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Abstract. The paper determines the forms of equations of equilibrium of force and Maxwell’s

relations for stable coherent phase interfaces in isotropic two–dimensional solids. The inter-

faces fall within three distinct types; the forms of equilibrium equations depend on them.

The first type is when the stresses of the two phases are hydrostatic; then the equilibrium of

forces reduces to the equilibrium of pressures and Maxwell’s relation reduces to the equality

of Gibbs functions. The second, generic, case is when the principal stretches are different,

the stress of at least one of the two phases is not hydrostatic and certain nondegeneracy

condition holds. The force equilibrium is formulated in terms of a pair of scalar force-type

quantities. These forces depend on whether the two principal stretches both increase (de-

crease) when crossing the interface or whether one of the stretches increases and the other

decreases. Maxwell’s relation involves these forces and reduces to the equality of generalized

Gibbs-type potentials. The third case is when nondegeneracy condition is violated. The force

equilibrium reduces to one scalar equation; Maxwell’s relation reflects this fact.
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1 Introduction

The conditions for phase equilibrium on stable coherent phase interfaces between
phases AÙB in a general nonlinear elastic material consist of
(a) the geometrical compatibility condition (Hadamard’s condition)

B − A ¨ a � nÙ
where AÙ B are the deformation gradients of the two phases, n is the referential
normal to the interface, and a is a vector called the amplitude of the interface,

(b) the balance of forces (mechanical equilibrium)

S
A

n ¨ S
B

n (1.1)
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where S
A
Ù S

B
are the Piola–Kirchhoff stress of the phases AÙBÛ

(c) Maxwell’s relation (thermodynamical equilibrium):

f
B
¨ f

A
+ S

A
ċ �B − A�Ù (1.2)

where f
A
Ù f

B
are the values of free energy functions at the phases AÙBÙ

(d) moreover, the stability considerations imply that the energy is rank 1 convex at
the two phases (see Section 5).

The quantities in (1.1)–(1.2) are vectors and tensors. However, for fluids (to which
the above general requirements apply as well), thanks to the fact that the symmetry
group of the material is extremely large, it is possible to rewrite the conditions (b),
(c) in a form involving only scalar quantites (Gibbsian thermostatics of fluids): the
equality of pressures

p
A
¨ p

B
(1.3)

and the equality of the Gibbs functions

g
A
¨ g

B
(1.4)

where g ¨ f + pv is the Gibbs function and v ¨ det F the specific volume.
The goal of this note is to examine the analogues of (1.3) and (1.4) for two–

dimensional isotropic solids. Thus the question is (α) whether the equality of the nomal
components of forces (1.1) (which makes two scalar equations) can be formulated
in terms of two predefined scalar quantities universal for this class, and (β) whether
Maxwell’s relation can be written in terms of some analog of Gibbs function. It turns
out that the answer to both (α) and (β) is positive provided one divides all possible
interfaces into three distinct types (A), (B), (C), and defines the universal forces and
generalized Gibbs potentials for each class of interfaces separately. This allows one to
pass from the tensorial equations to scalar equations involving the principal stretches
only (see below).

To formulate the results, recall that the principal stretches α
1
³ α
2

of a deforma-
tion gradient A are, by definition, the eigenvalues of

√

AAT Û we write α ¨ �α
1
Ù α
2
�

for the ordered pair of singular values. If the body is isotropic then its stored en-
ergy f Ú M
2�2
+ r RÙ defined on the set M
2�2
+ of 2 � 2 matrices with positive

determinant, can be expressed also in terms if the principal stretches:

f �A� ¨ É �α� (1.5)

for every A X M
2�2
+ where α are the principal stretches of A and É Ú �0Ù ð� �

�0Ù ð� r R is a symmetric function (i.e., satisfies É �α
1
Ù α
2
� ¨ É �α
2
Ù α
1
��Ø The

function f is continuously differentiable on M
2�2
+ if and only if É is continuously

differentiable on its domain ([3]), and if this is the case, we define the principal forces
s
1
Ù s
2

to be the functions on �0Ù ð� � �0Ù ð� given by

si�α� ¨
ãÉ �α�
ãαi

Ù (1.6)

The Piola–Kirchhoff stress S ¨ S�A�
S�A� ¨ ãf �A�

ãA
(1.7)
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is diagonal of the form S ¨ diag�s
1
Ù s
2
� if A is diagonal: A ¨ diag�α
1
Ù α
2
�Ø

Consider a stable interface with the deformation gradients AÙ B whose principal
stretches are α ¨ �α
1
Ù α
2
�Ù β ¨ �β
1
Ù β
2
�Ø The cases mentioned above are as follows.

