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Abstract

Mathematical analysis of mass action models of large complex chemi-
cal systems is typically only possible if the models are reduced. The most
common reduction technique is based on quasi-steady state assumptions.
To increase the accuracy of this technique we propose delayed quasi-steady
state assumptions (D-QSSA) which yield systems of delay differential equa-
tions. We define the approximation based on D-QSSA and prove the corre-
sponding error estimate showing the accuracy of this approximation. Then
we define a class of well mixed chemical systems and formulate assumptions
enabling the application of D-QSSA. We also apply the D-QSSA to a model
of Hes1 expression to illustrate the improved accuracy of the D-QSSA with
respect to the standard quasi-steady state assumptions.

Keywords. Chemical dynamics, mass action, system reduction, ordinary differential

equations, delay differential equations, error estimate.

1 Introduction

The dynamic behaviour of complex chemical and biochemical systems can be
analysed by the mathematical tools of bifurcation analysis. However, in certain
situations the size of the problem can make these tools impractical or even impos-
sible to use. In these cases, we may try to reduce the system to make it amenable
to analysis while conserving its dynamic behaviour.

There are already many ideas and methods for model reduction of chemical
systems described in the literature. For example, a computational singular per-
turbation reduction method for chemical kinetics with slow and fast variables
is defined and analysed in [25]. The method of invariant manifold is presented
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in [7]. A global approach to model reduction based on the concept of minimal
entropy production and its numerical implementation can be found in [10]. A
model reduction technique for multiscale biochemical networks is described in
[17]. Model reductions based on quasi-steady state assumptions and variable
lumping are analysed from the point of view of control theory in [12]. A method
for approximation of the slow manifold of a complex system in cases when a di-
rect approximation is not possible is presented in [6]. A collection of methods for
analytical derivation and numerical computation of the slow invariant manifolds
can be found in [8]. Finally, the paper [15] reviews three general strategies for
model reduction of chemical systems: lumping, sensitivity analysis, and time-
scale analysis.

Nevertheless, the idea of using time delays for model reduction of chemical
systems has, to our knowledge, not been explored. Of course, various models of
chemical kinetics with time delays exist. For example, the law of mass action
is extended in [18] to allow for delayed effects. Delay differential equations are
used in [14] to model transcriptional delay. A stochastic algorithm with delays is
presented in [19]. However, a systematic approach for model reduction based on
delays does not appear to exist.

In the context of mass action models of chemical systems, the standard tool for
model reduction is the quasi-steady state assumption (QSSA). Mathematically,
mass action models are systems of coupled ordinary differential equations (ODEs)
for a number of variables. Based on practical knowledge of the chemical system,
these variables can, in some cases, be split into fast and slow variables, see e.g.
[5]. The application of the QSSA then replaces the ODEs for the fast variables
by algebraic equations, allowing them to be expressed algebraically in terms of
the slow variables, and the original system of ODEs, can thus be reduced to a
system for only the slow variables.

The QSSA is used extensively. The first application of the QSSA to chem-
ical kinetic systems dates back to 1913 [2, 22]. The QSSA has been analysed
many times, see the review [20] and references therein. Probably the best known
example of the application of the QSSA is the Michaelis–Menten kinetics [13].
A suitable change of variables can enhance the quality of the QSSA approxi-
mation, see for example the total QSSA approach [3]. The error of the QSSA
approximation has been analysed in [21], where ODEs for the error are derived.

Studying the error of the QSSA approximation, we note that in the original
system the fast variables always need a certain amount of time to reach their
quasi-steady states. Therefore, if the quasi-steady state changes (due to change
in the slow variables), the corresponding fast variable will reach the new value
of the quasi-steady state with a certain time delay. On the other hand, in the
reduced system the QSSA approximation stays in this quasi-steady state and,
thus, it changes immediately. This discrepancy between the original and reduced
systems can be naturally decreased by introducing time delays to the QSSA. This
new approach is called the delayed quasi-steady state assumption (D-QSSA).
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The idea of D-QSSA has been recently applied to a particular biochemical
system modelling circadian rhythms [23] to illustrate the accuracy of the D-
QSSA approximation. This has been the first attempt to use the D-QSSA with
a specific application and no analysis. However, the D-QSSA can be defined for
a general class of problems and its error can be rigorously analysed. Therefore,
we present below a general definition of the D-QSSA and its first error estimate.

In Section 2 we define the D-QSSA for a general linear ODE and we formu-
late and prove the corresponding error estimate. This is an upper bound for
instantaneous error of the D-QSSA approximation. It implies that in a special
case the error decreases exponentially towards zero as the system evolves in time.
Section 3 considers a general chemical system and its corresponding mass action
ODE model. We explicitly show how to apply the D-QSSA to such systems and
we rigorously state the necessary assumptions. In Section 4 we apply both the
QSSA and D-QSSA to a model of expression of Hes1 protein and compare the
accuracy of both approximations. Finally, Section 5 discusses the results and
draws conclusions.

