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Abstract A divergence measure vectorfield is an Rn valued measure on an open subset

U of Rn whose weak divergence in U is a (signed) measure. The paper estabishes (i) the

structure of the divergence measure vectorfields, (ii) the product rule for the product of the

divergence measure by a function from W 1Ù ð�U�Ù and (iii) the divergence theorem for the

divergence measure vectorfields. In (i) it is shown that each divergence measure vectorfield

can be decomposed into three measures with the following properties. The first measure

is supported by a 1 dimensional countably rectifiable set and is absolutely continuous with

respect to the 1 dimensional Hausdorff measure with a density that is in the approximate

tangent space. The second measure is the ‘Cantor part’, which is singular with respect to the

Lebesgue measure and vanishes on all sets of finite 1 dimensional Hausdorff measure. The

third part is absolutely continuous with respect to the Lebesgue measure. In (ii) a formula

for the product is given which is similar to that for smooth vectorfields with, however, the

scalar product of the vectordfield and the gradient of the function replaced by a measure

valued duality pairing between the divergence measure and the weak gradient of the function

from W 1Ù ð�U�Ø In (iii) it is shown that the surface integral of the normal component of the

vectorfield occurring in the classical divergence theorem has to be replaced by a continuous

linear functional on the space of Lipschitz functions on the boundary; the volume integral

contains the duality pairing mentioned in (ii). This part broadly generalizes and simplifies

the relevant results from [3–4]. Our proofs do not use the divergence theorem for smooth

vectorfields and sets with a regular boundary; the boundary of U can be even fractal in the

sense that the normal to ãU cannot be defined.
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1 Introduction

Let U ⊂ Rn be an open set; denote by clU and ãU the closure and boundary of U Ù
respectively. An Rn valued measure q on U (i.e., and n tuple of signed measures
on U) is said to be a divergence measure vectorfield on U if there exists a (signed)
scalar valued measure divU q on U such that

�
U

∇ � ċ dq ¨ − �
U

� d divU q (1.1)

for every compactly supported class C ð function � on U Ø The measure divU q

is called the (weak) divergence of q in U Ø We denote by DM�U� the set of all
divergence measure vectorfields on U Ø We denote byW 1Ù ð�U� the Sobolev space of
functions f X Lð�U ÙRn� whose weak gradient ∇ f is in Lð�U ÙRn� and note that
each f X W 1Ù ð�U� is represented by a continuous function; in the sequel we always
use this continuous representative. Furthermore, if K ⊂ Rn let LipB�K� be the set
of all bounded Lipschitz functions on K and note that LipB�U� ⊂ W 1Ù ð�U� but the
equality generally does not hold. If 0 ² k ² n and if µ is a scalar or vector valued
measure we say that µ is H

k diffuse if µ�B� ¨ 0 for every Borel set B of finite k
dimensional Hausdorff measure H

kØ 1
The main results of this note establish the structure of divergence measure vec-

torfields, the product rule for divergence measure vectorfields and functions from
W 1Ù ð�U� and a generalized divergence theorem, viz., if q X DM�U�

(i) then
q ¨ qsH
1 M + qc + qrL

n U (1.2)

where
M is a countably H
1 rectifiable subset of U ,

qs X L1�H1 MÙRn� is tangential toMÙ
qc X M�U ÙRn� is H1 diffuse and L

n singular,

qr X L1�U ÙRn�Û
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(1.3)

the three terms on the right hand side of (1.2) are the singular, ‘Cantor,’ and absolutely
continuous parts of qÛ

(ii) if f X W 1Ù ð�U� then fq X DM�U� and

divU�fq� ¨ f divU q + 〈〈∇ f Ùq〉〉U (1.4)

where 〈〈∇ f Ùq〉〉U is a scalar valued measure on U that is absolutely continuous with
respect to qÛ the measure 〈〈∇ f Ùq〉〉U is called the pairing of ∇ f and qÛ

(iii) there exists a continuous linear functionalN
qÙU�ċ� on LipB�ãU� such that

N
qÙU�f |ãU� ¨ �

U

d 〈〈∇ f Ùq〉〉U + �
U

fd divU q (1.5)

for every f X LipB�Rn�, where f |ãU is the restriction of f to ãU Û the functional
N

qÙU�ċ� is called the normal trace of q on ãU Ø Here the continuity is understood in
the sense of (3.7) (below).

Equation (1.2) is an analog of the decomposition of the gradient of a function
of bounded variation into the jump, Cantor, and absolutely continuous parts; in

1We refer to Section 2 for further notation to be used in this introduction.
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general all the three terms in (1.2) are different from 0Ø The decomposition (1.2) is
proved by applying Federer’s structure and support theorems. As shown below, this
decomposition holds more generally for any measure that is also a flat 1 dimensional
chain. In fact, the decomposition (1.2) is only the first member of a sequence of
decompositions of measures representing flat k dimensional chains (1 ² k ² n). With
k increasing, the decomposition (1.2) puts stronger restrictions on its members. The
decomposition of the gradient of a function of bounded variation corresponds to
k ¨ n − 1Ø See Remark 5.7 (below). We note in passing that essentially any signed
measure µ on Rn can be realized as a divergence of some q X DM�Rn�Û in fact one
can choose q in DM�Rn� P Lp�RnÙRn� for any p satisfying 1 ² p ° n/�n − 1� [26;
Example 3.3(i)].2

The product rule is a generalization of [4; Theorem 3.2] and the divergence
theorem is a generalization of [3; Theorem 2.2], [4; Theorem 3.1] which also treat
the divergence measure vectorfields. Under the condition that the boundary ãU is
Lipschitz deformable3 and for a class of functions f Ú Rn r R with essentially
Hölder continuous derivatives, the authors establish (1.5) with 〈〈∇ f Ùq〉〉U replaced
by4 ∇ f ċ q and with the normal trace defined on their class of functions. Being
unaware of the pairing 〈〈∇ f Ùq〉〉U Ù the authors cannot treat the general Lipschitz f Ù
for then ∇ f ċ q is generally meaningless, which is one source of the restrictions; the
other being the particular method of proof in [3–4], which is based on the classical
divergence theorem for smooth vectorfields on regular domains. The present paper
removes these restrictions by adopting a different method of proof, which does not
use the classical divergence theorem. The boundary of our regions can be completely
arbitrary, the existence of the normal to ãU is irrelevant; thus ãU can be fractal in
the sense that the normal cannot be defined. For divergence measure vectorfields
represented by functions from Lp�U ÙRn�Ù 1 ² p ² ðÙ the present approach removes
the assumption of Lipschitz deformability of ãU and shows that the results of [3–4]
are equally valid for Lipschitz regions; however, these matters are not treated here.

