÐfÛT Ù g� ¨ �
M

Ðf�V gÙ α/@α@�@α@ dH r (3.3.1)

where we assume that T has the representation (3.1.3) with MÙ α as in (3.1.2)
and V g�x� is the approximate derivative of gwhich exists atH r a.e. x X M Ø The
value (3.3.1) is inRT ð( and is independent of the particular representation of
T Ø

3.3.3 Definitions. A standard integrand Ðf Ú H�mÙ nÙ r� r RT  ð( is said to be
(i) degree r quasiconvex if

I�ÐfÛT Ù g� ³ I�ÐfÛ SÙh�

whenever �T Ù g� and �SÙh� are Rm valued maps on r currents with matching
boundaries and �SÙh� is affine;

(ii) a degree r null lagrangian if dom Ðf ¨ H�mÙ nÙ r�Ù ran Ðf ⊂ RÙ Ðf is continuous,
and Ðf and −Ðf are degree r quasiconvex;

(iii) degree r polyconvex if it is the supremum of some family of degree r null
lagrangians.

The degree r quasiconvexity involves a variation of the domain of integration except
the case r ¨ n. In the particular case r ¨ n the domain remains the same and in
fact the degree n quasiconvexity, degree n null lagrangians and degree n polyconvex
functions are related to the standard counterparts of these notions, which we first
define and then explain the relationships.

3.3.4 Definitions. A borelian function f Ú Lin�RnÙRm� r R T  ð( which is
locally bounded from below is said to be
(i) quasiconvex in the standard sense if

�
E

f �∇y� dLn ³Ln�E�f �F�

for every F X Lin�RnÙRm�Ù for every bounded open subset E of Rn with
L
n�bd E� ¨ 0Ù and for every y X W 1Ù ð�EÙRm� such that y�x� ¨ Fx on bdEÛ
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(ii) null lagrangian in the standard sense if f is continuous, its range is R and both
f and −f are quasiconvex in the standard sense;

(iii) polyconvex in the standard sense if it is the supremum of some family of null
lagrangian in the standard sense.

3.3.5 Remark (Degree n quasiconvexity). Since there are only two unit n vectors in
RnÙ viz., α ¨ An and α ¨ −An where

An Ú¨ e1 `Ý ` en (3.3.2)

is the standard orientation of RnÙ we have

H�mÙ nÙ n� ¨ !�FÙAn� Ú F X Lin�R
nÙRm�) T !�FÙ −An� Ú F X Lin�R

nÙRm�)Ø

Thus each function Ðf Ú H�mÙ nÙ n� r RT ð( can be identified with the pair �t + Ù t − �
where t± Ú Lin�R

nÙRm� r RT  ð( via

Ðf�FÙ ±An� ¨ t±�F�Ù (3.3.3)

F X Lin�RnÙRm�Ø We have the following assertions:

(i) If Ðf is degree n quasiconvex then the functions t± are quasiconvex in the standard

sense; if Ðf is finite valued, then also the converse is true;

(ii) Ðf is a degree n null lagrangian if and only if t± are null lagrangians in the

standard sense;

(iii) Ðf is degree n polyconvex if and only if the functions t± are polyconvex in the

standard sense.

Proof (i): Each integral n current S inRn representing a planar region is of the form

T ¨ AnL
n E or T ¨ −AnL

n E

where E ⊂ Rn is a bounded set of finite perimeter, and necessarily if T is an integral
n current with ãT ¨ ãS then T ¨ SØ This follows from the fact that T ¨ mAnL

n

where m in a Z valued integrable function, and the condition ãT ¨ ãS means that
∇m ¨ ∇1E in the weak sense and hence m − 1E is constant, and as m has to be
integrable, necessarily m ¨ 1E Ø If �T Ù g� and �SÙh� are Rm valued maps on these n
currents, we have g Ú E r RmÙh Ú E r RmØ Assuming that �SÙh� is affine, we have
∇h ¨ F constant on E and thus the degree n quasiconvexity condition gives that if
�T Ù g� and �SÙh� have matching boundaries, then

�
E

f±�V g� dL
n ³ Ln�E�f±�F�Ø (3.3.4)

This has to hold for every set E of finite perimeter, every lipschitzian g Ú E r RmÙ
and every F such that g�x� − Fx is constant on spt ãSÙ and the latter set contains
bd  EØ In particular, this must hold for each ball. An argument of Ball & Murat [5]
then shows that the equality actually holds for all FÙEÙ y as in the definition of the
standard quasiconvexity condition.

To prove the converse statement, we assume that Ðf is finite valued and that f±
are quasiconvex in the standard sense. Let E be a bounded set of finite perimeter in
Rn, let W ¨ sptAnL

n E and let g Ú W r Rm be a lipschitzian map such that
g�x� ¨ Fx on spt ãAnL

n E ⊂ W for some FØ The goal is to prove (3.3.4). Let
ÎÉ Ú Rn r Rm be defined by
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ÎÉ�x� ¨











g�x� if x X W Ù

Fx otherwise,

x X RnØ This is a lipschitzian continuous function and if B is any open ball in Rn

which containsW then the standard quasiconvexity of f± gives

�
B

f±�∇
ÎÉ� dLn ³ Ln�B�f±�F�Ø (3.3.5)

For Ln a.e. point of B ∼W we have ∇ÎÉ ¨ F and for Ln a.e. point of W we have

∇ÎÉ ¨ V g and thus

�
B

f±�∇
ÎÉ� dLn ¨Ln�B∼W �f±�F� + �

W

f±�V g� dL
nØ (3.3.6)

Using f±�F� X R we deduce that (3.3.5) and (3.3.6) give (3.3.4).
(ii): Since the degree n null lagrangians are finite valued by definition, we see

that (i) immediately gives the assertion.
(iii): This follows from (ii) and the definition of degree n polyconvex and standard

polyconvex functions. è

3.3.6 Proposition. If Ðf is a standard integrand which is the supremum of some family

of degree r quasiconvex functions then Ðf is degree r quasiconvex. In particular, each

degree r polyconvex function is degree r quasiconvex.