2 Delayed quasi-steady state assumption and er-

ror estimates

The D-QSSA can be applied to an ordinary differential equation of the form

d

dt
x(t) = f(t)− g(t)x(t), for t ∈ (0, T ), (1)

where T > 0 and g(t) is positive in (0, T ). The D-QSSA approximation is defined
as follows.

Definition 2.1. The delayed quasi-steady state approximation x̃(t) to the solution
x(t) of equation (1) is given by

x̃(t) =
f(t− τ(t))

g(t− τ(t))
, where τ(t) =

1

g(t)
. (2)

Let us emphasize that x̃(t) is designed to approximate the long-time behaviour
of x(t). If t is close to zero then approximation (2) is still defined, but the quantity
t − τ(t) can be negative. Therefore, technically, the functions f and g have to
be defined for negative values of t as well. Consequently, for small values of t,
the approximation x̃(t) depends on arbitrary extensions of f and g to negative
values. Thus, we cannot expect good approximation qualities of x̃(t) for t close
to zero. This is in agreement with the properties of the standard QSSA and with
the error estimate presented below.
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The D-QSSA approximation can be derived in the case of constant g(t) from
the following expression for the solution of (1) with initial condition x(0) = x0:

x(t) = x0 exp[−tgc] +

∫ t

0

f(s) exp[(s− t)gc] ds,

where gc > 0 stands for the constant value of g(t). The integral in this expression
can be approximated by a one-node quadrature rule∫ t

0

f(s) exp[(s− t)gc] ds ≈ wf(t− τ), (3)

where the quadrature node t−τ and the quadrature weight w are to be determined
such that this quadrature rule is exact for all linear functions f . This can be
seen as a quadrature with weighting function ω(s) = exp[(s− t)gc]. Notice that
ω(t) = 1 and as s goes from t towards 0, values ω(s) decrease exponentially fast
towards zero. Thus, the value of integral (3) is influenced mainly by values of
f close to t. The values of f far from t have little influence on the value of
the integral. Therefore, the simple one-node quadrature rule provides reasonable
accuracy in many cases. Further, let us note that for t < τ the approximation
wf(t − τ) depends on values of f outside (0, t). This corresponds to the poor
approximation qualities of x̃(t) for small values of t.

As we mentioned above, quantities τ and w can be explicitly determined
such that quadrature rule (3) is exact for all linear functions f . The expressions
for τ and w are complicated, but if we neglect all terms that decline to zero
exponentially with t, we obtain τ = 1/gc and w = 1/gc. Consequently, the
approximation x(t) ≈ wf(t− τ) coincides with (2). For the explicit formulae for
τ and w and for more details about this heuristic derivation, we refer to [23].

Let us note that using a one-node quadrature rule with the node at t,∫ t

0

f(s) exp[(s− t)gc] ds ≈ w0f(t),

we can determine the weight w0 such that the rule is exact for all constant func-
tions f . Neglecting the exponentially decaying terms, we obtain w0 = 1/gc and,
thus, the standard QSSA approximation x(t) ≈ f(t)/gc.

To analyse the accuracy of the D-QSSA approximation (2), we present the
following error estimate. It is an estimate of the difference between the solution
x(t) of equation (1) and its D-QSSA approximation x̃(t) given by (2).

Theorem 2.1. Let T > 0 and 0 < ε ≤M be fixed constants, f ∈ C2([−1/ε, T ]),
and g ∈ C([−1/ε, T ]). Let 0 < ε ≤ g(t) ≤ M for all t ∈ [−1/ε, T ]. Further, let
x(t) ∈ C1([0, T ]) be the solution of the ODE (1) with initial condition x(0) = x0

and let x̃(t) be given by (2). Then

|x(t)− x̃(t)| ≤ 2

(
1

ε
− 1

M

)
max
[−1/ε,t]

|f |+ 1

ε3
max
[−1/ε,t]

|f ′′|+Q(t) (4)
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for all t ∈ [0, T ], where the prime denotes the derivative and

Q(t) =

[
|x0|+ 1

ε
max
[−1/ε,t]

|f |+ t

ε
max
[−1/ε,t]

|f ′|+ 1

2ε

(
1

ε2
+ t2

)
max
[−1/ε,t]

|f ′′|
]

exp(−εt).

Proof. Let t ∈ [0, T ] be fixed. Without loss of generality we set ε = min[−1/ε,t] g
and M = max[−1/ε,t] g.

First, we split the error x(t)− x̃(t) as follows:

|x(t)− x̃(t)| ≤ |x(t)− x̂(t)|+ |x̂(t)− x̃(t)| (5)

with

x̂(t) =
f(t− τ(t))

g(t)
.