Case (A) is when the stresses of the two phases are hydrostatic:

S
A
¨ −p

A
�det A�A −TÙ S

B
¨ −p

B
�det B�B −TÛ

then the conditions of mechanical equilibrium and Maxwell’s relation reduce to
(1.3) and (1.4), respectively. Note that the stresses is certainly hydrostatic if α
1
¨

α
2
Û however, in nonelliptic solids exhibitting phase transitions the stress can be

hydrostatic even if α
1
© α
2
Ø In particular, it will be shown that (A) includes twinning:

the case when α ¨ βØ
Case (B) is when at least one of the stresses S

A
Ù S

B
is not hydrostatic and

�α
1
− β
2
��β
1
− α
2
� © 0Ø Then, if �α
1
− α
2
��β
1
− β
2
� ³ 0Ù the condition of mechanical

equilibrium and Maxwell’s relation read

k + �α� ¨ k + �β�Ù c + �α� ¨ c + �β�Ù g + �α� ¨ g + �β�
where

k + Ú¨ α1s1 − α2s2
α
1
− α
2

Ù c + Ú¨ − s1 − s2
α
1
− α
2

Ù (1.8)

g + ¨ f − k + �α1 + α2� − c + α1α2 ¨ f −
α2
1
s
1
− α2
2
s
2

α
1
− α
2

Ø (1.9)

The quantities k + Ù c + are the force type quantities in terms of which the equation
of mechanical equilibrium is formulated. They are combinations of of the principal
stresses. Similarly, g + is the analog of the Gibbs function appropriate to this case.
If �α
1
− α
2
��β
1
− β
2
� ² 0Ù the condition of mechanical equilibrium and Maxwell’s

relation read

k − �α� ¨ k − �β�Ù c − �α� ¨ c − �β�Ù g − �α� ¨ g − �β�Ù
provided where

k − Ú¨ α1s1 − α2s2
α
1
+ α
2

Ù c − Ú¨ s1 + s2
α
1
+ α
2

Ù (1.10)

g − ¨ f − k − �α1 − α2� − c − α1α2 ¨ f −
α2
1
s
1
+ α2
2
s
2

α
1
+ α
2

Ø (1.11)

Case (C) is when at least one of the stresses S
A
Ù S

B
is not hydrostatic and

�α
1
− β
2
��β
1
− α
2
� ¨ 0Ø It follows that either β
2
¨ α
1

or α
2
¨ β
1

(or both) and then

s
1
�β� ¨ s
2
�α�Ù (1.12)

f
A
− s
2
�α�α
2
¨ f

B
− s
1
�β�β
1

(1.13)

and
s
1
�α� ¨ s
2
�β�Ù (1.14)

f
A
− s
1
�α�α
1
¨ f

B
− s
2
�β�β
2
Ù (1.15)

respectively.
The quantities occurring in (1.3), (1.8), (1.10), (1.12), and (1.14) are the scalar

force–type quantities which express the equations of mechanical equilibrium and
the quantities (1.4), (1.9), (1.11), (1.13) abnd (1.15) are the Gibbs functions or their
analogues which express the thermodynamical equilibrium.