3.4 Graphs of maps on rectifiable currents

Throughout this section, letmÙ nÙ r be integers withmÙ n positive and 0 ² r ² nØ Recall
that the graph of a map f Ú M r N is the set

graph f ¨ !�xÙ f �x�� Ú x X M) ⊂ M � N

and the graph map of f is �id � f �@M Ú M r M � N given by

�id � f �@M�x� ¨ �xÙ f �x��Ù

x X M Ø
Introduce the linear maps CÙ DÙ PÙ Q by

Cx ¨ �xÙ 0�Ù Dy ¨ �0Ù y�Ù P�xÙ y� ¨ xÙ Q�xÙ y� ¨ y

for all x X Rn and all y X RmØ We note that for each rÙ

brR
m + n ¨

s
�
k ¨ 0
ranbr − kC ` ranbkD

where

s ¨ min  mÙ r(Ø

The vector γ X brR
m + n is said to be vertical if brP γ ¨ 0Ø
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3.4.1 Proposition. Let Lr Ú H�mÙ nÙ r� r brR
m + n be defined by

Lr�FÙ α� ¨ br�C +DF�α/@ br �C +DF�α@

for each �FÙ α� X H�mÙ nÙ r�Û it will be proved that the denominator is different from

0Ø Then

(i) Lr maps H�mÙ nÙ r� bijectively onto the set

Hr ¨ !γ X brR
m + n Ú γ is simple, nonvertical, and of unit length)Û

(ii) if we put

Pr ¨ !br�C +DF�α Ú �FÙ α� X H�mÙ nÙ r�)Ù

B r Ú¨ co !α X sibrR
n Ú @α@ ² 1)

then

spanPr ¨ brR
m + nÙ (3.4.1)

cl coPr ¨ !γ X brR
m + n Ú brP γ X Br)Û (3.4.2)

(iii) if we put

Zr ¨
s

�
k ¨ 0
Lin�b r − kRnÙ bkR

m�

then there exists a unique linear map Mr Ú Zr r brR
m + n such that

Mr�b0F αÙÜ ÙbrF α� ¨ br�C +DF�α (3.4.3)

for each �FÙ α� X H�mÙ nÙ r�Û the map Mr maps Zr bijectively onto brR
m + nØ

Given �FÙ α� X H�mÙ nÙ r�Ù the simple r vector Lr�FÙ α� is the unit r vector tangent
to the r dimensional graph of F@U in Rm + n where U ⊂ Rn is the r dimensional
subspace tangent to αØ

Proof (i): Frombr P br �C+DF�α ¨ α one deduces that br�C+DF�α is nonzero,
nonvertical, and simple. Thus ran Lr ⊂ HrØ

Conversely, let γ X Hr and let V be the r dimensional subspace of Rm + n

associated with γØ Since γ is nonvertical, V is the graph of some linear map F0 Ú
U r Rm where F0 and U are uniquely determined by V Ø Extending F0 to a linear
map F Ú Rn r Rm such that F vanishes on U þ and denoting α Ú¨ brP γ/@ br P γ@
we find that �FÙ α� X H�mÙ nÙ r� and Lr�FÙ α� ¨ γØ

To prove the injectivity of LrÙ let Lr�FÙ α� ¨ Lr�GÙ β�Ø Letting T and U be the
r dimensional subspaces of Rn tangent to α and βÙ respectively, we deduce from the
above intepretation that the maps F@T and G@U have the same graphs. It follows
that F@T ¨ G@U , T ¨ U Ø Since F and G vanish on T þ and U þÙ respectively, we
deduce that F ¨ GØ From T ¨ U then α ¨ ± β and returning to the original equality
Lr�FÙ α� ¨ Lr�GÙ β� with F ¨ G we obtain α ¨ βØ Thus Lr is injective and (i) is
proved.

(ii): Equation (3.4.1): Let us first show that any simple vertical vector belongs to
span PrØ Let γ ¨ �ri ¨ 1 ci be a simple vertival vector so that the space

V ¨ span !Pci Ú i ¨ 1ÙÜ Ù r)

has dimension d ° rØ Assume that the vectors are enumerated so that the system
S Ú¨ !Pci Ú i ¨ 1ÙÜ Ù d) is a basis of V Ø Let furthermore T Ú¨ !vd + 1ÙÜ Ù vr) ⊂ Rn

be a system such that S T T is a basis of V Ø Consider the system of vectors
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γ
ω
Ú¨

d

�
i ¨ 1
ci `

r

�
i ¨ d + 1

�ci + ωiCvi�

where ω ¨ �ωd + 1ÙÜ Ù ωr� and ω i X  −1Ù 1(Ø Letting U denote the system of all ω
just described, we see that each γ

ω
is a nonvertical vector and

γ ¨ 2 d − r �
ω X U

γ
ω
Ø

By (i), each γ
ω

is in span Pr and hence also γ is in span Pr, which then contains all
simple r vectors. Since each r vector is a linear combination of simple r vectors, the
proof of (3.4.1) is complete.

Equation (3.4.2): Let f be a linear function on brR
m + n and let c be a constant

such that f �γ� ² c for all γ X PrØ Using the definition of Lr this means

f � br �C +DF�α	 ² c (3.4.4)

for each �FÙ α� X H�mÙ nÙ r�Ø Expanding by the binomial theorem (A.2.2) we obtain
r

�
i ¨ 0
f � bi C ` br − i�DF�α	 ² cØ (3.4.5)

We now replace F by tFÙ divide the last inequality by t r and let tr ð to obtain

f � br �DF�α	 ² 0Û (3.4.6)

replacing α by −α we obtain the opposite inequality; thus we have the equality sign
in (3.4.6) and (3.4.5) reduces to

r − 1

�
i ¨ 0
f � bi C ` br − i�DF�α	 ² cØ

Proceeding by induction, we obtain

f � bi C ` br − i�DF�α	 ¨ 0 i ¨ 0ÙÜ Ù r − 1Ù f �brCα� ² cØ

This gives also
f �γ	 ¨ f � br C br P γ	 (3.4.7)

for every r vector γ of the form γ ¨ br�C + DF�α where �FÙ α� X H�mÙ nÙ r�Ø By
linearity (3.4.7) must hold for every δ from the span of the vectors γÙ which by (3.4.1)
gives that (3.4.7) holds for every γ X brR

m + nØ
Thus each linear function f satisfying (3.4.4) for some c and all �FÙ α� X

H�mÙ nÙ r� satisfies (3.4.7) and hence vanishes on all γ X brR
m + n with brP γ ¨ 0Ø

Since cl coPr is the intersection of all closed halfspaces containing Pr , we deduce
that

cl coPr ¨ !γ X brR
m + n Ú brP γ X C) (3.4.8)

for some subset C of brR
n. One easily finds that C must contain Br and as the

choice C ¨ Br already gives a convex set on the right hand side of (3.4.8), we have
(3.4.2).