Let us now briefly discuss the pairing 〈〈∇ f Ùq〉〉U and the normal trace N
qÙU�ċ�Ø

Of course, a comparison of (1.4) and (1.5) with the corresponding analogs for smooth
vectorfields q shows that 〈〈∇ f Ùq〉〉U is a generalization of the product ∇ f ċ q and
N

qÙU�ċ� is a generalization of the normal component of q on ãU Ø
The pairing 〈〈ċÙ ċ〉〉U is introduced below in Theorem 3.2 independently of (1.4).

It is shown that for any q X DM�U� and any bounded L
n measurable vectorfield

z on U whose weak curl in U is a bounded measurable function one can associate a
measure 〈〈zÙq〉〉U that is a suitable generalization of the product z ċqØ For the existence
of 〈〈zÙq〉〉U is essential to know that both the divergence of q is a measure and the curl
of z a bounded Lebesgue measurable function. In particular, if f X W 1Ù ð�U� then
z Ú¨ ∇ f is bounded and curl z ¨ 0Ø The pairing 〈〈zÙq〉〉U reduces to the scalar product
z ċ q if z is continuous, but in general z ċ q does not have any immediate meaning if z

is defined onlyLn almost everywhere on U and q is a general measure (see Example
3.9). The pairing 〈〈zÙq〉〉U exists also under other (not strictly comparable) hypotheses

2 For p ³ n/�n − 1� and q X DM�Rn� P Lp�RnÙRn� the measure div
Rn

q is H
d diffuse

where d ¨ n − p/�p − 1� [26; Theorem 3.2].
3 A condition stronger than the Lipschitz character of ãU Ø
4We shall see that 〈〈∇ f Ùq〉〉U ¨ ∇ f ċ q if f is continuously differentiable.
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on z and qØ Thus Anzellotti [2] establishes the existence of 〈〈zÙq〉〉U if z ¨ ∇ f where
f is a continuous function of bounded variation and q ¨ qLn U where q X Lð�U�
and divU q is a measure, or if z is anRn valued measure whose weak curl is a measure
and q ¨ qLn U where q X Lð�U� and the weak divergence of q is in Ln�U�
(where n is the dimension of the space Rn). We also refer to Témam [28; Chapter II,
Section 7] and Kohn & Témam [14] for pairings between stresses T represented by
an integrable function (the analog of q) and the infinitesimal deformation tensor of a
function of bounded deformation (the analog of z).

In general, the normal traceN
qÙU�ċ� is not represented by a measure (see Examples

3.8 and 3.9). A formula, generalizing that of [3–4], is given forN
qÙU�g� in Theorem

3.6(i). Only under the additional conditions in Theorem 3.6(ii) the normal trace
is represented by a measure. In various special cases an additional information is
available on N

qÙU�ċ�. Thus [27; Theorem 1.2, Chapter I] establishes (1.5) if U is
a region with C 2 boundary, q ¨ qLn U where q X L2�U ÙRn� and divU q X
L2�U ÙR�Û moreover, 〈〈∇ f Ùq〉〉 ¨ ∇ f ċ qLn U Ù and N

qÙU�ċ� can be extended to

a continuous linear functional on W 1/2Ù 2�ãU ÙR�Ø Further, Anzellotti [2; Section 1]
shows that the trace of q on ãU is given by the H

n − 1 integration of a bounded
function if q is represented by a bounded function, and establishes (1.5) when f
is a bounded continuous function of bounded variation. See also [5, 26], where
the domain U can be a set of finite perimeter. If q is a (possibly unbounded) but
integrable vectorfield with divergence a measure, the trace is a functional as above,
but for “almost every domain” it is represented by a H

n − 1 integrable function on
ãU Ù see [24, 6, 16–17, 26].

The geometric integration theory of Whitney [29, 7] provides an abstract approach
to the divergence theorem for generalized domains (flat n dimensional chains), and
to functions q X Lð�RnÙRn� with the weak divergence in Lð�RnÙR� (flat n − 1
dimensional cochains). See also [13]. By further narrowing the class of vectorfields q

to functions with Lipschitz derivatives (possibly of higher order), the class of domains
of integration is further extended to sharp chains and chainlets in Whitney [29] and
Harrison [9–12], respectively. The flat and sharp chains and chainlets are generally
not representable by sets, for example flat n dimensional chains are represented by
Lebesgue integrable functions (the characteristic function of a Lebesgue measurable
set inclusive) and a prototype of a chainlet is a dipole of two oppositely oriented
regions at the same place. The present paper follows an opposite direction: the class
of domains of integration is narrowed from flat n dimensional chains (or even sharp
chains or chainlets) to classical sets U in Rn but at the same time the functions q of
[29, 9–12] are generalized to the divergence measure vectorfields qØ

Fields of quantities represented by measures have mechanical motivations. The
reader is referred to [3–5] for the motivation from the theory of hyperbolic systems of
convervation laws. Another motivation comes from the notion of stress in continuum
mechanics. The present approach readily generalizes to second order tensorfields T

represented by measures, with T interpreted as the stress tensor. First, it was shown
in [15] that the usage of the measure valued stress fields considerably simplifies the
analysis of the statics of masonry materials. Measures permit solutions with stress
concentrations on surfaces or lines in the masonry body and explicit solutions can
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be found for given boundary conditions. Second, normal traces of T (i.e., surface
tractions) represented by measures with concentrations are found in some analytical
solutions in linear elasticity with concentrated loads, as has been recently pointed out
in [20–21]. Finally, the system of forces in bodies with material surfaces [8] can be
considered as a single measure whose absolutely continuous part is the bulk stress
and the singular part is the stress acting in the surface.