2
α
1
α
2
�α
1
s
1
− α
2
s
2
�

α2
1
− α2
2
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2 Stable coherent interfaces

We consider a two–dimensional isotropic body. We label the material points by
their position x in a reference configuration Ω ⊂ R
2; a deformation is a function

u Ú Ω r R
2 which gives the present position y ¨ u�x� in terms of x X ΩÛ it is also

assumed that the density of the body in the reference configuration is¨ 1ØAssume that
the body has a continuously differentiable stored energy function f Ú M
2�2 r R and

denote by S Ú M
2�2 r M
2�2 the Piola–Kirchhoff stress as in (1.7). Throughout

the paper, f is considered as given.
Deformations with coherent interfaces are adequately described by continuous

and piecewise continuously differentiable deformation functions u Ú Ω r R
2Ø Thus

Ω is divided into two open parts ΩAÙ ΩBÙ separated by a smooth surface S ⊂ ΩÙ
such that the deformation gradient

F Ú¨ ãu�x�
ãx

is well-defined in ΩAÙ ΩB and has limits A ¨ A�x�Ù B ¨ B�x� at every point x X S

as y approaches x from ΩAÙ ΩBØ The surface S then represents the interface in
the reference configuratrion. If n ¨ n�x�Ù x X S is the unit normal to S then by
Hadamard’s lemma, which follows from the continuity of uÙ there exists a function
a Ú S r R
2Ù called the amplitude of the jump, such that

B ¨ A + a � n (2.1)

at every x X SØ Thus the geometrical compatibility on the interface assets that the
jump B − A in the deformation gradient is a rank 1 tensor: det�B − A� ¨ 0Ø

In the absence of external forces the total energy of the body in u is given by

I�u� ¨ �
Ω

f �F� dxØ
We deal with deformations u which are stable in the sense that

I�u� ² I�v� (2.2)

for each continuous and piecewise continuously differentiable deformation v Ú Ω r
R
2 such that u ¨ v on the boundaryãΩØ It turns out that the minimum energy principle

is a restriction on both the deformation and the energy function f Û in particular, it
implies that f must be rank 1 convex along the minimizer uØ The energy f is said to
be rank 1 convex at A X M
2�2
+ if

f �B� ³ f �A� + S�A� ċ �B − A� (2.3)

for every B X M
2�2
+ that is rank 1 connected to AÙ, i.e., det�B−A� ¨ 0ØThe minimum

energy principle (2.2) implies that f is rank 1 convex at every F�x�Ù x X ΩA T ΩB
and at the limiting values A�x�Ù B�x� of F at x X SØ In addition, we have Maxwell’s
relation

f
B
¨ f

A
+ S

A
ċ �B − A� (2.4)

where we write f
A
Ú¨ f �A�Ù S

A
Ú¨ S�A� and similarly for B.

For the considerations that follow we shall need just the above consequences
of the minimum energy principle (2.2). We fix the point x on S and write AÙ B for
A�x�Ù B�x�Ø We say that AÙ BÙ A © BÙ form a stable interface if
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(i) AÙ B are rank 1 connected, i.e., (2.1) holds for some aÙ n X R
2Û

(ii) both AÙ B are points of rank 1 convexity of f Û
(iii) Maxwell’s relation (2.4) holds.

The equation of equilibrium of forces

S
A

n ¨ S
B

n (2.5)

is a consequence of (i)–(iii) together with the “conjugate” equation

S
T

A
a ¨ S
T

B
aØ (2.6)

Indeed, since f is rank 1 convex at A we have

f �A + b � n� − f �A� − S
A
ċ �b � n� ³ 0 (2.7)

for each vector bÛ in addition, Maxwell’s relation says that the equality holds for
b ¨ aØ Thus b ¨ a is a point of minimum of the function in the left–hand side of (2.7)
and the differentiation with respect to b at b ¨ a gives (2.5). Similarly, we have

f �A + a � m� − f �A� − S
A
ċ �a � m� ³ 0

for each m X R
2 with the equality at m ¨ nÛ the differentiation provides (2.6).