(iii): Define M r Ú Zr r brR
m + n by

M r�Θ0ÙÜ Ù Θn − 1� ¨
s

�
k ¨ 0

�−1� �r − k�k �
I XI

br − kCeI ` bkDΘk e
I (3.4.9)

for each �Θ0ÙÜ ÙΘs� X Zr where  eI Ú I X I( is any orthonormal basis in br − kR
n

and  e I Ú I X I( is the dual basis in b r − kRn. Using the binomial theorem (A.2.2)
one finds that (3.4.3) is satisfied, which proves the existence of MrØ The uniqueness
follows from the existence and (3.4.9). Equation (3.4.9) also easily yields the bijec-
tivity. è
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3.4.2 Definition. If T is a rectifiable r dimensional current of the form (3.1.3)withMÙ
α as in (3.1.2) and θ Ú dom θ r Rm is a lipschitzian map with spt T ⊂ dom θ ⊂ Rn,
then by Proposition 3.1.4,

graph�T Ù θ� Ú¨ �id � θ�@M# T

is a rectifiable r dimensional current in Rm + nÛ we call graph�T Ù θ� the graph of T
under θ. If T is an integral current then the general formula ãφ#T ¨ φ#ãT gives

ãgraph�T Ù θ� ¨ graph�ãT Ù θ�Ø (3.4.10)

One finds that if ω X D r�Ω � Rm� is of the form

ω ¨ �P#σ `Q#τ (3.4.11)

where � X C ð
0 �Ω � RmÙR�, 0 ² k ² rÙ σ X b r − kRnÙ and τ X b kRm then

〈graph�T Ù θ�Ù ω 〉 ¨ �−1�k�r − k� �
M

� � �id � θ�@M 〈bk V θ α σÙ τ 〉 dH r Ø

(3.4.12)
We now establish a correspondence between standard integrands Ðf and parametric

integrandsΦØ If Ðf Ú H�mÙ nÙ r� r RT ð( is a standard integrand and Φ Ú dom Φ r
R T  ð( a parametric integrand we say that Ðf and Φ are related to each other if

domΦ ] ÎHr Ú¨ !t γ Ú t ³ 0Ù γ X Hr) and

I�ÐfÛT Ù θ� ¨ 〈graph�T Ù θ�Ù Φ 〉 (3.4.13)

whenever θ is a Rm valued map on an r current T inRn. It turns out that Ðf and Φ are

related to each other if and only if domΦ ] ÎHr and

Φ�t br �C +DF�α� ¨ t Ðf�FÙ α� (3.4.14)

for every �FÙ α� X H�mÙ nÙ r� and t ³ 0Ø Indeed, in view of the positive homogeneity
of Φ we obtain that (3.4.14) with arbitrary t ± 0 is equivalent to (3.4.14) with
t ¨ 1/@ br �C + DF�α@ and the necessity and sufficiency of the last special case of
(3.4.14) for the validity of (3.4.13) follows from the substitution formulas

graph�T Ù θ� ¨ γH r graph θ

where
γ � φ ¨ br�C +DV θ�α/@ br �C + DV θ�@Ù

φ ¨ �id � θ�@M Ù

and

〈graph�T Ù θ�Ù Φ 〉 ¨ �
graph θ

Φ�γ� dH r ¨ �
M

Φ�γ � φ�@ br �C +DV θ�@ dH rØ

From (3.4.14) we see that there is a one to one correspondence between standard
integrands Ðf and parametric integrands Φ with domΦ ¨ ÎHrÙ i.e., with parametric
integrands defined only on nonvertical vectors. The values of Φ on vertical vectors
is undetermined, but it must be born in mind that the set of nonvertical vectors is an
open dense set in sibrR

m + nØ
We have the following relations between the convexity properties of standard

and parametric integrands.
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3.4.3 Proposition. Let Ðf and Φ be a standard and a parametric integrand, respec-

tively, and assume that Ðf and Φ are related to each other. Then

(i) If Φ is semielliptic then Ðf is degree r quasiconvex;

(ii) Φ is a semielliptic null lagrangian if and only if Ðf is degree r null lagrangian;

(iii)Φ is semielliptic polyconvex if and only if Ðf is degree r is degree r polyconvex.

Proof In this section we prove only (i); the proof of (ii) and (iii) is given in Section
3.5 (below). Thus assume that Φ is semielliptic, let �T Ù g� and �SÙh� are Rm valued
maps on r currents with matching boundaries and �SÙh� is affine. It then follows that
ãgraph�T Ù g� ¨ ãgraph�SÙh� and graph�SÙh� represents a planar region. Thus
the semiellipticity gives

〈graph�T Ù g�Ù Φ 〉 ³ 〈graph�SÙh�Ù Φ 〉

which by (3.4.13) reads
I�ÐfÛT Ù g� ³ I�ÐfÛ SÙh�Ø è

3.5 Degree r null lagrangians and degree r polyconvexity

In this section we prove the form of the degree r null lagrangians. The proofs are
based on the very simple form of the semielliptic null lagrangians stated in Section
3.2 and on the fact that when lifted to graphs, a degree r null lagrangian becomes a
semielliptic null lagrangian.

We first show that nondegenerate simplexes with nonvertical tangent vectors in
Rm + n are graphs of affine maps on nondegenerate simplexes of the same dimension
inRn. We say that an p current T inR d represents a nondegenerate p simplex if spt T
is a nondegenerate p simplex and T ¨ γH p spt T where γ is any of the two unit p
vectors tangential to spt T Ø

3.5.1 Lemma. Let G be an r + 1 current in Rm + n representing a nondegenerate

r + 1 simplex Γ in Rm + n with tangent vector in Hr + 1Ø Then G ¨ graph�BÙ g� where

B ¨ P# G and g is a unique affine map on BØ

Proof Let C ⊂ Rm + n be the r + 1 dimensional affine subspace of Rm + n spanned
by the simplex Γ and let D ¨ PCØ Since the tangent vector ξ to C is in Hr + 1Ù i.e.,
br + 1P ξ © 0Ù the map P@C is injective and maps C onto DØ Since P is a projection,
the inverse �P@C� − 1 is necessarily of the form �P@C� − 1�x� ¨ �xÙ g�x�� for each
x X D where g Ú D r Rm is an affine map. We put B Ú¨ P# G ¨ �P@C�# G and
hence �P@C� − 1