We close this introduction with a convention on the weak divergences. As in-
troduced above, we denote the divergence of a q X DM�U� in U by divU qÛ if
q X DM�Rn� we simplify the notation and write divq Ú¨ div

Rn qØ By the symbol
div without a subscript we denote the classical divergence operator on the smooth
vectorfields.

2 Notation on sets and measures

Let Z be a finite-dimensional real inner product space. Below we shall need only
the cases Z ¨ RÙZ ¨ Rn and Z ¨ Skw where Skw is the set of all skew linear
transformations from Rn to RnÙ which can be identified with the set of all skew n
by n matrices, but it is preferable to assume that Z is arbitrary. A Z valued measure
is any countably additive Z valued function µ defined on the system of all Borel
subsets of RnØ The case Z ¨ R gives signed measures, see Rudin [22; Chapters 1
and 6], and the case Z ¨ Rn gives vector valued measures [1; Chapter 1]; these can
be identified with an n tuples of signed measures. If µ is a Z valued measure, we
denote by ‖µ‖ the total variation of µÙ i.e., the smallest nonnegative measure on Rn

such that |µ�A�| ² ‖µ‖�A� for every Borel subset A of RnØ We further denote by
M�µ� the mass of µÙ defined by M�µ� Ú¨ ‖µ‖�Rn�Ø We say that µ is supported by
a Borel set U ⊂ Rn if µ�B� ¨ 0 for every Borel set B ⊂ Rn such that U P B ¨ óØ
Throughout the paper, all measures are assumed to be defined on the whole of RnÙ
hence measures originally defined on a Borel set U are automatically extended by 0
outside U Ø We denote by M�U ÙZ� the set of all Z valued measures supported by U Ø
If µ X M�U ÙZ� and α Ú U r Z is a µ integrable function (i.e., α is ‖µ‖ measurable
and �U |α| d‖µ‖ ° ð) then �U α ċ d µ is a well defined number. In the same situation
we define the product α ċ µ to be the signed measure given by

�α ċ µ��A� ¨ �
APU

α ċ d µ

for every Borel subset A of RnØ
We denote by L

n the Lebesgue measure in Rn ([7; Subsection 2.6.5] and if k is
an integer, 0 ² k ² nÙ we denote by H

k the k-dimensional Hausdorff measure in Rn

[7; Subsections 2.10.2–2.10.6]. If A is a Borel set, and µ either a Z valued measure
or a nonnegative Borel measure on Rn (such as Hk or Ln), we denote by µ A the
restriction of µ to A, which is the measure defined by

�µ A��B� ¨ µ�AP B�Ù

for each Borel set B ⊂ RnØ If φ is either a signed measure or a nonnegative Radon
measure and α is a Z valued Borel map defined φ a.e. on AÙ with |α| φ integrable,
then αφ A denotes the Z valued measure on Rn defined by
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�αφ A��B� ¨ �
APB

α dφÙ

for each Borel set B ⊂ RnÛ thus

�
A

β ċ d�αφ A� ¨ �
A

β ċ α dφ

for any bounded Borel function β Ú A r ZØ Throughout the paper the integrals with
unspecified domains of integration denote integrals over RnÙ �Üª �R nÜ

If U ⊂ Rn is open we denote by C0�U ÙZ� the set of all Z valued continuous
maps α on Rn such that the support spt α of α is compact and contained in U Ø By
C ð
0 �U ÙZ� we denote the set of all infinitely differentiable maps from C0�U ÙZ�Ø If

x X Rn and ρ ± 0 then B�xÙ ρ� denotes the open ball in Rn of center x and radius ρØ
If φ is a nonnegative Radon measure and 1 ² p ² ðÙ we denote by Lp�φÙZ�

the usual Lebesgue spaces of (classes of equivalence) of p integrable Z valued
functions on Rn relative to φ [7; Subsections 2.4.12–2.4.17]. We denote by ‖ ċ ‖Lp�φ�
the norm on Lp�φÙZ�. If φ is supported by a Borel set U Ù we often consider the
elements of Lp�φÙZ� as (classes of equivalence) of maps defined only on U Ø In the
special case φ ¨ L

n U we use the notation Lp�U ÙZ� Ú¨ Lp�Ln U ÙZ� and
‖ ċ ‖Lp�U� Ú¨ ‖ ċ ‖Lp�Ln U�Ø

Let ω be a mollifier, let ωρ�x� ¨ ρ − nω�x/ρ� for any x X Rn and ρ ± 0Ø If
α Ú A r Z is a locally L

n integrable map on a L
n measurable set A ⊂ Rn and

ρ ± 0Ù we define the ρ mollification αρ as a function on Rn given by

αρ�x� ¨ �
A

α�y�ωρ�x − y� dLn�y�

for every x X RnÛ thus αρ is the standard mollification of the extension by 0 of α
from A to RnØ

3 The main results

This section presents the summary of the main results without proofs, which are given
in the subsequent sections, and some examples.