Note that τ(t) ≤ 1/ε and, hence, the second term in this splitting can be easily
bounded as

|x̂(t)− x̃(t)| ≤
(

1

ε
− 1

M

)
max
[−1/ε,t]

|f |. (6)

Since the solution of (1) with initial condition x(0) = x0 can be expressed as

x(t) = x0 exp [−G(t)] +

∫ t

0

f(s) exp [G(s)−G(t)] ds,

where G(t) =
∫ t
0
g(r) dr, we can estimate

|x(t)−x̂(t)| ≤
∣∣x0 exp [−G(t)]

∣∣+∣∣∣∣∫ t

0

f(s) (exp[G(s)−G(t)]− exp[g(t)(s− t)]) ds

∣∣∣∣
+

∣∣∣∣∫ t

0

f(s) exp[g(t)(s− t)] ds− x̂(t)

∣∣∣∣ . (7)

Clearly, we can bound the first term on the right-hand side of (7) as∣∣x0 exp [−G(t)]
∣∣ ≤ |x0| exp[−εt]. (8)

To bound the second term, we consider

Z(s) = exp[G(s)−G(t)]−exp[g(t)(s−t)] = exp

[
−
∫ t

s

g(r) dr

]
−exp[g(t)(s−t)]

≤ exp[−ε(t− s)]− exp[−g(t)(t− s)].

Hence,∫ t

0

Z(s) ds ≤
∫ t

0

exp[−ε(t− s)]− exp[−g(t)(t− s)] ds

=
1

ε
− 1

g(t)
− exp[−εt]

ε
+

exp[−g(t)t]

g(t)
≤ 1

ε
− 1

g(t)
≤ 1

ε
− 1

M
.
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Similarly, since

Z(s) ≥ exp[−M(t− s)]− exp[−g(t)(t− s)],

we bound ∫ t

0

Z(s) ds ≥ 1

M
− 1

ε
.

Thus, the second term on the right-hand side of (7) can be estimated as∣∣∣∣∫ t

0

f(s) (exp[G(s)−G(t)]− exp[g(t)(s− t)]) ds

∣∣∣∣ ≤ (
1

ε
− 1

M

)
max
[0,t]
|f |. (9)

To estimate the final term on the right-hand side of (7), we employ the Taylor
expansion for s ∈ [0, t]:

f(s) = f(t− τ) + f ′(t− τ)(s− t+ τ) +R(s)(s− t+ τ)2/2,

where R ∈ C([0, t]) and τ = 1/g(t) agrees with definition (2). Hence, we can
calculate

I =

∫ t

0

f(s) exp[g(t)(s−t)] ds−x̂(t) = Q1+

∫ t

0

R(s)
(s− t+ τ)2

2
exp[g(t)(s−t)] ds,

where Q1 = [tf ′(t− τ)− f(t− τ)] τ exp[−g(t)t]. Since R can be bounded as
|R(s)| ≤ max[−1/ε,t] |f ′′|, we can estimate

|I| ≤ |Q1|+
τ 3

2
max
[−1/ε,t]

|f ′′|+ |Q2|, (10)

where Q2 = −1
2
τ(τ 2 + t2) exp[−g(t)t] max

[−1/ε,t]
|f ′′|.

Combining (5), (6), (7), (8), (9), (10), and using the fact that τ(t) ≤ 1/ε, we
obtain

|x(t)− x̃(t)| ≤ 2

(
1

ε
− 1

M

)
max
[−1/ε,t]

|f |+ 1

2ε3
max
[−1/ε,t]

|f ′′|+Q3,

where Q3 = |x0| exp[−εt] + |Q1|+ |Q2|. Clearly, Q3 ≤ Q(t).

Notice that if f , and its first two derivatives, are bounded then the reminder
Q(t) tends to zero as t tends to infinity. Hence, for long times the error estimate
(4) is dominated by the first two terms on its right-hand side. Further notice that
the first term vanishes if g(t) is constant and the second term vanishes if f(t) is a
linear function. In this case, the approximation (2) is asymptotically exact. We
formulate this statement rigorously:
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Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied. Further, let
g(t) = gc be constant and f(t) linear in [−1/ε, T ]. Then

|x(t)− x̃(t)| ≤
[
|x0|+ 1

gc
max
[0,t]
|f |+ |f

′|
gc
t

]
exp(−gct) (11)

for all t ∈ [0, T ].

Proof. This is an immediate consequence of Theorem 2.1, because we can consider
ε = M = gc and we have f ′′ = 0.

Notice that error estimate (11) implies that the error tends to zero as t tends
to infinity. Moreover, this decrease is exponentially fast.

3 D-QSSA for mass action systems

In this section we show that the mass action ODEs describing kinetics of chemical
systems can be, under certain assumptions, expressed in the form (1). We explain
how to use the D-QSSA (2) for these systems and provide an explicit formula for
the approximation.