# B ¨ A. On the other hand, denoting by M the support of BÙ we have
graph�BÙ g� ¨ �id � g�@M# B ¨ �P@C� − 1

# BØ è

3.5.2 Proposition. A function Ðf Ú H�mÙ nÙ r� r R is a degree r null lagrangian if

and only if one of the following two conditions holds:

(i) r ¨ n and

Ðf�FÙ ±An� ¨
min mÙ n(

�
k ¨ 0

Ω ±
k ċ bkF (3.5.1)

for all F X Lin�RnÙRm� and some Ω ±
k X Lin�bkR

nÙ bkR
m�Û here An is the

standard orientation (3.3.2);
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(ii) r ² n − 1 and

Ðf�FÙ α� ¨
s

�
k ¨ 0

Ωk ċ �bkF α� (3.5.2)

for every �FÙ α� X H�mÙ nÙ r� and some Ωk X Lin�b
r − kRnÙ bkR

m�Ø

Thus Ðf�FÙ −α� ¨ −Ðf�FÙ α� if r ² n − 1 whereas this is not generally true if r ¨ nØ
This difference and more generally the difference in the forms of (3.5.1) and (3.5.2)
is related to the fact that unlike that case r ² n− 1Ù in the case r ¨ n the quasiconvexity
inequality does not involve the variation of the domain of integration, as explained in
the proof Remark 3.3.5. These facts also reproduce in the different forms of degree r
polyconvex function is Proposition 3.5.3, below.

Proof (i): If r ¨ n then in view of Remark 3.3.5, Ðf can be represented by a pair
t± of functions on Lin�RnÙRm� via (3.3.3). Then Ðf in a degree n null lagrangian if
and only if t± are standard null lagrangians; the well known result says that the last
occurs if and only if t± are given by the two expressions in (3.5.1).

(ii): Let r ² n − 1Ø Assume that Ðf is a degree r null lagrangian and let Φ be the
unique parametric integrand with domΦ ¨ ÎHr such that Ðf and Φ are related to each
other.

Let a0ÙÜ Ù ar X R
m + n be linearly independent vectors such that γ ¨ a0 `Ý` ar

satisfies Pr + 1γ © 0Ù let Ðai be given by (3.2.2) for i ¨ 0ÙÜ Ù rÙ and let Γ be the r + 1
simplex in Rm + n with vertices 0Ù a0ÙÜ Ù ar Ø Then the r vector −Ða i is tangent to the
face Fi opposite to the vertex ai withH r�Fi� ¨ @Ða i@ and the vector β Ú¨ �ri ¨ 0 Ða

i is
tangent to the face M opposite to 0 withH r�M� ¨ @β@Ø Let G ¨ γH r + 1 ΓÛ then

ãG ¨ S ′ − T ′ where T ′ ¨
r

�
i ¨ 0
T ′
i Ù S ′ ¨ β/@β@H r M

with
T ′
i ¨ Ðai/@Ðai@H

r FiÙ i ¨ 0ÙÜ Ù rØ

The relation ã 2 ¨ 0 gives ãT ′ ¨ ãS ′Ø By Lemma 3.5.1 we have G ¨ graph�BÙ g� for
an r + 1 current B ¨ P#G in Rn representing the nondegenerate r + 1 simplex ∆ with
vertices 0ÙPa0ÙÜ ÙPar and for some affine map g Ú ∆ r RmØLetT ¨ P#T

′Ù S ¨ P#S
′

and observe that T ′ ¨ graph�T Ù g�Ù S ′ ¨ graph�SÙ g�Ø From ãT ′ ¨ ãS ′ one finds that
the Rm valued maps �T Ù g�Ù �SÙ g� have matching boundaries; furthermore, �SÙ g�
is affine. Thus, since Ðf is a degree r null lagrangian, we have I�ÐfÛT Ù g� ¨ 〈ÐfÙ SÙ g〉Ù
which can be rewritten as

〈ΦÙT ′ 〉 ¨ 〈ΦÙ S ′ 〉

by (3.4.13). The above description of the faces of Γ shows that the last relation reads
as

Φ�
r

�
i ¨ 0

Ða i� ¨
r

�
i ¨ 0
Φ�Ða i�Ù (3.5.3)

which must hold for every r+1 tuple a0ÙÜ Ù ar X R
m + n such thatbr + 1Pa0`Ý`ar © 0Ø

Let H be the Haar measure on the group G Ú¨ SO�m + n� of rotations in Rm + n.
Observe that if γ X sibpR

m + nÙ γ © 0Ù with p ² nÙ then

H�!R X G Ú bpP bp R γ ¨ 0)	 ¨ 0Ø (3.5.4)
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It suffices to consider the case @γ@ ¨ 1Û write γ ¨ a1 ` Ý ` ap where a1ÙÜ Ù ap is an
orthonormal system inRm + nØ The goal is to prove that the mapm Ú Gr bpR

n given
by m�R� ¨ bpP bp Rγ for each R X G is different from 0 for H a.e. R X GØ Since
m is an analytic map on an analytic manifold, the assumption that m vanishes on a
set of positive measure would lead to m vanishing identically. However, m does not
vanish identically: since p ² nÙ there exists an R X G such that Rai, i ¨ 1ÙÜ Ù pÙ is
contained in the subspace Rn �  0( of Rm + nØ

Let fρ Ú Gr �0Ù ð�, ρ ± 0Ù be a family of continuous functions with �G fρ dH ¨ 1
such that the support of fρ is contained in the ball in G of radius ρ and let Φρ Ú
sibrR

m + n r R be defined by

Φρ�γ� ¨ �
G

Φ�brR γ�fρ�R� dH�R�

for each γ X sibrR
m + nÛ here we use fact that brR γ X D for H a.e. R, which follows

from (3.5.4). The function Φρ is a parametric integral of degree r in Rm + n with
domΦρ ¨ sibrR

m + nØ If a0ÙÜ Ù ar X R
m + n are linearly independent vectors inRm + n

then for H a.e. R X G we have br + 1P br + 1 Ra0 ` Ý ` ar © 0 by (3.5.4). Hence
(3.5.3) gives

Φ�
r

�
i ¨ 0

brR Ða
i� ¨

r

�
i ¨ 0
Φ�brR Ða

i�Ø

Multiplying this relation by fρ�R� and integrating with respect to H�R� we obtain

Φρ�
r

�
i ¨ 0

Ða i� ¨
r

�
i ¨ 0
Φρ�Ða

i� (3.5.5)

for every r + 1 tuple a0ÙÜ Ù ar X R
m + n of linearly independent vectors. If a0ÙÜ Ù ar X

Rm + n are not linearly independent, then (3.5.5) still holds, since then the r + 1 tuple
a0ÙÜ Ù ar X R

m + n can be approximated by a sequence of r + 1 tuples of linearly
independent vectors and the limit using the continuity of Φρ then gives (3.5.5).