Let É Ú �0Ù ð� � �0Ù ð� be the symmetric function representing f as in (1.5)
and let the principal forces be defined as in (1.6). We note that the symmetry of É
implies that for any x X �0Ù ð� � �0Ù ð� we have s
1
�x
1
Ù x
2
� ¨ s
2
�x
2
Ù x
1
� and hence

in particular
s
1
�γÙ γ� ¨ s
2
�γÙ γ� (2.8)

for any γ ± 0Ù i.e., the principal forces coincide whenever the principal stretches
coincide. If A X M
2�2
+ has the singular values α ¨ �α
1
Ù α
2
� then the singular–value

decomposition theorem says that there exist proper orthogonal matrices QÙ R X SO�2�
such that

A ¨ Q diag�α�RÛ (2.9)

the isotropy of the material then implies that

S
A
¨ Q diag�s�R (2.10)

where s ¨ s�α� is the pair of principal forces. Note that the Cauchy stress T is related
to S by S ¨ T cof A where cof A ¨ �det A�A −T is the matrix of cofactors of AØ

A point A is said to be a point of liquefaction if

S
A
¨ −p cof A (2.11)

for some p X RÙ called the pressure of AØ A necessary and sufficient condition for A

to be a liquefaction point is that the corresponding principal forces s ¨ s�α� satisfy

s
1
α
1
¨ s
2
α
2
Ø (2.12)

Indeed, if A is a liquefaction point and QÙ R are as in (2.9) then cof A ¨
A�diag�α�� − 1R and the comparison of (2.10) with (2.11) produces −pα − 1

i ¨ siÙ i ¨
1Ù 2Û thus (2.12). Conversely, (2.12) implies (2.11) with p ¨ −s
1
α
1
¨ −s
2
α
2
Ø
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3 Maxwell’s relation

For any α X H
2 and any ε X  1Ù −1( we define the quantities

Ðα
ε
¨ α
1
+ εα
2
Û

we furthermore set

k
ε
�α� ¨ α1s1 − α2s2

α
1
− εα
2

Ù c
ε
�α� ¨ −ε s1 − εs2

α
1
− εα
2

(3.1)

whenever the denominators are nonzero. We also abbreviate Ðα± Ú¨ Ðα±1Ù k±�α� Ú¨
k±1�α�Ù c±�α� Ú¨ c±1�α� and notice that k±Ù c± coincide with the quantities defined in
Introduction. If αÙ β X H
2Ù we further define

ε�αÙ β� ¨ sgn ��β
1
− α
1
��β
2
− α
2
�	Ø

For any i X  1Ù 2( we denote by Ì X  1Ù 2( the complementary index, i.e., the unique
j X  1Ù 2( such that i © jØ The following theorem determines the forms of condition
of mechanical and thermodynamical equilibrium:

3.1 Theorem. Let AÙ B X M
2�2
+ Ù with singular values αÙ βÙ respectively, form a

stable interface. We have the following assertions:

(i) if α ¨ β then AÙ B are points of liquefaction of equal pressures:

S
A
¨ −p

A
cof AÙ S

B
¨ −p

B
cof B (3.2)

with

p
A
¨ p

B
Û (3.3)

Maxwell’s relation is a consequence of (3.3);
(ii) if αi © βj for all iÙ j X  1Ù 2( (and hence α © β) then setting ε ¨Ú ε�αÙ β� we have

ε © 0Ù the quantities k
ε
�α�Ù k

ε
�β�Ù c

ε
�α�Ù c

ε
�β� are well-defined (see (3.1)) and

k
ε
�α� ¨ k

ε
�β�Ù c

ε
�α� ¨ c

ε
�β� (3.4)

and

É �α� − k
ε
�α�Ðα

ε
− c

ε
�α�α
1
α
2
¨ É �β� − k

ε
�β�Ðβ

ε
− c

ε
�β�β
1
β
2
Û (3.5)

(iii) if α © β and αi ¨ βj for some iÙ j X  1Ù 2( then

sÌ�α� ¨ sÍ�β�Ù (3.6)

É �α� − sÌ�α�αÌ ¨ É �β� − sÍ�β�βÍØ (3.7)

It is noted that the Items (i)–(iii) are exhaustive and mutually exclusive.