We will consider general chemical systems and for their description we will
use the notation inspired by [4]. Consider nx chemical species X1, . . . , Xnx and q
chemical reactions

nx∑
j=1

AijXj
ki−→

nx∑
j=1

BijXj, i = 1, 2, . . . , q, (12)

where ki > 0 is the reaction rate of the i-th reaction. The stoichiometric coeffi-
cients Aij and Bij are assumed to be non-negative integers. Notice that system
(12) can be expressed in matrix-vector form as

AX
k−→ BX, (13)

where X = [X1, . . . , Xnx ]> is a column vector of chemical species, k = [k1, . . . , kq]
>

is a column vector of reaction rates, and A = [Aij] and B = [Bij] are q × nx ma-
trices of stoichiometric coefficients.

The time evolution of concentrations x(t) = [x1(t), . . . , xnx(t)]> of respective
chemical species is modelled by a mass action system of ODEs. To express this
system in a vector form, we denote by K ∈ Rq×q a diagonal matrix with values
k1, . . . , kq on the diagonal and by M = (B−A)> ∈ Rnx×q the stoichiometric ma-
trix. Further, we introduce the vector-matrix exponentiation [4]. By definition,
xA(t) is a vector in Rq with entries given by

∏nx

`=1 x
Ai`
` (t) for i = 1, 2, . . . , q. Now,

the mass action system can be expressed as

d

dt
x(t) = MKxA(t), t ≥ 0 (14)
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with an initial condition
x(0) = x0. (15)

Equivalently, system (14) can be expressed in component-wise notation as

d

dt
xj(t) =

q∑
i=1

Mjiki

nx∏
`=1

xAi`
` (t), j = 1, 2, . . . , nx. (16)

Note that Theorem 2 of [4] guarantees that solution x(t) of (14) has non-
negative entries for all t ≥ 0 provided x0 has non-negative entries. We will use
this fact in the rest of the paper.

The D-QSSA will be applied to a portion of system variables xj. Variables
approximated by the D-QSSA will be called fast, and the other variables slow.
Identification of the fast and slow variables can be done by the standard quasi-
steady state analysis, see e.g. [20]. Without loss of generality, we will assume that
variables x1, x2, . . . , xnf

are fast and will be approximated by the D-QSSA. The
dynamics of the slow variables xnf+1, . . . , xnx will be determined by the resulting
system of delay differential equations. Naturally, we require 0 < nf < nx.

In order to transform equations (16) for j = 1, 2, . . . , nf to the form (1), we
have to consider the following assumption on the chemical system (12).

A1. If Aij 6= Bij then either Aij = 0 or Aij = 1, for all i = 1, 2, . . . , q and
j = 1, 2, . . . , nf .

Under this assumption equations (16) for the fast variables can be expressed
in the form

d

dt
xj(t) = fj(t)− gj(t)xj(t), j = 1, 2, . . . , nf , (17)

where

fj(t) = fj(x1(t), . . . , xnx(t)) =
∑
i∈Fj

Mjiki

nx∏
`=1,`6=j

xAi`
` (t),

gj(t) = gj(x1(t), . . . , xnx(t)) = −
∑
i∈Gj

Mjiki

nx∏
`=1,`6=j

xAi`
` (t)

with Fj = {i ∈ {1, 2, . . . , q} : Mji 6= 0 and Aij = 0} and Gj = {i ∈ {1, 2, . . . , q} :
Mji 6= 0 and Aij = 1}.

Assumption A1 guarantees that there are no quadratic and higher-order terms
with respect to xj in (17). However, it limits the class of systems to which the
D-QSSA can be applied. For example, a simple dimerization reaction 2X1 → X2

violates assumption A1. On the other hand, many chemical systems satisfy this
assumption. For examples see Section 4 below or [23].

Note that in general fj(t) = fj(x1(t), . . . , xnx(t)) is a function of x1(t), . . . , xnx(t).
However, practically it does not depend on all x1(t), . . . , xnx(t). In fact, fj is a
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function of x`(t) for ` ∈ F̃j, where F̃j = {` 6= j : ∃i ∈ Fj : Ai` 6= 0}. Namely

fj(t) = f({x`(t) : ` ∈ F̃j}). Similarly, gj(t) = g({x`(t) : ` ∈ G̃j}), where

G̃j = {` 6= j : ∃i ∈ Gj : Ai` 6= 0}.
Now, we are ready to apply the D-QSSA (2) to equations (17). As a result

we obtain approximations

x̃j(t) =
fj(t− τj(t))
gj(t− τj(t))

, where τj(t) =
1

gj(t)
, j = 1, 2, . . . , nf . (18)

As was recognized already in Definition 2.1, these assumptions are well defined
only if all gj(t) are positive. Therefore we make the following assumption.

A2. Let gj(t) > 0 for all t > 0 and j = 1, 2, . . . , nf .

We use approximations (18) to reduce system (16). In order to do this in a
straightforward way, we will assume that the functions x̃j are independent of all
xk, j, k = 1, 2, . . . , nf . This means that functions fj and gj for j = 1, 2, . . . , nf

depend on xk for k = nf + 1, . . . , nx only. This assumption can be rigorously
formulated in terms of sets F̃j and G̃j as follows.