If γ ¨ a1 ` Ý ` ar X sibrR
m + n then the application of (3.5.5) to the r + 1

tuple gives Φρ�−γ� ¨ −Φρ�γ�Ø Thus the function Φρ satisfies the hypothesis of
Proposition 3.2.4 and then for each ρ ± 0 there exists an r form ωρ X b

rRm + n such
that

Φρ�γ� ¨ 〈ωρ Ù γ 〉

for each γ X sibrR
m + nØ The properties of the family fρ and the continuity of Φ

imply that Φρ�γ� r Φ�γ� for each γ X DØ Thus 〈ωρ Ù γ 〉 r Φ�γ� for every γ X DØ
It follows from the linearity that the limit limρr 0 〈ωρ Ù γ 〉 exists for every γ from
spanDÙ which is brR

m + n by Proposition 3.4.1(iii). The limit defines a ω X b r Rm + n

and thus
Φ�γ� ¨ 〈ωÙ γ 〉 (3.5.6)

for each γ X DØ Let Ωk be defined by

〈ωÙMr�Θ0ÙÜ ÙΘs�〉 ¨
s

�
k ¨ 0

Ωk ċ Θk (3.5.7)

for each �Θ0ÙÜ ÙΘs� X Zr; then (3.5.6) gives (3.5.2). Thus each degree r null
lagrangian is of the form (3.5.2).
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To prove the converse implication, we let �T Ù g� and �SÙh� be Rm valued maps
on r currents in Rn with mathching boundaries, in view of (3.5.2), the integrals

I�ÐfÛT Ù g� and I�ÐfÛ SÙh� can be converted to the integrals over the boundaries via
(3.6.2) (below); since the boundaries of �T Ù g� and �SÙh� match, the boundary
integrals are the same for I�ÐfÛT Ù g� and I�ÐfÛ SÙh� and thus these integral agree. è

3.5.3 Proposition. A function Ðf Ú H�mÙ nÙ r� r RT  ð( is degree r polyconvex if

and only if
Ðf�FÙ α� ¨ Ψ�b0F αÙÜ ÙbrF α� (3.5.8)

for every �FÙ α� X H�mÙ nÙ r� and some convex function Ψ Ú Z r RT  ð( which is

additionally positively 1 homogeneous if r ² n − 1Ø

Proof (i): This follows from the fact that degree n null lagrangians are affine functions
of �b0FÙÜ ÙbnF�Û thus the supremum of any family of degree n null lagrangians
induces a convex function of �b0FÙÜ ÙbnF� and conversely.

(ii): This follows from the fact that degree r null lagrangians are linear
functions of �b0F αÙÜ ÙbrF α�Û thus the supremum of any family of de-
gree r null lagrangians induces a convex 1 positively homogeneous function of
�b0F αÙÜ ÙbrF α� and conversely. è

3.5.4 Remark. A function Ðf Ú H�mÙ nÙ n� r RT ð( is degree n polyconvex if and

only if
Ðf�FÙ ±An� ¨ Ψ

±�b0FÙÜ ÙbnF� (3.5.9)

for all F X Lin�RnÙRm� and some convex functions Ψ ± Ú Z  
n r RT  ð( where

Z  
n ¨

s

�
k ¨ 0
Lin�bkR

nÙ bkR
m�Ø

Proof of Proposition 3.4.3 (completion) We note that the direct implications in
(ii) and (iii) follow from the direct implication in (i).

To prove the converse implication in (ii), we note that if Ðf is a degree r null
lagrangian then it is of the form asserted in Proposition 3.5.2(ii). Given the tensorsΩiÙ
there exists a unique ω X b rRm + n such that (3.5.7) holds for every �Θ0ÙÜ ÙΘr� X
ZrØ If one defines a parametric integrand Φ of degree r by

Φ�γ� ¨ 〈ωÙ γ 〉

for each γ X sibrR
m + n then Φ is a semielliptic null lagrangian and Ðf and Φ are

related to each other.
To prove the converse implication in (iii), we assume that Ðf is polyconvex of

degree r so that we have (3.5.8) with some positively 1 homogeneous convex function
Ψ Ú Zr r RT ð(ØLet ÎΦ Ú¨ Ψ�M − 1

r and Φ let be the restriction of ÎΦ to sibrR
m + nØ

Then Φ is semielliptic polyconvex and Ðf and Φ are relatred to each other. è

3.6 Convergence of graphs

We now discuss the convergence of graphs of varying Rm valued maps on varying r
dimensional currents inRnØWe view the domain currents and the graphs as measures.
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We use the Reshetnyak lowersemicontinuity theorem to establish a lowersemiconti-
nuity result for integral functionals in this context. Throughout this section, let Ω be
an open subset of RnØ

3.6.1 Proposition. Let T be an r dimensional integral current in Ω and write

T ¨ αH r MÙ ãT ¨ βH r − 1 N Ù

where ãT is the boundary of T in ΩÙ withM, α and N Ù β satisfying, respectively,

M, N areH r rectifiable andH r − 1 rectifiable subsets of Ω,

α Ú M r brR
n and β Ú N r br − 1R

n areH r andH r − 1 integrable,

α and β are tangential toM and N Ù

ran @α@Ù ran @β@ ⊂ NØ















































(3.6.1)

Let θ Ú Ω r Rm be lipschitzian, put g ¨ θ@MÙ h ¨ θ@N Ù and let

Mk ¨ bkV g αÙ Nk ¨ bkV h βØ

Then we have the identities

�
M

Mk D τ dH
r ¨ �−1�k �

N

Nk τ dH
r − 1Ù (3.6.2)