Proof Let B ¨ A+a � n and assume without any loss of generality that A ¨ diag�α�Ø
(i): Since α ¨ βÙ we have É �α� ¨ É �β�Ù and Maxwell’s relation implies

S
A

n ċ a ¨ 0Û (3.8)

moreover, if we normalize to |n| ¨ 1 then a is given by (4.2). Since A is diagonal, we
have S ¨ S

A
¨ diag�s� where s Ú¨ s�α�Ø The combination of (3.8) with (4.2) leads

to
SA − 1n ċ n ¨ |A − 1n|2SAn ċ nØ (3.9)
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If we denote by n
1
Ù n
2

the components of n then a rearrangement of (3.9) and the use
of |n| ¨ 1 give

n2
1
�n2
1
− 1��α2
1
− α2
2
��s
1
α
1
− s
2
α
2
�

α2
1
α2
2

¨ 0Ø

Note that n
1
© 0Ù n
2
© 0Ø Indeed, otherwise n is an eigenvector of A and (4.2) implies

a ¨ 0Ù which contradicts A © BØ Thus we have

�α2
1
− α2
2
��s
1
α
1
− s
2
α
2
� ¨ 0Ø (3.10)

If α2
1
¨ α2
2
Ù i.e., α
1
¨ α
2

then s
1
¨ s
2

by (2.8); so s
1
α
1
− s
2
α
2
¨ 0Ù i.e., A is

a liquefaction point. If α2
1
© α2
2
Ù then s
1
α
1
− s
2
α
2
¨ 0 by (3.10) and thus A is

a liquefaction point again. By symmetry also B is a liquefaction point. Thus (3.2)
holds for some p

A
Ù p

B
X RÛ comparing (2.5) with cof An ¨ cof Bn (which follows

from (2.1), see [4]) we obtain (3.3). To show that Maxwell’s relation (2.4) holds
automatically, note that with (3.3)
1

and (2.1), Maxwell’s relation takes the form

É �β� ¨ É �α� − p
A
�det A�A

−T
n ċ aØ (3.11)

From α ¨ β we deduce det A ¨ det B; a combination with det B ¨ det�A + a � n� ª
det A�1 + A −Tn ċ a� leads to A −Tn ċ a ¨ 0Ø Hence (3.11) reduces to É �α� ¨ É �β�
which is certainly true since α ¨ βØ

To proceed to the proofs of the cases (ii)–(iii), we note that since f is rank 1
convex at AÙ Theorem 4.5, Proposition 4.6(i) and Maxwell’s relation imply that

É �β� ³ É �α� + H�αÙ β�
³ É �α� + S�A� ċ �B − A�
¨ É �β�Ø

Thus we have the equality signs throughout; in particular

É �β� ¨ É �α� + H�αÙ β�Ø (3.12)

(ii): The condition αi © βj for all iÙ j X  1Ù 2( implies �β
1
− α
1
��beta
2
− α
2
� © 0

and
�α
1
− β
2
��β
1
− α
2
� © 0Û (3.13)

thus ε © 0 and equation (3.12) takes the form

É �β� ¨ É �α� + k
ε
�α��Ðβ

ε
− Ðα

ε
� + c

ε
�α��β
1
β
2
− α
1
α
2
�Û (3.14)

by symmetry also

É �α� ¨ É �β� + k
ε
�β��Ðα

ε
− Ðβ

ε
� + c

ε
�β��α
1
α
2
− β
1
β
2
�Ø

Consider the case ε ¨ 1Ø By Remark 4.2 we have either α
1
± α
2

or β
1
± β
2
Û assume

the latter and note that

�β
1
− α
1
��β
2
− α
2
� ± 0Ù �α
1
− β
2
��β
1
− α
2
� ± 0Ù β
1
± β
2
± 0Ø (3.15)

Indeed, the first inequality is ε ¨ 1. The second inequality is a combination of (3.13)
with (4.1). The third inequality is our assumption. By (3.15) then