Throughout the rest of the paper, let U ⊂ Rn be an open set in RnØ
If k is an integer with 0 ² k ² n and M ⊂ Rn, we say that M is countably

H
k rectifiable if M is Hk measurable and there exists a family of Lipschitz maps

�iÙ i ¨ 1ÙÜ Ù with �i Ú Rk r RnÙ such that

H
k�M ∼

ð
U
i ¨ 1
�i�R

k�	 ¨ 0Ø

We say that M is purely H
k unrectifiable if

H
k�M P ��Rk�� ¨ 0

for every Lipschitz map � Ú Rk r RnÛ see [1; Definitions 2.57 and 2.64]; a countably
H
k rectifiable set is a Hk measurable and �HkÙ k� rectifiable set in the terminology

of [7; Subsection 3.2.14] and a purely H
k unrectifiable set is a purely �HkÙ k�

unrectifiable set in the sense [7; Subsection 3.2.14].
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If M is a countably H
k rectifiable set and x X MÙ we define the k dimen-

sional approximate tangent cone Tank�MÙ x� ⊂ Rn to M at x by Tank�MÙ x� Ú¨
Tank�Hk MÙ x� ⊂ Rn where the last object is defined in [7; Subsection 3.2.16]
(for any measure φ in place of Hk M). We also refer to [1; Definitions 2.79 and
2.86].

It follows from [7; Theorem 3.2.19] that for Hk a.e. point of a countably H
k

rectifiable set M the approximate k dimensional tangent cone is a k dimensional
subspace of Rn which can be described as follows. If � Ú Rk r Rn is a Lipschitz
map, K ⊂ Rk is L

k measurable such that �|K is bilipschitz, and if ∇ ��p� exists
and is injective for Lk a.e. p X K then

Tank�MÙ x� ¨ range∇ ��� − 1�x��

for Hk a.e. x X ��K�Ù see [7; Lemma 3.2.17]. This provides a complete description
of Tank�MÙ x� for Hk a.e. point ofM as the following result shows (see [7; Lemma
3.12.18]): If M is countably H

k rectifiable then there exists a countable family
�iÙ i ¨ 1ÙÜ Ù of Lipschitz maps from Rk to Rn and a family KiÙ i ¨ 1ÙÜ Ù of compact
subsets of Rk such that �i�Ki�Ù i ¨ 1ÙÜ Ù is a disjoint family of subsets of M,

H
k�M ∼

ð
U
i ¨ 1
�i�Ki�	 ¨ 0Ù

and for each iÙ �i|Ki is bilipschitz, and∇ �i�p� exists and is injective for each p X KiØ
IfM is countably H

k rectifiable, we say that qs X L1�Hk MÙRn� is tangen-

tial toM if qs�x� X Tank�MÙ x� for Hk a.e. x X M Ø

3.1 Theorem. Any q X DM�U� is of the form

q ¨ qsH
1 M + qc + qrL

n U (3.1)

where
M is a countably H1 rectifiable subset of U ,

qs X L1�H1 MÙRn� is tangential toMÙ
qc XM�U ÙRn� is H1 diffuse and L

n singular,

qr X L1�U ÙRn�Ø












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(3.2)

The relationship of (3.1) to the decomposition of the derivative of a function of
bounded variation into the jump, Cantor, and absolutely continuous parts is described
in Remark 5.7 (below), but here we note the following special case. Let n ¨ 2, let
u X BV �U�Ù and put q ¨ ∇ uþ where aþ ¨ �a2Ù −a1� for any a ¨ �a1Ù a2� X R2Ø One
finds that divU q ¨ 0 and thus q X DM�U�Ø We have

∇ u ¨ ∇ j u + ∇c u + ∇a u (3.3)

where the three terms are the jump, Cantor, and L
2 absolutely continuous parts

of ∇ uÙ with ∇ j u supported by a countable H
1 rectifiable set M and of the form

∇ j u ¨ �v�n where �v� is the jump of v on M and n the unit normal to MÙ i.e.,
the unit vector in the orthogonal complement of the approximate tangent space. The
decomposition (3.3) then leads to (3.1)–(3.2) where qs ¨ �v�n þ (which is tangential)
and qc ¨ ∇c uþÙ qrL

n U ¨ ∇a uþØ Since the three terms on the right hand side of
(3.3) are known to be generally different from 0Ù so also are the three terms in (3.1).
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If ω X C ð
0 �U Ù Skw�Ù we define the divergence div ω of ω as an Rn valued

function on Rn satisfying
a ċ divω ¨ div�ωTa�

for every a X Rn where the divergence on the right hand side is the classical di-
vergence operator for vectorfields. We denote by CF�U� the set of all (Lebesgue
classes of equivalence) of Ln measurable functions z X Lð�U ÙRn� for which there
exists a function curl z X Lð�U Ù Skw� such that

�
U

z ċ div ω dLn ¨ − �
U

ω ċ curl z dLn

for each ω X C ð
0 �U Ù Skw�Ø If z is continuously differentiable in U then curl z ¨
1

2
�∇ z − ∇ zT�Ø

3.2 Theorem. If z X CF�U� and q X DM�U�Ù there exists a unique measure

〈〈zÙq〉〉U X M�U ÙR� such that

�
U

� d 〈〈zÙq〉〉U ¨ lim
ρr0

�
U

�zρ ċ dq (3.4)

for every � X C ð
0 �U ÙR�Ø The measure 〈〈zÙq〉〉

U
is absolutely continuous with respect

to ‖q‖Ø

Here zρ is the ρ mollification of zØ The principal value on the right hand side of (3.4)
exists only because of the additional information that divU q is a measure and curl z

a bounded L
n measurable function: the proof of Proposition 4.3 (below) gives an

explicit formula for the value of the limit, which involves both divU q and curl zØ
It is clear from (3.4) that 〈〈zÙq〉〉U ¨ z ċ q if either z X CF�U� is continuous or if
q X DM�U� is of the form q ¨ qLn U where q X L1�U ÙRn�Ø

As mentioned in the introduction, we need the special case 〈〈∇ f Ùq〉〉U where
f X W 1Ù ð�U�Ø The pairing 〈〈ċÙ ċ〉〉U occurs in the following product rule for divergence
measure vectorfields and Lipschitz functions.

