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Iterative methods in exact arithmetic

generate a sequence of approximate solutions xg, x1,...,2, — &
to the solution of Ax = b with residual vectors
ro=b— Axg,..., 7, =b— Ax, — 0

Iterative methods in finite precision arithmetic

compute approximations xg, Z1,...,Z, and updated residual
vectors 7o, 71, . . ., 7, Which are usually close to (but different from)
the true residuals b — A%,



Two main questions and two main effects

» How good is the computed approximate solution Z,? How
many (extra) steps do we need to reach the same accuracy as
one can get in the exact method?

» How well the computed vector 7, approximates the (true)
residual b — AZ,? Is there a limitation on the accuracy of the
computed approximate solution?

Two effects of rounding errors:

» Delay of convergence
» Maximum attainable accuracy
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Stationary iterative methods

v

Az =b A=M-N,G=M'N, F=NM""

> A: Ma:kJrl szk+b

B: xpi1 = xk + M (b — Axy)

v

Inexact solution of systems with M: every computed solution ¢ of
My = z is interpreted as an exact solution of a system with perturbed
data and relative perturbation bounded by parameter 7 such that

M+AM)g =2z, [[AM| < 7[M], TEM) <1

v

Higham, Knight 1993: M triangular, 7 = O(u)



Accuracy of the computed approximate solution
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Higham, Knight 1993, Bai, R, 2012



Numerical experiments: small model example

A = tridiag(1,4,1) € R 5 = A ones(100, 1),
k(A) = [|A]| - A7 = 5.9990 - 0.4998 ~ 2.9983
A=M-N, M=D—-L, N=U
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normwise backward error
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relative error norms
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normwise backward errors
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Two-step splitting iteration methods

Mizyyq/0 =Nz + b, A= M1 -M
Moz = Nazpp12+b, A=Mz—Ns

Numerous solution schemes: Hermitian/skew-Hermitian (HSS) splitting,
modified Hermitian/skew-Hermitian (MHSS) splitting, normal

Hermitian /skew-Hermitian (NSS) splitting, preconditioned variant of modified
Hermitian /skew-Hermitian (PMHSS) splitting and other splittings, ...

Bai, Golub, Ng 2003, 2007, 2008; Bai 2009
Bai, Benzi, Chen 2010, 2011; Bai, Benzi, Chen, Wang 2012
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Two-step splitting iteration methods

Tr+1/2 = Tk + Ml_l(b — Axy)
Th41 = Tpy1/2 + My b— Azpg12)
<~
Ty = Tk + (M7 H+ MG — MG TAMTY) (b — Axy)
=y + (T4 M5 "NDOM (b — Axy)
=z + M T + NaMTH (b — Axp)

max;=o,..., k{”izn}
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Numerical experiments: small model example

A = tridiag(2,4,1) € R b = A ones(100, 1),
k(A) = ||A]|l - |[A™Y| = 5.9990 - 0.4998 ~ 2.9983

A=H+S8, H:%(A+AT), S:%(A—AT)

03 _1)

S = tridiag( L 3

H:tridiag(g,él,g), >
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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [(xz\ _(f
BT o0o)\y) \o)°

» A is a square n X n nonsingular (symmetric positive definite) matrix,

» B is a rectangular n X m matrix of (full column) rank m.



Schur complement reduction method

» Compute y as a solution of the Schur complement system
BTA'By=BTA7'f,
> compute x as a solution of
Ax = f — By.

> Segregated vs. coupled approach: zj and yi approximate solutions to =
and y, respectively.

> Inexact solution of systems with A: every computed solution 4 of
Au = b is interpreted as an exact solution of a perturbed system

(A+AA)i =b+ Ab, [|AA] < 7||A[], [|Ab]| < 7[bll, Tr(A) < 1.



Iterative solution of the Schur complement system

choose yo, solve Axg = f — Byo

compute ay, and p{*’

Ye+1 = Yk + Otkpiy)

solve Ap\*) = —Bp¥
back-substitution:

Az zjp1 = o + apl”, inner

B: solve Azky1 = f — Bygi1, iteration

C: solve Aup, = f — Az, — Byg+1,

Th4+1 = Tk + Uk- )

A = BT

outer
iteration



Accuracy in the saddle point system

17 — Az — Bl < T 1y 4y,

I 7(d)
= BTa. - il < S LA B 111+ 1815,

Yi = max{||9:]| | =0,1,...,k}.