A3. Let F̃j∪G̃j be such that it does not contain 1, 2, . . . , nf for all j = 1, 2, . . . , nf .

Thus, the functions x̃j can be expressed in terms of xnf+1, xnf+2, . . . , xnx , i.e.,

x̃j(t) = x̃j(xnf+1(t), . . . , xnx(t)) for j = 1, 2, . . . , nf . (19)

These relations can be substituted into (16) as approximations for x1, x2, . . . , xnf

and we obtain the reduced system

x̃j(t) =
fj(x̃nf+1(t− τj(t)), . . . , x̃nx(t− τj(t)))
gj(x̃nf+1(t− τj(t)), . . . , x̃nx(t− τj(t)))

, j = 1, 2, . . . , nf , (20)

d

dt
x̃j(t) =

q∑
i=1

Mjiki

nf∏
`=1

x̃Ai`
` (t) ·

nx∏
`=nf+1

x̃Ai`
` (t), j = nf + 1, nf + 2, . . . , nx, (21)

where

τj(t) =
1

gj(x̃nf+1(t), . . . , x̃nx(t))
, j = 1, 2, . . . , nf . (22)

System (20)–(21) is a system of nx − nf delay differential equations with delays
(22) dependent on the state variables x̃nf+1(t), . . . , x̃nx(t). To make this system
solvable, we must have values of xj(t) for t negative. The simplest assumption is
the constant extension of the initial condition (15):

xj(t) = x0j for t ≤ 0 and j = nf + 1, nf + 2, . . . , nx,

where x0j stand for the entries of x0.
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The fact that delays are state dependent might complicate the subsequent
analysis, but in practical cases these delays can be approximated by constants.
For an illustration of this effect, see Section 4 below.

Assumption A3 is not fundamental. If it is not satisfied, then the reduction
method can still be used in a recurrent manner. We can decrease the number of
fast variables until assumption A3 is satisfied and construct the reduced system
(20)–(21) with a smaller number of fast variables. Then we can attempt to reduce
the resulting system again. In many cases this recurrent reduction enables us to
reduce the original system substantially.

Let us note that after one step of this reduction, the system need not be in
mass action form. However, as soon as the particular equation can be expressed
in the form (2) with positive g(t) then the D-QSSA can be applied.

Finally, let us discuss the assumption A2 and sufficient conditions for its va-
lidity. Functions gj(t) = gj(x1(t), . . . , xnx(t)) are in general polynomials in xi(t),
i = 1, 2, . . . , nx. Since xi(t) are non-negative, assumption A2 requires positiv-
ity of a multivariate polynomial in the non-negative orthant. Characterization
of positive polynomials is a difficult question connected to Hilbert’s seventeenth
problem [16], however, we can provide a simple sufficient condition. A multi-
variate polynomial is positive in the positive orthant if all its coefficients are
non-negative and at least one term is positive. This condition can be used to
derive conditions for the chemical system (12) guaranteeing assumption A2.

Lemma 3.1. Let us consider the sets H(m, j) = {i ∈ Gj : Ai` = Am` for all
` = 1, 2, . . . , nx, ` 6= j} for m ∈ Gj and j = 1, 2, . . . , nf , and the following
assumptions.

A2′. Let
∑

i∈H(m,j)Mjiki ≤ 0 for all m ∈ Gj and all j = 1, 2, . . . , nf .

A2′′. Let there exist m∗ ∈ Gj such that
∑

i∈H(m∗,j)Mjiki < 0 and
∏nx

`=1,`6=j x
Am∗,`
` (t) >

0 for all t > 0 and j = 1, 2, . . . , nf .

Then assumption A2 is satisfied.

Proof. Let j ∈ {1, 2, . . . , nf} be fixed. Clearly, we can split the index set Gj as
Gj = H(m1, j) ∪ H(m2, j) ∪ · · · ∪ H(mr, j), where m1,m2, . . . ,mr ∈ Gj are such
that the sets H(m1, j),H(m2, j), . . . ,H(mr, j) are pairwise disjoint. This enables
us to express g(t) as

g(t) = −
r∑
s=1

 ∑
i∈H(ms,j)

Mjiki

 nx∏
`=1,`6=j

x
Ams,`

` (t).

Thus, the non-negativity of x`(t) and assumption A2′ imply non-negativity of all
terms in this expression. Similarly, assumption A2′′ implies positivity of at least
one of these terms.

10



4 Numerical example

4.1 Model reduction

Let us consider the following chemical system which was inspired by the model
[14] for expression of the Hes1 protein:

D
αm−→ D +M M

αp−→M + P D + nP
γ1−−→
γ−1
←−−D′ M

µm−→ ∅ P
µp−→ ∅,

where D corresponds to the hes1 gene, M to hes1 mRNA, and P to Hes1 protein.
In this model, the Hes1 protein can bind to n promoter sites of the gene producing
an inactive complex D′. The rate constant αm corresponds to transcription of
the gene to the mRNA molecule, αp to translation of the mRNA to the protein,
γ1 and γ−1 are binding and unbinding rates of Hes1 to the promoter region, and
µm and µp are the degradation rates of M and P , respectively.