3.3 Theorem. If q X DM�U� and f X W 1Ù ð�U� then fq X DM�U� and

divU�fq� ¨ f divU q + 〈〈∇ f Ùq〉〉U Ø (3.5)

Also the following remark will be useful.

3.4 Remark. If z X CF�U�Ù q X DM�U�Ù and f X W 1Ù ð�U� then f z X CF�U�
and

〈〈f zÙq〉〉U ¨ 〈〈zÙ fq〉〉U ¨ f 〈〈zÙq〉〉U Ø

If K ⊂ RnÙ we endow LipB�K� with the norm

‖f ‖LipB�K� ¨ Lip�f � + sup !|f �x�| Ú x X K)

for any f X LipB�K� and DM�U� with the norm

‖q‖
DM�U� ¨ M�q� +M�divU q�

for any q X DM�U�Ø
The following form of the divergence theorem is the main result of the paper.
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3.5 Theorem. If q X DM�U� then there exists linear functionN
q ÙU�ċ� Ú LipB�ãU� r

R such that

N
qÙU�f |ãU� ¨ �

U

d 〈〈∇ f Ùq〉〉U + �
U

fd divU q (3.6)

for every f X LipB�Rn�Ø One has

N
qÙU�g� ² ‖q‖

DM�U�‖g‖LipB�ãU� (3.7)

for all g X LipB�ãU�Ø

The right hand side of (3.6) depends only on the boundary values of f Ø The normal
trace N

qÙU�ċ� is said to be (represented by) a measure if there exists a measure
ν X M�RnÙR�, supported by ãU Ù such that

N
qÙU�g� ¨ � g d ν

for every g X LipB�ãU�Ø Examples 3.8 and 3.9 show that the normal trace is generally
not a measure.

We now give a formula for the normal trace and a sufficient condition for the
trace to be a measure.

3.6 Theorem. Let q X DM�U� and let m Ú Rn r R be a nonnegative Lipschitz

function with sptm ⊂ clU which is strictly positive on U Ù and for each ε ± 0 let

Lε ¨  x X U Ú 0 ° m�x� ° ε(Ø

Then

(i) if f X LipB�Rn�, we have

N
qÙU�f |ãU� ¨ − lim

εr0
ε − 1 �

Lε

f d 〈〈∇mÙq〉〉U Û (3.8)

(ii) if

lim inf
εr0

ε − 1‖ 〈〈qÙ ∇m〉〉U ‖�Lε� ° ð (3.9)

then N
qÙU�ċ� is a measure.

A possible choice of m is

m�x� ¨










distãU�x� if x X U Ù
0 if x X Rn ∼ U Ø

A formula similar to (3.8) is found in [4; Equations (3.2)–(3.3)] in the context of
regions with Lipschitz deformable boundary.

3.7 Corollary. If q1Ùq2 X DM�U� and q1 Uε ¨ q2 Uε for some ε ± 0 where

Uε Ú¨  x X U Ú distãU�x� ° ε( thenN
q1 ÙU

�ċ� ¨ N
q2 ÙU

�ċ�Ø

The following two examples are illustrate the nature of the normal trace in two particular cases.
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3.8 Example. Let 1 ² α ° 3 and let q Ú R2 ∼  0( r R2 be defined by

q�x� ¨ �x2Ù −x1�/|x| α

for every x ¨ �x
1
Ù x
2
� X R2 ∼  0( and let U ¨  x ¨ �x1Ù x2� X R
2 Ú |x| ° 1Ù x2 ° 0(Ø The classical

divergence of q vanishes on R2 ∼  0(Ø We have

q X Lp�U ÙR2�






for 1 ² p ² ð if α ¨ 1Ù

for 1 ² p ° 2/�α − 1� if 1 ° α ° 3Ø

Thus q Ú¨ qL2 U is a well defined R2 valued measure. It turns out that q X DM�U�Ù divU q ¨ 0
and

NqÙU�g� ¨







































1

�
− 1
g�tÙ 0� sgn�t�|t| 1 − α dt if 1 ² α ° 2Ù

lim
εr0

�
 ε ° |t|² 1(

g�tÙ 0� sgn�t�|t| 1 − α dt if 2 ² α ° 3
(3.10)

for any g X Lip
B
�ãU�Û thus if 1 ² α ° 2 then N

qÙU�ċ� is a measure and if 2 ² α ° 3 then N
qÙU�ċ� is

not a measure. The principal value in (3.10)
2

exists for each Hölder continuous function g Ú ãU r R
of exponent β ± α − 2Ù i.e., for each g satisfying |g�x� − g�y�| ² H |x − y| β for some H and all

xÙ y X ãU Ø

3.9 Example. Let U be a bounded open set and L a straight line in Rn of unit direction e X Rn such

that K Ú¨ LP U © óØ Then H
1�K� ° ð and thus

q Ú¨ eH1 K

is a well defined Rn valued measure. One easily finds that q X DM�U� and divU q ¨ 0Ø We denote

by W 1Ù ð�K� the Sobolev space on the 1 dimensional set K ⊂ L and by h ′ the weak derivative of

an element h X W 1Ù ð�K�Ø We note that if f X W 1Ù ð�U� then the restriction f |K of f to K belongs

to W 1Ù ð�K� (recal our convention that the elements of W 1Ù ð�U� are represented by a continuous

functions). It turns out that

〈〈∇ f Ùq〉〉U ¨ �f |K� ′H1 K (3.11)

for any f X W 1Ù ð�U�Ø Furthermore, the relatively open subset K of L is a union of at most countably

many segments Ki ⊂ LÙ i X I Ù with endpoints xiÙ yi X L whose order we fix by �yi − xi� ċ e ± 0Ø (The

uncountable case arises if L P ãU has accumulation points.) It turns out that

N
qÙU�g� ¨ �

i X I
�g�yi� − g�xi�	 (3.12)

for any g X Lip
B
�ãU�Ø The sum in (3.12) is absolutely convergent since

�
i X I

|g�yi� − g�xi�| ² �
i X I
Lip�g�|yi − xi| ¨ Lip�g�H
1�K� ° ðÛ

if I is infinite then N
qÙU�ċ� is not represented by a measure.