�
M

�Mk + 1τ� r + 〈rÙ g〉MkD τ dH
r ¨ �−1�k �

N

〈rÙ θ 〉Nkτ dH
r − 1 (3.6.3)

for any k ² r − 1, any τ X D r − k − 1�Ω� and any r X b 1RmØ

Proof One finds that if π X D r�Rm + n� is given by π ¨ P#σ`Q#ρ where 0 ² k ² rÙ
π X D r − k�Ω� and ρ X b kRm then

〈graph�T Ù g�Ù π 〉 ¨ �−1� �r − k�k �
M

〈MkσÙ ρ 〉 dH
r Ø (3.6.4)

Let now k and τ be as in the statement and let ω X D k − 1�Rm + n� be defined by
ω ¨ P#τ `Q#ρØ One easily finds that Dω ¨ P#D τ `Q#ρÛ applying (3.6.4) twice
one finds that (3.4.10) reads

�−1� �r − k�k �
M

〈MkD τÙ ρ 〉 dH
r ¨ �−1�k�r − k − 1� �

N

〈NkτÙ ρ 〉 dH
r − 1

and the arbitrariness of ρ gives (3.6.2).
To prove (3.6.3), let � Ú Rm + n r R be defined by ��xÙ y� ¨ 〈rÙ y〉 for each

�xÙ y� X Rm + n and let ω X D k − 1�Rm + n� be defined by ω ¨ �P#τ ` Q#ρØ One
finds that

Dω ¨ �−1� r − k − 1P#τ `Q#r ` ρ + �P#D τ `Q#ρØ

Evaluating 〈graph�T Ù g�ÙD ω 〉 and 〈graph�ãT Ù θ�Ù ω 〉 via (3.6.4) and equating the
results we obtain (3.6.3) in the same way as in the preceding part of the proof. è

Proof of Remark 2.3.3 We apply (3.6.2) with r ¨ nÙ T ¨ AnL
n E, An Ú¨

e1 `Ý ` enÙ θ ¨ y, τ ¨ Ω
n ξ where ξ X Dk + 1�Ω� and Ω n ¨ e 1 `Ý ` enØ Then

M ¨ EÙ N ¨ bd  E P ΩÙ α ¨ AnÙ β ¨ Ω n nØ Using D τ ¨ �−1�kΩ n ãξ and
algebrain manipulations, one finds that (3.6.2) reduces to

�
E

bkD y ãξ dL
n ¨ �−1�k + 1 �

bd �EÙ Ω�
�bkV y ` n�ξ dHn − 1Ù

which in comparison with (2.3.1) gives (2.3.4). è
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3.6.2 Proposition. Let T iÙT Ù i ¨ 1ÙÜ Ù be integral r dimensional currents in Ω and

let θ iÙ θ Ú Ω r Rm, i ¨ 1ÙÜ Ù be lipschitzian functions such that

T i r T in M�Ω Ù brR
n��,

sup !M�T i� +M�ãT i� Ú i ¨ 1ÙÜ) ° ðÙ

θ i r θ uniformly on ΩÙ

sup !Lip�θ i� Ú i ¨ 1ÙÜ) ° ðØ
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






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






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
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





(3.6.5)

Then

(i)
graph�T iÙ θ i� r graph�T Ù θ� in M�Rm + nÙ brR

m + n�Û (3.6.6)

(ii) if Ω is bounded and Ðf Ú H�mÙ nÙ r� r R is a continuous nonnegative polyconvex

function then we have

lim inf
irð

I�ÐfÛT iÙ θ i� ³ I�ÐfÛT Ù θ�Ø (3.6.7)

Proof Write
Ti ¨ α iH

r MiÙ T ¨ αH r MÙ

ãTi ¨ β iH
r − 1 NiÙ ãT ¨ βH r − 1 N Ù

with MÙ α, N Ù β satisfying (3.6.1) and with MiÙ αiÙ NiÙ β iÙ satisfying the obvious
analogs of (3.6.1). Let giÙ g, hiÙ h be the restrictions of θ to MiÙ MÙ NiÙ and N Ù
respectively. Let

M ik ¨ bkV gi α iÙ N ik ¨ bkV hi β i

and letMkÙNk be given by analogous expressions without the index iØ Prove first that
for each k satisfying 0 ² k ² r we have

M ikH
r Mi u

  MkH
r MÙ (3.6.8)

N ikH
r − 1 Ni u

  NkH
r − 1 N (3.6.9)

in M�ΩÙLin�br − kR
nÙ bkR

m�� and M�ΩÙLin�br − k − 1R
nÙ bkR

m��, respectively.
Proceeding by induction on kÙ we note that for k ¨ 0 this follows from (3.6.5)1Ù 2Ø
Assume now that the assertions hold for some k ³ 0 and prove it for k + 1Ø By (3.6.3)
we have

�
Mi

M ik + 1τ dH
r r + �

Mi

〈rÙ gi 〉M
i
kD τ dH

r ¨ �−1� r − k �
Ni

〈rÙhi 〉N
i
kτ dH

r − 1

(3.6.10)
for any r X b 1Rm and any τ X D r − k − 1�Ω�Ø The induction hypothesis and (3.6.5)3
imply that the second and third integrals in (3.6.10) converge to

�
Mi

〈rÙ g〉MkD τ dH
rÙ �

N

〈rÙh〉Nkτ dH
r − 1Ù

respectively, which in comparison with (3.6.3) implies

�
Mi

M ik + 1τ dH
r rr �

M

Mk + 1τ dH
r rØ

As r X b 1Rm is arbitrary and the involved measures have bounded masses by (3.6.5)2Ù
we have (3.6.8) with k replaced by k + 1. The application of the just proved assertion
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to ãT iÙ ãT gives (3.6.9) with k replaced by k + 1Ø This completes the proof of (3.6.8)
and (3.6.9).

(i): To prove (3.6.6), we note that the total mass of the measure graph�T iÙ θ i� is
given by

M� graph�T iÙ θ i�	 ¨ �
Mi

@ br �C + D∇gi�@@α@ dH
r

and thusM� graph�T iÙ θ i�	 is bounded independently of i by (3.6.5)2Ù 4. In view of
this it suffices to verify

〈graph�T iÙ θ i�Ù ω 〉 r 〈graph�T Ù θ�Ù ω 〉 (3.6.11)

on a dense set of ωÙ which in turn implies that it suffices to verify (3.6.11) for each ω
of the form (3.4.11). However, from (3.6.5)3 follows that ��xÙ θ i�x�� r ��xÙ θ�x��
uniformly in x X Ω which in combination with (3.6.8) and (3.4.12) gives (3.6.11).