Back-substitution scheme ar | ag

A:  Generic update
Tht+1 = Tk + APy,

B: Direct substitution
Try1 = A (f — Byps1) additional

C: Corrected dir. subst. system with A
Trs1 =k + A7 (f — Az — Byrya)

(z) T u

—B"A'f+ B"A'Bjr = —B 4, — BTAT'(f — Ay — Bij)



Numerical experiments: a small model example

A = tridiag(1,4,1) € R B — rand(100, 20), f = rand(100,1),

k(A) = ||A||l - |[A7Y] = 5.9990 - 0.4998 ~ 2.9983,
®(B) = ||B|| - | BT|| = 7.1695 - 0.4603 ~ 3.3001.

[R, Simoncini, 2002]



Generic update: 1 = o3 + ozkpl(f’)
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Direct substitution: z3.1 = A~ (f — Bypi1)
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Corrected direct substitution: x4 = x5, + A~ (f — Az, — Bypy1)
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Conclusions

"new_value = old_value 4+ small_correction”

» Fixed-precision iterative refinement for improving the computed solution
Told to a system Az = b: solving update equations Azcorr = 7 that have
residual » = b — Ayoq as a right-hand side to obtain Tnew = Told + Zcorr,
see [Wilkinson, 1963], [Higham, 2002].

» Stationary iterative methods for Ax = b and their maximum attainable
accuracy [Higham and Knight, 1993]: assuming splitting A = M — N and
inexact solution of systems with M, use Tnew = Zold + Mﬁl(b — Azoig)
rather than Znew = M~ '(Nzoua + b), [Higham, 2002; Bai, R].

» Two-step splitting iteration framework: A = M; — N1 = My — N>
assuming inexact solution of systems with M7 and Ma, reformulation of
Mizy/5 = Niolad + b, MaZnew = Nox1/2 + b, Hermitian/skew-Hermitian
splitting (HSS) iteration [Bai, Golub and Ng 2003; Bai, R].

» Saddle point problems and inexact linear solvers: Schur complement and
null-space approach [Jirdnek, R 2008]



Thank you for your attention.

http://www.math.cas.cz/rozloznik
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The maximum attainable accuracy of saddle point solvers

> The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [Jirdnek, R, 2008].
The schemes with (generic or corrected substitution) updates deliver
approximate solutions which satisfy either the first or second block
equation to working accuracy.

» Care must be taken when solving nonsymmetric systems [Jirdnek, R,
2008], all bounds of the limiting accuracy depend on the maximum norm
of computed iterates, cf. [Greenbaum 1994,1997], [Sleijpen, et al. 1994].

iteration number k



Null-space projection method

» compute z € N(B”) as a solution of the projected system
(I-INA({I -z = —1I)f,
> compute y as a solution of the least squares problem
By~ f — Ax,

I = B(BTB)™' BT is the orthogonal projector onto R(B).
> Schemes with the inexact solution of least squares with B. Every

computed approximate solution © of a least squares problem Bv = c is
interpreted as an exact solution of a perturbed least squares

(B+ AB)0 = c+ Ac, ||ABJ < 7||BJ|, ||Ac|| < 7|l¢||, Tr(B) < 1.



Null-space

projection method

choose zg, solve Byo ~ f — Axo

compute ay, and p\* € N(BT)

Tk4+1 = Tk + Qpy,

(z)

(@)

W) g (@) (@)
"k

solve Bp,, — arAp;,

back-substitution:

A: g1 = i +py”,
B: solve Byix4+1 ~ f — Azk41,
C: solve Bvy =~ f — Axk4+1 — Byk,
Yk+1 = Yk + Vk.
(=)

Tag1 = Th akAp(z) Bp,(cy)

inner
iteration

outer
iteration



Accuracy in the saddle point system

s — Be _ a@y < Olas)r(B) AlX
17 = Ad — Bin 771l < TEZT (U 14K
R O(7)k(B) o
— BT < B||X
H xk” =71_ TH(B) H H k>
Xy = max{||&]| | =0,1,...,k}.
Back-substitution scheme Qas
A:  Generic update
_ (y) u
Yk+1 = Yk + Dy,
B: Direct substitution r

Yes1 = BI(f — Azpqa)

C: Corrected dir. subst.
Ye+1 = Y + BI(f — Azey1 — Byr)

additional least
square with B



Generic update: yx11 = Yk +P;(€y)
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Direct substitution: i1 = BT (f — Azjyq)
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Corrected direct substitution: ypr1 = yr + BT (f — Azp1 — Byg)
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