To justify (3.11), we let � X Cð
0
�U ÙR�Ø If ρ is sufficiently small, we have �∇ f �ρ ¨ ∇ fρ on spt �

and the definition of q and an integration by parts shows that

�
U

��∇ f �ρ ċ dq ¨ − �
K

��|K� ′fρ|K dH
1Ø

The limit ρr 0 using (3.4) for the left hand side and fρ|K r f |K uniformly for the right hand side

gives

�
U

� d 〈〈∇ f Ùq〉〉U ¨ − �
K

��|K� ′f |K dH1 ¨ �
K

��f |K� ′ dH1Ø

To prove (3.12), we note that by divU q ¨ 0 and (3.11) the right hand side of (3.6) evaluates to

�
U

d 〈〈∇ f Ùq〉〉U ¨ �
K

�f |K� ′ dH1 ¨ �
iX I

�f �yi� − f �xi�	Ø
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3.10 Example. Let U ⊂ Rn be a bounded open set, let � Ú R r R
n be a bilipschitz map such

that ��t� Z U for all sufficently small and all sufficiently large t X R and whose derivative � ′

satisfies |� ′�t�| ¨ 1 for L1 a.e. t X RØ Let M Ú¨ ��R� P U Ù let V Ú¨ � − 1�M� ª � − 1�U�Ù and

let �uiÙ vi�Ù i X I Ù be a finite or countable system of all connected components of the open bounded

set V Ù with ui ° viØ Note that the index set I is infinite if ��R� P ãU has accumulation points. Let

q X M�U ÙRn�Ø Then

(i) q is a divergence measure vectorfield supported by M if and only if there exists a b X BV �V �
such that

q ¨ �b� ′� � � − 1
H
1 M Û (3.13)

here BV �V � is the space of functions of bounded variation on V Û
moreover, if q is of the form (3.13) then

(ii) divU q is given by

�
U

md divU q ¨ �
V

m � � db ′ (3.14)

for each m X Cð
0
�U ÙR� where b ′ X M�V ÙR� is the measure representing the weak derivative of

b X BV �V � (in other words, divU q is the pushforward �#b
′ of the measure b ′ by �);

(iii) if f X W 1Ù ð�U� then

〈〈∇ f Ùq〉〉 ¨ ��f � �� ′b	 � � − 1
H
1 M Û (3.15)

we recall that we represent the elements of W 1Ù ð�U� by continuous functions; hence f � � X
W 1Ù ð�V �Û we use the symbol �f � �� ′ to denote the weak derivative of f � �Û

(iv) if g X LipB�ãU� then

NqÙU�g� ¨ �
i X I

�g���vi�	b�vi� − g���ui�	b�ui�


with an absolutely convergent right hand side, where

b�ui� ¨ lim
trui
t X �ui Ù vi�

b�t�Ù b�vi� ¨ lim
trvi
tX �uiÙ vi�

b�t�Ù

and we note that the limits exist and are finite since b X BV �V �Ø

4 Newton homotopy and the pairing

To prove the existence of the duality pairing 〈〈zÙq〉〉U Ù we use the homotopy formula
(4.3) (below), which allows us to reconstruct a q X DM�Rn� from the locally
integrable functions HN q and HN divqØ Here HN is the ‘Newton homotopy’ of
scalar or vector valued measures defined by convolution integrals involving the Rn

valued singular kernel k Ú Rn ∼  0( r Rn given by

k�x� ¨ n − 1κ − 1
n x/|x|nÙ

x X Rn ∼  0( where κn is the volume of the unit ball in RnØ The two Newton
homotopies (4.1) and (4.2) and the homotopy formula (4.3) are special cases of
Newton homotopies of measures with values in the space of r vectors [25]. While
the definitions of HN and (4.3) appear to be new, Murat [19; Proof of Lemme 2]
and Anzellotti [2; Proof of Lemma 3.4] use Newton’s kernel to solve the equation
curl µ ¨ f in a similar context. See also [18; Theorems 2.7.3 and 3.7.2] for the scalar
valued case, which, however, is algebraically different.

The convergence of the integrals defining HN is governed by the convolutions
of the total variations of the involved measures with the scalar valued (Riesz) kernel
k Ú Rn r �0Ù ð� given by
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k�x� ¨ n − 1κ − 1
n |x| − n + 1Ù

x X RnÙ where we put |x| − n + 1 ¨ ð if x ¨ 0 and n ± 1Ø For any x X Rn we denote
by k

x
Ù k

x
the maps on Rn∼  x( given by k

x
¨ k�x − y�Ù k

x
�y� ¨ k�x − y� for any

y X Rn ∼  x(Ø
If µ is a nonnegative finite measure in RnÙ we define Gµ Ú Rn r �0Ù ð� by

Gµ�x� ¨ � kx
d µÙ

x X RnØ An application of Fatou’s lemma shows that Gµ is a lower semicontinuous
function.