(ii): To prove (3.6.7), we consider separately the case r ² n − 1 and r ¨ nØ
If r ² n − 1Ù we let Ψ be as in (3.5.8) and note that since Ðf is nonnegative, Φ can

be chosen nonnegative as well. Then (3.6.8) and the Reshetnyak lowesemicontinuity
theorem give (3.6.7).

If r ¨ nÙ we have T i ¨ �iAnL
nÙ T ¨ �AnL

n for some � iÙ � X L 1�LnÙZ� and
(3.6.8) means that � i r � in L 1�LnÙR�Ø We deduce that for any k with 0 ² k ² s
we have

bk∇θ
i u   bk∇θ in Lð�RnÙLin�bkR

nÙ bkR
m��.

Let now Ψ ± be as in (3.5.9), which we can choose nonnegative. Let Ξ Ú R � Zn be
defined by

Ξ�tÙΘ0ÙÜ ÙΘs� ¨ �t� + Ψ
+ �Θ0ÙÜ ÙΘs� + �t� − Ψ

− �Θ0ÙÜ ÙΘs�

for each t X R and �Θ0ÙÜ Ù Θs� X Zn where �t�± denote the positive and negative
parts. Then

I�fÛT iÙ θ i� ¨ �
R n
Ξ�� iÙ b0∇θ

iÙÜ Ùbs∇θ
i� dLn Ø (3.6.12)

The function Ξ is nonnegative and for each t, the function Ξ�tÙ ċ� is convex. In
the integrand in (3.6.12), we have a L 1 convergence in the first argument and the
weak convergence in the remaining arguments. It then follows from [2; Theorem 5.8,
Chapter 5] that

lim inf
irð

�
R n
Ξ�� iÙ b0∇θ

iÙÜ Ùbs∇θ
i� dLn ³ �

R n
Ξ��Ù b0∇θÙÜ Ùbs∇θ� dL

nØ

This completes the proof. è



Appendices

A.1 Differentiation on manifolds and on rectifiable sets

The main text uses the derivatives of maps defined on sets M ⊂ Rn of dimension

° n in two different ways: (a) for the response function ÐfÙ which is a function defined
on the manifold GÛ (b) for fields defined on the phase interface S ⊂ Rn. The phase
interface is interpreted either as a smooth n − 1 surface or as aHn − 1 rectifiable set in
Chapter 2 and even as aH r rectifiable set with 0 ² r ² n in Chapter 3.

We are thus lead to consider both the classical derivatives of maps on manifolds
and approximate derivatives of maps on rectifiable sets. In the first situation we
deal with manifolds of (at least) class 1 embedded in finite dimensional vectorspaces
[9; Subsections 3.1.19–3.1.20], which we call simply manifolds or synonymously
surfaces and consider classically differentiable maps on these surfacers. We define
derivatives (gradients) of maps on manifolds, which we call surface derivatives or
surface gradients. In the second situation we deal withH r rectifiable sets, consider
lipschitzian maps and review the approximate surface derivatives [9; Subsections
3.1.1–3.1.10 and 3.1.22].

Throughout the section, let V ÙW be finite dimensional inner product spaces.
Let f be a map with the domain dom f which is a relatively open subset of a

manifoldM in V with the range ran f inW Ø If x XMÙ we denote by Tan�MÙ x� the
tangent space toM at xÙ a k dimensional subspace of V where k is the dimension of
MØWe say that f is differentiable at x X dom f if there exists aD f �x� X Lin�V ÙW �,
called the derivative of f at xÙ such that

D f �x�P ¨ D f �x� (A.1.1)

where P is the orthogonal projection onto Tan�dom f Ù x� and

lim
yr x

y Xdom f Ù y© x

@f �y� − f �x� −D f �x��y − x�@/@y − x@ ¨ 0Ø (A.1.2)
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The map D f �x� is uniquely determined. We note that D f �x� is a linear transfor-
mation defined on the entire space V and not just on the tangent space; however, it
vanishes on the orthogonal complement of the tangent space by (A.1.1). This con-
vection renders the derivatives of f at different points ofM belong to the same linear
space Lin�V ÙW �Ø Other authors (e.g., [9; Subsection 3.1.22]) mean by the derivative
the restriction of the derivative in the present sense to the tangent space at the given
point. If the range W of f is RÙ we identify D f �x� X Lin�V ÙR� with an equally
denoted vector in V Ù such that

D f �x�a ¨ a ċD f �x�

for each a X V Û then D f �x� X Tan�MÙ x�Ø
Let r be an integer, 0 ² r ² dimV Ù and let f be a map such that dom f

is a H r rectifiable subset of V and ran f ⊂ W Ø If x X dom f Ù we denote by
Tan r�dom f Ù x� the approximate r dimensional tangent cone to dom f at x. We
say that f is approximately r differentiable at x X dom f if Tan r�dom f Ù x� is an
r dimensional subspace of V and there exists a D f �x� X Lin�V ÙW �, called the
approximate derivative of f at xÙ such that (A.1.1) holds with P the projection onto
Tan r�dom f Ù x� and we have the limit (A.1.2) in the approximate sense, i.e., for each
ε ± 0 the r dimensional density of the set

!y X dom f Ú @f �y� − f �x� −D f �x��y − x�@/@y − x@ ³ ε)

at the point x vanishes. A lipschitzian map on aH r rectifiable set has the r approximate
derivative at H r a.e. point of dom f Ø When the integer r is clear from the context,
we abbreviate and speak of approximate differentiability and approximate derivative
in place of r approximate differentiability and r approximate derivative. We also use
the term approximate surface gradient whenever appropriate.

If T X Lin�V ÙW � is an injective map, we define the pseudoinverse T − 1 X
Lin�W ÙV � as the unique linear map such that

T − 1T ¨ PÙ T T − 1 ¨ Q
where P and Q are the orthogonal projections onto �kerT�þ and ran T Ø One has

�T − 1� − 1 ¨ T Ø

If T maps V bijectively onto W then the pseudoinverse coincides with the usual
inverse.