�γ
1
− α
1
��γ
2
− α
2
� ± 0Ù �α
1
− γ
2
��γ
1
− α
2
� ± 0Ù γ
1
± γ
2
± 0
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for all γ X R
2 sufficiently close to βØ Thus, since f is rank 1 convex at AÙ an appeal

to Theorem 4.5 shows that

É �γ� ³ É �α� + k + �α��Ðγ + − Ðα + � + c + �α��γ1γ2 − α1α2�
for all γ sufficiently close to βÛ moreover, for γ ¨ β we have the equality sign by
(3.14). Thus the differentiation with respect to γ at γ ¨ β provides

s
1
�β� ¨ k + �α� + c + �α�β2Ù s
2
�β� ¨ k + �α� + c + �α�β1Û

consequently

s
1
�β�β
1
− s
2
�β�β
2
¨ k + �α��β1 − β2�Ù s
1
�β� − s
2
�β� ¨ c + �α��β2 − β1�Ø

(3.16)
Since β
1
± β
2

, we see that k + �β�Ù c + �β� are defined and equations (3.16) imply
(3.4) with ε ¨ 1Ø With (3.4), equation (3.14) implies (3.5) with ε ¨ 1Ø Let ε ¨ −1Û
noting that again either α
1
± α
2

or β
1
± β
2

we assume the latter and observe that

�β
1
− α
1
��β
2
− α
2
� ° 0Ù �α
1
− β
2
��β
1
− α
2
� ± 0Ù β
1
± β
2
± 0Ø

Here the first inequality is a restatement of ε ¨ −1Ù the second follows from (3.13),
(4.1) as above and the third inequality is our assumption. Then we have

�γ
1
− α
1
��γ
2
− α
2
� ° 0Ù �α
1
− γ
2
��γ
1
− α
2
� ± 0Ù γ
1
± γ
2
± 0

for all γ sufficiently close to βØ Thus, since f is rank 1 convex at AÙ an appeal to
Theorem 4.5 shows that

É �γ� ³ É �α� + k − �α��Ðγ − − Ðα − � + c − �α��γ1γ2 − α1α2�
with the equality holding at γ ¨ βØ Thus the differentiation provides

s
1
�β� ¨ k − �α� + c − �α�β2Ù s
2
�β� ¨ −k − �α� + c − �α�β1Û

these relations immediately imply (3.4) with ε ¨ −1Ø With (3.4), equation (3.14)
implies (3.5) with ε ¨ −1Ø

(iii): Consider first the case i ¨ j ¨ 1 so that Ì ¨ Í ¨ 2 and β
1
¨ α
1
. Using

that either α
1
± α
2

or β
1
± β
2

we assume without any loss of generality the latter.
If � is the function defined in Remark 4.7 then the inequality (4.6) holds for each
τ ± 0Û moreover, for τ ¨ β
2

the equality holds in (4.6) by (3.12). The differentiation
provides � ′�β
2
� ¨ s
2
�α�Ø The definition of � and the use of β
2
° β
1
¨ α
1

gives that
� ′�β
2
� ¨ É
2
�α
1
Ù β
2
� ¨ É
2
�β� ¨ s
2
�β�Ø Thus we have (3.6) and with that equation

the equality (4.6) at τ ¨ β
2

gives (3.7). The case i ¨ j ¨ 2 is similar. Next consider
the case i ¨ 1Ù j ¨ 2 so that Ì ¨ 2Ù Í ¨ 1 and β
1
¨ α
2
Ø Let ψ be the function defined

in Remark 4.7. Then we have the inequality (4.6) for each τ ± 0 and for τ ¨ β
2

the equality holds by (3.12). Thus the differentiation provides ψ ′�β
2
� ¨ s
1
�α�Ø The

definition of ψ gives that ψ ′�β
2
� ¨ É
2
�α
2
Ù β
2
� ¨ É
2
�β
1
Ù β
2
� ¨ s
2
�β�Ø Thus we

have (3.6) and with that equation the equality (4.6) at τ ¨ β
2

gives (3.7). The case
i ¨ 2Ù j ¨ 1 is similar. è

The following assertion shows that in the cases (C), (D) the deformation gradient
of the phase B is essentially uniquely determined by the deformation of the phase A Ú
and the singular values of BÙ and the form of the dependence is independent of the
material in question. and

É �α� + p
A
v

A
¨ É �β� + p

B
v

B

where v
A
¨ det AÙ v

B
¨ det BÛ
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3.2 Theorem. Let AÙ B X M
2�2
+ form a stable interface where A ¨ diag�α�Ù α X