The law of mass action yields a system of ODEs for concentrations of D′ =
D′(t), D = D(t), M = M(t), and P = P (t) of the form (14). We complete this
system with a natural initial condition

D(0) = 1, D′(0) = 0, M(0) = 0, P (0) = 0. (23)

Biologically, binding and unbinding of a transcription factor (Hes1 protein in this
case) to the promoter region of a gene is often a frequently occurring reaction
in comparison with the relatively slow processes of transcription and translation.
Therefore, in analogy with [24], we consider D and D′ to be the fast species.
With this choice, we can readily verify the validity of assumptions A1 and A2.
However, assumption A3 is not satisfied. Fortunately, this assumption is technical
only. Moreover, in this case it can be easily overcome by elimination of one of
the variables D or D′.

Initial condition (23), together with the fact that D(t) + D′(t) is constant,
implies D′(t) = 1−D(t). Thus, eliminating variable D′(t) from the system yields
the following three equations:

d

dt
D = γ−1 − (γ−1 + γ1P

n)D, (24)

d

dt
M = αmD − µmM, (25)

d

dt
P = αpM − µpP + n [γ−1 − (γ−1 + γ1P

n)D] . (26)

Notice that equation (24) now satisfies all assumptions A1–A3.
It is convenient to rescale the unknowns in this system to be of comparable

size. We follow the scaling from [14], define m = M/αm, p = P/(αmαp), and
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transform system (24)–(26) to

d

dt
D = γ−1 − (γ−1 + γpn)D, (27)

d

dt
m = D − µmm, (28)

d

dt
p = m− µpp+

n

α
[γ−1 − (γ−1 + γpn)D] . (29)

Here, α = αpαm and γ = γ1(αpαm)n.
To use the standard QSSA, we approximate D(t) by its quasi-steady state

approximation

D̂(t) =
γ−1

γ−1 + γp̂n(t)
. (30)

Functions p̂(t) and m̂(t) approximate p(t) and m(t), respectively, and are deter-
mined by reducing system (27)–(29) to the following two equations:

d

dt
m̂ =

γ−1
γ−1 + γp̂n

− µmm̂, (31)

d

dt
p̂ = m̂− µpp̂. (32)

Alternatively, we can reduce system (27)–(29) using the D-QSSA. Clearly,
equation (27) is in the form (2) with x(t) = D(t), f(t) = γ−1 and g(t) = g(p(t)) =
γ−1 + γpn(t). Thus, Definition 2.1 yields the approximation

D̃(t) =
γ−1

γ−1 + γp̃n(t− τ(t))
, where τ(t) =

1

γ−1 + γp̃n(t)
. (33)

According to (20)–(21), system (27)–(29) reduces to the following system of dif-
ferential equations with delay:

d

dt
m̃(t) = D̃(t)− µmm̃(t),

d

dt
p̃(t) = m̃(t)− µpp̃(t) +

n

α

[
γ−1 − (γ−1 + γp̃n(t))D̃(t)

]
.

Alternatively, we can use the substitution (33) and rewrite this system as

d

dt
m̃(t) =

γ−1
γ−1 + γp̃n(t− τ(t))

− µmm̃(t), (34)

d

dt
p̃(t) = m̃(t)− µpp̃(t) + γ−1

n

α

[
1− γ−1 + γp̃n(t)

γ−1 + γp̃n(t− τ(t))

]
. (35)

The initial condition (23) extended to negative values of t reads

m̃(t) = 0, p̃(t) = 0 for all t ≤ 0. (36)
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At this point, it is interesting to compare the derived systems (31)–(32) and
(34)–(35) with the rescaled version of the original delay differential equation
system use in [14]:

d

dt
m(t) =

1

1 +
(
p(t− τtr)/p0

)n − µmm(t), (37)

d

dt
p(t) = m(t)− µpp(t). (38)

Here, m(t) and p(t) model the rescaled concentrations of M and P , respectively,
in the same manner as solutions of systems (31)–(32) and (34)–(35). A dis-
tinctive feature of system (37)–(38) is the delay τtr, which is interpreted as the
transcriptional delay. Transcription is a complicated process which moves se-
quentially along the chain of the mRNA molecule and synthesizes a protein. The
time needed to complete the synthesis can be significant and, therefore, system
(37)–(38) compensates for it by introducing the delay τtr.