4.1 Remark. If µ is a nonnegative finite measure thenGµ is a L
n locally integrable

function on RnÛ in fact if A ⊂ Rn is Ln measurable then

�
A

Gµ dL
n ² κ − 1/n

n �Ln�A�	1/nM�µ�Ø

If φÙq are measures with values inR and RnÙ respectively, we define the Newton

homotopiesHN φ of φ and HN q of q as functions with values in Rn and Skw by

HN φ�x� ¨ � k
x
dφÙ (4.1)

HN q�x� ¨ −2 � k
x
` dqÙ (4.2)

for every x X Rn for which G‖φ‖�x� ° ð or G‖q‖�x� ° ðØ Here the wedge product

of two vectors is defined by a ` b ¨ 1
2
�a � b − b � a� X Skw for any aÙ b X RnØ The

integrands in (4.1) and (4.2) are bounded by k
x
Û thus by Remark 4.1, the homotopies

are Ln locally integrable functions.

4.2 Proposition. If q X DM�Rn� then

q ¨ HN divq + divHN q (4.3)

in the sense of distributions, i.e., if d X C ð
0 �RnÙRn� then

� d ċ dq ¨ � d ċHN divq dLn − � curl d ċHN q dL
nØ (4.4)

Prove first Proposition 4.3 and Remark 4.4 the case U ¨ RnØ Let q X DM�Rn�
be fixed; recalling that HN divq and HN q are locally L

n integrable functions on
R
n, we let

F�w� Ú¨ � w ċHN divq dLn − � curlw ċHN q dL
n

for any w X CF�Rn� that vanishes outside a bounded set (depending on w). Prove
that for any z X CF�Rn� and � X C ð
0 �RnÙR� we have

lim
ρr0

�
U

�zρ ċ dq ¨ F��z�Ø (4.5)

We now use the homotopy formula (4.3) to prove Theorem 3.2 in the following
expanded form.
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4.3 Proposition. If z X CF�U� and q X DM�U�Ù there exists a unique measure

〈〈zÙq〉〉U X M�U ÙR� such that (3.4) holds for every � X C ð
0 �U ÙR�Ø The measure

〈〈zÙq〉〉
U

is absolutely continuous with respect to ‖q‖Û in fact there exists a unique

function den‖q‖Ù z
X Lð�‖q‖ÙRn� such that

〈〈zÙq〉〉U ¨ den‖q‖Ù z
‖q‖Û (4.6)

one has

‖ den‖q‖Ù z
‖Lð�‖q‖ V� ² ‖z‖Lð�V� (4.7)

for every open subset V of U Ø In particular,

M�〈〈zÙq〉〉U� ² ‖z‖Lð�U�M�q�Ø (4.8)

Recall that ‖ ċ ‖Lð�V� denotes the essential supremum norm on V with respect to the
Lebesgue measure. We shall prove the proposition simultaneously with the following
locality property of the pairing.

4.4 Remark. If V is an open subset of U , if z1Ù z2 X CF�U� coincide L
n a.e. on

V and if q1Ùq2 X DM�U� coincide on V in the sense that q1 V ¨ q2 V then

〈〈z1Ùq1〉〉U and 〈〈z2Ùq2〉〉U concide on V Ù i.e.,

〈〈z1Ùq1〉〉U V ¨ 〈〈z2Ùq2〉〉U V Ø (4.9)

5 The structure theorem

We employ the theory of flat chains [29; Part III], [7; Chapter Four] to prove Theorem
3.1.

We denote by D1 the set of all Rn valued distributions A, i.e., linear functions on
C ð
0 �RnÙRn� that are continuous in the Schwartz topology (see, e.g., [23; Chapter 6],

[7; Subsection 4.1.1]) of C ð
0 �RnÙRn�Ù and denote by

〈AÙ z〉

the value of A at z X C ð
0 �RnÙRn�Ø Following Federer [7; Subsection 4.1.7], we

call the elements of D1 the 1 dimensional currents. We can associate with any
q XM�RnÙRn� a current in D1 by

〈AÙ z〉 ¨ �
R n

〈zÙ dq〉

for every z X C ð
0 �RnÙRn�Ø Since A ¨ 0 if and only if q ¨ 0Ù we identify q

with A, define 〈qÙ z〉 Ú¨ 〈AÙ z〉Ù interpret M�RnÙRn� as a subset of D1 and write
M�RnÙRn� ⊂ D1Ø Accordingly also DM�Rn� ⊂ D1Ø

If z X C ð
0 �RnÙRn�Ù we define

|z| ù ¨ max !‖z‖Lð�Rn�Ù ‖ curl z‖Lð�Rn�)Ù

and if A X D1, we define

|A| ù ¨ sup "〈AÙ z〉 Ú z X C ð
0 �R

nÙRn�Ù |z| ù ² 1*Û
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we call |A| ù the flat norm of A if |A| ù ° ðØ We denote by Q1 the set of all A X D1 with
|A| ù ° ðÙ equipped with the flat norm, which makes it a Banach space. Noting that
DM�Rn� ⊂ Q1Ù we put

C
ù
1 Ú¨ the closure of DM�Rn� in Q

ù
1 with respect to | ċ | ù. (5.1)

The elements of C ù
1 are called flat 1 dimensional chains. We here note that on the 1

dimensional currents the boundary operator ãA ([7; Subsection 4.1.7]) coincides, to
within the− sign, with the divergence in the sense of distributions; thus the elements q

of DM�Rn� with compact support are Federer’s normal currents, defined generally
as currents such that both A and ãA are represented by measures with compact support.
Thus the definition (5.1) coincides with Federer’s realization of flat chains as a subset
of the space of currents (see [7; Subsections 4.1.12–4.1.19]); the isomorphy of this
space with the original Whitney’s [29] space of flat chains is explained in [7; pp.
377–378]. It can be shown that

C
ù
1 ∼DM�Rn� © óÙ

and
Q

ù
1 ∼C

ù
1 © óØ

The class of flat chains enjoys many strong geometric and analytic properties (such
as Theorem 5.3, below) as amply demonstrated by [29; Part III], [7; Chapter Four];
many of them not true for the currents from the larger spaces Q ù
1 and D1Ø

If m is any map defined on RnÙ we define its translation T
a
m by a X Rn by

T
a
m�x� ¨ m�x − a�Ù x X RnØ If A X D1 and a X RnÙ we define the translation T

a
A

of A by a by
〈T

a
AÙ z〉 ¨ 〈AÙT − a

z〉

for every z X C ð
0 �RnÙRn�Ø

5.1 Proposition. If A X C
ù
1 then |T

a
A − A| ù r 0 as |a| r 0Ø

It is possible to show [25] that this property actually characterizes the elements of
C

ù
1 among the elements of Q ù
1.