H
2Ù and B has the singular values βØ If A is not a liquefaction point then B ¨ A+a � nÙ

where aÙ nÙ with |n| ¨ 1Ù satisfy

n2
1
¨ α1 − σβ2
α
1
− σα
2

∣

∣

∣

∣

∣

β
1
− α
1

Ðβ
σ
− Ðα

σ

∣

∣

∣

∣

∣

Ù n2
2
¨ β1 − σα2
α
1
− σα
2

∣

∣

∣

∣

∣

β
2
− α
2

Ðβ
σ
− Ðα

σ

∣

∣

∣

∣

∣

Ù

a
1
¨ �Ðβ

σ
− Ðα

σ
�n
1
Ù a
2
¨ σ�Ðβ

σ
− Ðα

σ
�n
2







































(3.17)

where

σ ¨










ε�αÙ β� if ε�αÙ β� © 0Ù
1 if ε�αÙ β� ¨ 0Ø (3.18)

4 Rank 1 perturbations and invariant rank 1 convex functions

This appendix reviews be background of notions and results employed in the pre-
ceding text. We first address the question of the possible singular values of rank 1
perturbations.

4.1 Proposition ([1]). If A X M
2�2
+ has the singular values α then β X H
2 are

singular values of some rank 1 perturbation of A if and only if

�α
1
− β
2
��β
1
− α
2
� ³ 0Û (4.1)

equivalently, if and only if

α
1
³ β
2
Ù β
1
³ α
2
Ø

The above Proposition has the following useful corollary:

4.2 Remark. If AÙ B X M
2�2
+ are two rank 1 connected matrices whose singular

values satisfy α © β then either α
1
± α
2

or β
1
± β
2
Ø

Two matrices AÙ B X M
2�2
+ are said to be twins if (i) they are rank 1 connected

(i.e., det�A − B� ¨ 0) and (ii) have the same singular values.

4.3 Proposition. If AÙ B X M
2�2
+ are twins then there exists an n X R
2Ù |n| ¨ 1Ù such

that B ¨ A + a � n where

a ¨ 2 � A − 1n
|A − 1n|2

− An�Ø (4.2)

4.4 Proposition ([5]). If αÙ β X H
2Ù α © βÙ satisfy (4.1) and if aÙ n X R
2 are given by

(3.17), then B Ú¨ diag�α� + a � n has the singular values βØ Moreover, if σ is given

by (3.18) then with J
σ
Ú¨ diag�1Ù σ� we have

tr �J
σ
�B − A�	 ¨ Ðβ

σ
− Ðα

σ
Ø

The following result is a characterization of rank 1 convexity of rotationally
invariant rank 1 convex functions, [2, 5].



4. Rank 1 perturbations and invariant rank 1 convex functions 10

4.5 Theorem. The function f is rank 1 convex at diag�α�Ù α X H
2Ù if and only if the

following two conditions hold simultaneously with s ¨ s�α�:

(i) s
1
α
1
− s
2
α
2
³ 0Û

(ii) if β X H
2 satisfies (4.1) and if we write ε Ú¨ ε�αÙ β� then

É �β� ³ É �α� + H�αÙ β� (4.3)

where

H�αÙ β� ¨














k
ε
�α��Ðβ

ε
− Ðα

ε
� + c

ε
�α��β
1
β
2
− α
1
α
2
� if ε © 0Ù

s�α� ċ �β − α� if ε ¨ 0Ø
It is noted that the function H�αÙ β� pays the role of the Weierstrass excess func-

tion in the convexity theory. Here H is nonlinear in the increments of the arguments.
The following result shows that H�αÙ β� is the maximum of the right hand side of
inequality (2.3) subject to fixed singular values of AÙ B and establishes the status of
maximizers for the special rank 1 perturbations occurring in Proposition 4.4.