Systems (31)–(32) and (34)–(35) have been derived from mass action kinetics
using the QSSA and the D-QSSA, respectively. However, system (37)–(38) was
introduced in a phenomenological manner using the heuristic Hill function [1 +
(p/p0)

n]−1 combined with the time delay τtr corresponding to transcription, see
[14] and [9]. Interestingly, if p0 = (γ−1/γ)1/n and τ(t) = τtr then equations (34)
and (37) are identical. Similarly, equation (32) is the same as (38). Thus, the
system (37)–(38) can be rigorously derived from the mass-action kinetics using
the QSSA and the D-QSSA. However, the biological meaning of the delay τ(t)
in (34) and the delay τtr in (37) differs. The delay τ(t) compensates for the time
needed to bind (or unbind) n molecules of P to the promoter region of hes1 gene,
while τtr corresponds to the transcriptional delay. Therefore, it is not biologically
plausible to identify these two delays. From a biological viewpoint, these delays
should be summed up. However, the D-QSSA methodology can be used to derive
the transcriptional delay rigorously, but this would require a more detailed mass
action model of transcription, for example the model [19].

4.2 Numerical results

We will numerically solve and compare system (27)–(29) with its QSSA approxi-
mation (31)–(32) and its D-QSSA approximation (34)–(35). We consider param-
eter values from [14]. However this reference provides values for n, µm, µp and
not for γ, γ−1, and α, because these are irrelevant for system (37)–(38). Instead,
reference [14] provides the value p0 = 100. Since pn0 = γ−1/γ, we choose values of
γ and γ−1 to agree with this relation. In particular, we consider

n = 5, µm = µp = 0.03, γ = 2 · 10−12, γ−1 = 0.02, α = 500. (39)

The systems of ODEs (27)–(29) and (30)–(32) can be solved by practically
any ODE solver. We use the Matlab ode solver. Numerical solution of a system
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Figure 1: Numerical solutions p(t), p̂(t), and p̃(t) of ODE system (27)–(29),
QSSA system (30)–(32), and D-QSSA system (33)–(35). Left panel corresponds
to parameter values (39), the right panel to (40).

with delays is straightforward. For simplicity, we use the explicit Euler method
with a sufficiently small time step. In every time step, we compute the delay τ(t)
given by (33) and use the corresponding historical value p̃(t − τ(t)) to evaluate
the right-hand side of (34)–(35). Therefore, values of p̃ have to be stored in every
time step.

Figure 1 (left) presents numerically computed values of p(t), p̂(t), and p̃(t)
for t ∈ [0, T ] as given by (27)–(29), (30)–(32), and (33)–(35), respectively. We
observe that the approximation provided by the D-QSSA is much more accurate
than the standard quasi-steady state approximation. Quantitatively, the L2 rel-
ative error of the quasi-steady state solution p̂ is approximately 13 %, while the
relative error of the D-QSSA solution is approximately 2.4 %. To be rigorous,

‖p− p̂‖L2(0,T )

‖p‖L2(0,T )

.
= 0.13, and

‖p− p̃‖L2(0,T )

‖p‖L2(0,T )

.
= 0.024.

To show the quality of the QSSA and D-QSSA approximations also in different
parameter regimes, we change the values of parameters γ and γ−1 to

γ = 10 and γ−1 = 10−4 (40)

and keep the other parameters the same as in (39). This new choice of γ and
γ−1 corresponds to p0 = (γ−1/γ)1/n = 10. Figure 1 (right) shows the numer-
ical solutions for parameter values (40). In this case the relative error of the
quasi-steady state solution is approximately 65 % and the error of the D-QSSA
is approximately 12 %.

For completeness, Table 1 presents relative errors of all three variables in the
system for both sets of parameters (39) and (40). This table confirms that the
D-QSSA provides a considerably more accurate approximation than the QSSA
for all variables in the system.
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Parameters (39) Parameters (40)
D m p D m p

rel. err. QSSA 32 % 18 % 13 % 77 % 65 % 65 %
rel. err. D-QSSA 12 % 3.6 % 2.4 % 28 % 12 % 12 %

Table 1: Relative errors of QSSA and D-QSSA for all variables of the system and
for both sets of parameters.

The a priori error estimate (4) provides a guaranteed bound on the error.
It is accurate if the function g(t) is close to constant and bounded well away
from zero. However, in general it can overestimate the true error considerably,
especially if the function g(t) varies significantly or if it’s value is close to zero.
The current example has both of these unfavourable properties. The quantities
in (4) are ε = γ−1, M = γ−1 + γmax[0,T ] |p|n, f ′ = f ′′ = 0, and x0 = D(0) = 1.
Using, for illustration, parameter values (39) and estimate p̃(t) ≤ 300, the error
bound (4) yields

|D(t)− D̃(t)| ≤ 1.99 + 2 exp(−0.02t),

while the true error is at most 0.32 and it does not exceed 0.05 for t > 50.
Nevertheless, this shows that the D-QSSA can provide accurate results even if
the error estimate (4) does not predict so.