We retain the symbol D for the derivative of the response functions t
α
, α ¨ 1Ù 2Ù

and Ðf Ø However, if the variable x in the definition above has the meaning of the
referential position x of a material point of ΩÙ we write ∇ for D in case of a map f
defined on an open subset of Ω and V forD in case f is a map defined on the phase
interfaceS in ΩØ If φ is a local parametrization of S then f is differentiable at x X S
if and only if f � φ is differentiable at p Ú¨ φ − 1�x� and then

V f �x� ¨ ∇�f � φ��p�∇φ�p� − 1Ø
If g is a extension of f to a neighborhood of x in Rn that is differentiable at x then

V f �x� ¨ ∇g�x�P�x�

where P�x� is the orthogonal projection onto the tangent space of M at xØ If f is a
map defined in a neighborhood of S we use the notation

V f Ú¨ V �f @S�Ø
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A.2 Multilinear algebra

The exposition in the main text relies on notations and concepts of multilinear algebra.
We use the conventions from [9; Chapter One] with some extensions; see also [18;
Section 1.7].

If r is an integer with 0 ² r ² n, we denote by brR
n the inner product space of

all r vectors in RnÙ i.e., the set of all r linear completely antisymmetric maps α from
the dual space of Rn into RØ Likewise, we denote by b rRn the inner product space
of all r covectors in RnÙ i.e., the set of all r linear completely antisymmetric maps ω
from Rn into RØ We put b0R

n ¨ R, note that b1R
n is canonically isomorphic with

Rn and recall that bnR
n is unidimensional. We also put brR

n ¨  0( if r is an integer
with r ° 0 or r ± nØ We use the same conventions for b rRnØ We denote by 〈αÙ ω 〉
the duality pairing of an r vector α with an r covector and ωØ

We use the symbol ` to denote the wedge products of a family of r vectors with
varying r and the wedge product of a family of r convectors with varying rØ If a1ÙÜ Ù ar
are vectors inRn we abbreviate�ri ¨ 1 ai Ú¨ a1`Ý`ar the wedge product of a1ÙÜ Ù ar,
an element of brR

n. In addition to the wedge product, we need the contraction
of vectors by convectors and vice versa. If α X br, ω X bs with s ² r then the
contraction α ω of α by ω is an r − s vector satisfying 〈 α ωÙ σ 〉 ¨ 〈αÙ σ ` ω 〉
for all σ X b r − sRnØ Similarly, if α is an r vector in Rn and β and s vector with s ² r
we define a contraction α β of α by β to be an r − s vector in Rn such that

�α β� ċ γ ¨ α ċ �γ ` β�

for each r − s vector γØ
Furthermore, we need exterior products and powers of linear transformations. If

rÙ s are positive integers, a permutation π of 1ÙÜ Ù r + s is said to be a shuffle of type
rÙ s if π is increasing on  1ÙÜ Ù r( and on  r + 1ÙÜ Ù r + s(Ø Denote by Sh�rÙ s� the set
of all shuffles of type rÙ sØ One has card Sh�rÙ s� ¨ �r + s� ! /r ! s ! Ø If

Φ X Lin�brR
nÙ brR

m�Ù Ψ X Lin�bsR
nÙ bsR

m� (A.2.1)

where rÙ s are nonegative integers, then there exists a unique

Φ ` Ψ X Lin�br + sR
nÙ br + sR

m�

such that

�Φ ` Ψ��
r + s

�
i ¨ 1
ai� ¨ C�rÙ s� �

π X Sh�rÙ s�
sgn π Φ�

r

�
i ¨ 1
a
π�i�� ` Ψ�

r + s

�
i ¨ r + 1

a
π�i��

for any a1ÙÜ Ù ar + s X R
n where C�rÙ s� ¨ r ! s ! /�r + s� ! Ø We call Φ ` Ψ the exterior

product of Φ and ΨØ The exterior product is commutative, i.e.,

Φ ` Ψ ¨ Ψ ` ΦÙ

and associative, i.e., assuming (A.2.1) and Ω X Lin�btR
nÙ btR

m� then

�Φ ` Ψ� ` Ω ¨ Φ ` �Ψ ` Ω�

so that we can use unambiguously the notation Φ ` Ψ ` ΩØ If k is a positive integer
and Φ X Lin�brR

nÙ brR
m�Ù we define bkΦ X Lin�brkR

nÙ brkR
m� by bkΦ ¨

Φ ` Ý ` Φ with k terms of the product. In particular, if A X Lin�RnÙRm� then
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brA X Lin�brR
nÙ brR

m�Ø If m ¨ n then bnA β ¨ detA β for each n vector βÛ in the
same situation, bn − 1A ¨  cofA   where   is the Hodge operator mapping brR

n

isometrically onto bn − rR
nØ We put b0A ¨ 1 in all situations. Clearly, brA ¨ 0 if

r ± min  mÙ n(. Gnerally, we have the binomial theorem

bk�Φ + Ψ� ¨
k

�
i ¨ 0

(

k

i

)

bi Φ ` bk − iΨ (A.2.2)

for each ΦÙΨ X Lin�brR
nÙ brR

m�Ø
If Θ X Lin�brR

nÙ brR
m� and a X Rn we define Θ ` a X Lin�br + 1R

nÙ brR
m�

by
�Θ ` a�β ¨ Θ�β a�

for each r + 1 vector β inRnØ If Ψ X Lin�bsR
nÙ bsR

m� and α X brR
n with r ³ sÙ let

Ψ α X Lin�b r − sRnÙ bsR
m�

be defined by
�Ψ α�ω ¨ Ψ�α ω�

for each ω X b r − sRnØ
If Ω ⊂ Rn is open, we denote by Dr�Ω� the set of all infinitely differentiable

r vectorfields ξ Ú Rn r brR
n whose support is compact and contained in ΩØ We

define the interior derivative ãξ of ξ as an element of Dr − 1�Ω� given by

ãξ ¨ �−1� r
n

�
i ¨ 1
Di ξ e iÙ

where Di denote the partial derivatives and e1ÙÜ Ù en is the standard basis in RnØ If a
is a 1 vectorfield then ãa ¨ −div aØ The factor �−1� r is chosen so as to render valid
the integration by parts formula

�
R n
ãξ ċ ω dLn ¨ �

R n
ξ ċDω dLn

for every smooth r − 1 form ω on Rn where D ω denotes the exterior derivative.
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