5.2 Remark. If q XM�RnÙRn� represents a flat chain and f X Lð�‖q‖ÙR� then fq
represents a flat chain also [7; Subsection 4.1.17] and clearly

|fq| ù ²M�fq� ²M�q�‖f ‖Lð �‖q‖�Û

in particular if E is a Borel subset of Rn then the measure q E represents a flat
chain; in particular, if q is a divergence measure vectorfield then q E represents a
flat chain but generally is not a divergence measure.

5.3 Theorem. ([7; Theorem 4.1.20 and Subsection 4.1.21]). If A X C
ù
1 then

I
1
1 �spt A� ¨ 0 implies A ¨ 0Û

if additionally A is represented by a measure q and E ⊂ Rn then

I
1
1�E� ¨ 0 implies ‖q‖�E� ¨ 0Ø
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Here spt A is the support of (the distribution) A and I
1
1 is the 1 dimensional integral-

geometric measure [7; Subsection 2.10.5 and Theorem 2.10.15]. We here note that
I
1
1 has a larger class of null sets than H
1 ([7; Subsection 2.10.6]), viz., I11 vanishes

on all purely unrectifiable sets, whereas H1 does not. This will be employed in the
proof of the following proposition.

5.4 Proposition. Let q X M�RnÙRn� be supported by a H
1 measurable set of

countably finite H1 measure. Then q represents a flat 1 dimensional chain if and only

if

q ¨ qsH
1 M (5.2)

where
M is a countably H1 rectifiable subset of Rn,

qs X L1�H1 MÙRn� is tangential toM Ø











(5.3)

5.5 Theorem. If A X C
ù
1 is represented by a measure q XM�RnÙRn� then

q ¨ qsH
1 M + qc + qrL

n (5.4)

where
M is a countably H1 rectifiable subset of Rn,

qs X L1�H1 MÙRn� is tangential toMÙ
qc X M�RnÙRn� is H1 diffuse and L

n singular,

qr X L1�RnÙRn�Ø







































(5.5)

5.6 Remark. By a method similar to that in the proof of Proposition 5.4 one can also
prove the following: If k is an integer satisfying 1 ² k ² n and q X M�RnÙRn� is

given by

q ¨ qsH
k M (5.6)

where
M is a countably Hk rectifiable set,

qs X L1�Hk MÙRn�Û











(5.7)

then q represents a 1 dimensional flat chain if and only if qs is tangential to M Ø

In contrast to Proposition 5.4, here the countable rectifiability (5.7) of M and the
absolute continuity (5.6) must be assumed (if k ± 1). The above assertion generalizes
the tangentiality assertions of [15; Proposition 1] from smooth manifolds to countably
rectifiable sets. If q is a measure given by (5.6) and (5.7) with 1 ° k ° n, then the de-
composition (5.4)–(5.5) takes the following form: the first and the third terms vanish,
while the second is equal to the present qØ This gives examples with nonvanishing
Cantor part in (5.4). Of course, q generally is not a divergence measure vectorfield.
A sufficient condition for q X DM�Rn� is, e.g., that M is a class C 2 k dimensional
manifold and qs is tangential and relatively compactly supported inM Ø Thus we have
examples of divergence measure vectorfields with nonvanishing Cantor parts.
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5.7 Remark. Proposition 5.4 and Theorem 5.5 easily generalize to flat chains of any
dimension kÙ 0 ² k ² nÙ as follows: denoting by bk the set of all k vectors on RnÙ
and saying that αs X L1�Hk MÙ bk� is tangential toM if αs�x� can be written as
a wedge product of some k tuple of vectors from Tank�MÙ x� for Hk a.e. x X MÙ
we have the following statements:

(i) if µ X M�RnÙ bk� is supported by a set of countably finite Hk measure then

µ represents a flat k dimensional chain if and only if µ is of the form

µ ¨ αsH
k M

where
M is a countably Hk rectifiable set,

αs X L1�Hk MÙ bk� is tangential toMÛ











(5.8)

(ii) if A is a k dimensional flat chain represented by a measure µ X M�RnÙ bk�
then µ is of the form

µ ¨ αsH
k M + µc + αrL

n (5.9)

where
M is a countably Hk rectifiable set,

αs X L1�Hk MÙ bk� is tangential toMÙ
µc X M�RnÙ bk� is Hk diffuse and L

n singular,

αr X L1�RnÙ bk�Ø







































(5.10)

We recall the class of rectifiable k dimensional currents, which, although defined
differently ([7; Subsection 4.1.24]), is a subset of the class of the flat chains considered
in (i). Namely, rectifiable currents are distinuished by the extra property that the mass
|αs�x�| of αs�x� is an integer for Hk a.e. x X MÛ this follows from the equivalence
of Conditions (1) and (4) in [7; Theorem 4.1.28]. We also note that one particular
case of (ii) is well known. Namely, if k ¨ n − 1 and v X BV �Rn� then the measure
∇ v can be identified, via the Hodge star operator, with an n− 1 dimensional flat chain
which is represented by a measure. Equation (5.9)–(5.10) then gives the classical
decomposition of ∇ v into the jump, Cantor, and absolutely continuous parts.
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25 Šilhavý, M.: Geometric integration theory and Cauchy’s stress theorem (2004)
(Multiplied notes from the Ravello Summer School in Mathematical Physics,
2004.)
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