Parameter values (39) and (40) have been chosen to show the potential of the
D-QSSA technique. In general, if we increase γ−1 and correspondingly decrease
γ to keep the ratio γ−1/γ = pn0 constant, then the delay τ(t) given in (33) attains
smaller values, because τ(t) ≤ 1/γ−1. Eventually, it is so small that the D-QSSA
and QSSA approximations practically coincide. This is the situation when the
two time scales in the system are well separated and both approaches provide
very accurate approximation. However, in numerical tests we performed in this
regime, the D-QSSA was always more accurate than the QSSA. On the other
hand, if we decrease γ−1 and increase γ to keep the ratio γ−1/γ = pn0 constant,
then the delay τ(t) attains high values and the D-QSSA becomes very inaccurate.
However, this is the situation when the time scales are not well separated and
the standard QSSA is not accurate either. This behaviour of the D-QSSA is well
explained by the dependence of the error estimate (4) on ε.

Finally, we note that all these results were achieved with the delay as defined
in (33). This delay is state dependent, because it depends on the value p̃(t). This
might be a hindrance and therefore we have tried to replace the state dependent
delay by a constant delay. Based on experimental fitting to the system (24)–
(26), we have found that even a constant delay can provide very accurate results.
Choosing τ(t) = 6 for parameter set (39) and τ(t) = 0.89 for parameters (40),
we achieve relative errors in p of approximately 1 %. However, the accuracy of
these approximations is quite sensitive to the value of the delay and so far it is
not clear how to determine the optimal constant value of the delay.
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5 Discussion and conclusions

In this paper, we present the technique of D-QSSA and prove a corresponding
error estimate. The technique is well justified for equations of the form (1). We
also show explicit application of the D-QSSA to a general mass action model
of a general chemical system. However, the D-QSSA can be applied only if as-
sumptions A1–A3 are satisfied. Assumption A1 means that the stoichiometric
coefficients of the fast chemical species on the reactant side of the chemical equa-
tion cannot be greater than one, unless the species is a catalyst. This is not as
severe a restriction as it may first look, because many biochemical reactions are
of this type and, moreover, the assumption concerns fast species only.

Assumption A2 requires positivity of functions gj(t) in the equations for the
fast species. This is a technical assumption whose validity can be guaranteed
from the stoichiometry and rate constants of the chemical system by sufficient
conditions A2′ and A2′′.

Assumption A3 means that the fast variables are independent in the sense that
reactants of all reactions, where a fast species is either produced or consumed,
do not involve any other fast species. This tends to be satisfied in biochemical
systems if the fast species correspond to genes, because genes do not directly
influence each other. Moreover, this assumption is not fundamental, due to the
possibility of recurrent application of D-QSSA (see Section 3).

To summarise, these assumptions are not too restrictive and make the tech-
nique of D-QSSA applicable to the majority of mass action models of biochemical
systems.

The main idea of the D-QSSA is the introduction of a time delay to improve
accuracy. The standard QSSA ignores the time needed by fast variables to reach
their steady states. This may result in considerable errors. The D-QSSA com-
pensates for this time delay and improves the accuracy of the approximation. In
the example presented in Section 4, the D-QSSA exhibits more than five times
smaller error in comparison with the standard QSSA.

In comparison with the standard QSSA, the D-QSSA seems to be especially
useful for oscillating systems. The standard QSSA usually causes considerable
errors in both the period and amplitude of oscillations [24]. On the other hand,
the D-QSSA enables this error to be reduced substantially. In [23] we have
successfully applied the technique of D-QSSA to a system for modelling circadian
rhythms [24]. This system is described by nine ODEs and it can be reduced to
two. The standard QSSA yields roughly 30 % error in the period, while the
D-QSSA approach approximates the period with errors of about 1–2 %.

The delay in the D-QSSA systems is in general state dependent. This might
be problematic for both numerical solution and subsequent analysis. However,
numerical experiments both in this paper and in [23] show that a constant ap-
proximation of the state dependent delay seems to provide accurate results as
well. Nevertheless, the quality of the approximation is quite sensitive to the
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value of the delay and its optimal choice is not clear. To make the constant delay
approach practical, subsequent research is necessary.

The essential first step for both the standard QSSA and the D-QSSA is the
identification of the fast variables. However, in some systems none of the variables
can be considered as fast, while a suitable combination can. Reference [11] shows
how to identify such combinations and how to apply the QSSA to these variables.
The technique of the D-QSSA can be applied in these cases as well and we will
investigate this possibility in future research.

In chemical systems, the delay in the D-QSSA depends also on the rate con-
stants of the chemical reactions involved. Thus, the technique of D-QSSA can
be used in situations where complex chemical processes are modelled by a simple
reaction with a time delay [1, 14, 19], to determine and analyse how the delay
actually depends on various parameters of the system. This promises new insight
and understanding of models with time delays. We plan, in future work, to apply
the D-QSSA to a detailed chemical model of transcription [19] to derive and anal-
yse the dependence of the transcriptional delay on the rates of the elementary
chemical reactions which comprise the process.
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