4.6 Proposition. Let f be rank 1 convex at A ¨ diag�α�Ù α X H
2 and let B X M
2�2
+ Ù

with singular values β, be rank 1 connected to AØ Then:

(i)
H�αÙ β� ³ S�A� ċ �B − A�

(ii) if B ¨ A + a � n where aÙ n are as in (3.17) then

H�αÙ β� ¨ S�A� ċ �B − A�Û (4.4)

(iii) if for s Ú¨ s�α� we have s
1
α
1
− s
2
α
2
± 0 then (4.4) holds only if B ¨ A + a � n

where aÙ n are as in (3.17).

Proof Items (i), (ii) follow from the considerations underlying the proof of Theorem
4.5 in [5]. Thus it suffices to prove (iii). Let B be a rank 1 perturbation with singular
values β and let σ be given by (3.18). We seek to prove that B is of the asserted special
form. We have S Ú¨ S�A� ¨ diag�s� and the inequality s
1
α
1
− s
2
α
2
± 0 implies that

α
1
± α
2

(for otherwise we would have s
1
¨ s
2

). Thus k
σ
Ú¨ k

σ
�α�Ù c

σ
Ú¨ c

σ
�α� are

well defined and using this fact, it is easy to establish the following formula for S Ú
S ¨ k

σ
J
σ
+ c

σ
cof A

where J
σ
Ú¨ diag�1Ù σ�Ø Using this expression and

β
1
β
2
− α
1
α
2
¨ det B − det A ¨ cof A ċ �B − A�Ù

which is valid for any rank 1 perturbation of AÙ we obtain that

S ċ �B − A� ¨ k
σ

tr�J
σ
�B − A�� + c

σ
�β
1
β
2
− α
1
α
2
�Ø

Comparing this expression with the definition of H�αÙ β� and using k
σ
± 0Ù which

follows from s
1
α
1
− s
2
α
2
± 0, we obtain

tr�J
σ
�B − A�� ¨ Ðβ

σ
− Ðα

σ
Ø

Using A ¨ diag�α� this finally reduces to

tr�J
σ

B� ¨ ÐβØ



References 11

The differentiation implies that J
σ

B is symmetric. The eigenvalues of B areµ
1
β
1
Ù µ
2
¨

β
2
Ù µ
1
µ
2
¨ 1Ø This implies that the eigenvalues are βØ Thus B is a symmetric rank 1

perturbation of the symmetric matrix and thus of my form. è
The following remark is the well–known separate convexity of rank 1 convex

functions (cf.. ). The result also follows from Theorem 4.5.

4.7 Remark. Let f be rank 1 convex at diag�α�Ù α X H
2Ù let i X  1Ù 2( and define

� Ú �0Ù ð� r R by

��τ� ¨ É �αiÙ τ�Ù (4.5)

τ X �0Ù ð�Ø Then

��τ� ³ ��αÌ� + sÌ�α��τ − αÌ� (4.6)

for all τ ± 0Ø

5 Complements

A function g Ú Dr R T  ð(ÙD ⊂ H
2Ù is said to be BE–monotonic at an α X D if

g�α� ² g�β�
for each β X D satisfying

α
1
² β
1
Ù α
1
α
2
¨ β
1
β
2
Ø

The function g Ú Dr RT  ð( is said to be BE–monotonic if it is BE–monotonic at
every α X DØ
5.1 Proposition. A tensor A is a linear combination of twins of singular values β if

and only if its singular values α satisfy

α
1
² β
1
Ù α
1
α
2
¨ β
1
β
2
Ø

Proof Let A ¨ diag�α�Ù

B± ¨
[

α
1

±t
0 α
2

]

Ù t ¨
√

β2
1
+ β2
2
− �α2
1
+ α2
2
� Ø

Then the signed singular values of B± are β and

A ¨ 1
2
�B + + B − �Ø
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contrainte en élasticité non-linéaire plane C. R. Acad. Sci. Paris 290 (1980)
537–540



References 12

2 Aubert, G.: Necessary and sufficient conditions for isotropic rank-one convex

functions in dimension 2 J. Elasticity 39 (1995) 31–46

3 Ball, J. M.: Differentiability properties of symmetric and isotropic functions

Duke Math. J. 51 (1984) 699–728
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