Numerical behavior of GMRES for singular EP and GP systems

Keiichi Morikuni ${ }^{1}$ Miroslav Rozložník ${ }^{2}$

${ }^{1}$ University of Tsukuba
${ }^{2}$ Czech Academy of Sciences

Academy of Mathematics and Systems Sciences Chinese Academy of Sciences, Institute of Comput. Math. and Sci./Engrg. Computing, Beijing, August 24, 2018.

Generalized Minimal RESidual method [saad, schultz 1986]

Given the system $A \boldsymbol{x}=\boldsymbol{b}$, the initial guess \boldsymbol{x}_{0} and residual $\boldsymbol{r}_{0}=\boldsymbol{b}-A \boldsymbol{x}_{0}$, GMRES computes \boldsymbol{x}_{k} over $\boldsymbol{x}_{0}+\mathcal{K}_{k}\left(A, \boldsymbol{r}_{0}\right)$, where

$$
\mathcal{K}_{k}\left(A, \boldsymbol{r}_{0}\right)=\operatorname{span}\left\{\boldsymbol{r}_{0}, A \boldsymbol{r}_{0}, \ldots, A^{k-1} \boldsymbol{r}_{0}\right\}
$$

is the k-th Krylov subspace, such that \boldsymbol{x}_{k} minimizes $\left\|\boldsymbol{b}-A \boldsymbol{x}_{k}\right\|$.
Let $A Q_{k}=Q_{k+1} H_{k+1, k}$ be the Arnoldi decomposition, where the columns of $Q_{k} \in \mathbb{R}^{n \times k}$ form an orthonormal basis of \mathcal{K}_{k} and $H_{k+1, k} \in \mathbb{R}^{(k+1) \times k}$ is an extended Hessenberg matrix.

Then the iterate $\boldsymbol{x}_{k}=\boldsymbol{x}_{0}+Q_{k} \boldsymbol{y}_{k}$ satisfies

$$
\begin{aligned}
& \left\|\boldsymbol{b}-A \boldsymbol{x}_{k}\right\|=\left\|\boldsymbol{r}_{0}-A Q_{k} \boldsymbol{y}_{k}\right\|=\| \| \boldsymbol{r}_{0}\left\|\boldsymbol{e}_{1}-H_{k+1, k} \boldsymbol{y}_{k}\right\| \\
& =\min _{\boldsymbol{y} \in \mathbb{R}^{k}}\| \| \boldsymbol{r}_{0}\left\|\boldsymbol{e}_{1}-H_{k+1, k} \boldsymbol{y}\right\|, \quad \boldsymbol{e}_{1}=[1,0, \ldots, 0]^{\top} .
\end{aligned}
$$

Numerical behavior of GMRES

The restriction $\left.A\right|_{\mathcal{K}_{k}}$ of A to the Krylov subspace $\mathcal{K}_{k} \subseteq \mathbb{R}^{n}$ plays an important role. Its condition number is defined as

$$
\kappa\left(\left.A\right|_{\mathcal{K}_{k}}\right)=\frac{\max _{z \in \mathcal{K}_{k} \backslash\{0\}}\|A z\| / /\|z\|}{\min _{z \in \mathcal{K}_{k} \backslash\{0\}}\|A z\| /\|z\|}
$$

The identity $\kappa\left(\left.A\right|_{\mathcal{K}_{k}}\right)=\kappa\left(H_{k+1, k}\right)\left(\equiv\left\|H_{k+1, k}\right\|\left\|\mid H_{k+1, k}^{\dagger}\right\|\right)$ follows from

$$
\left\{\max _{\left.z \in \mathcal{K}_{k} \backslash \backslash \mathbf{0}\right\}} \min \right\} \frac{\|A z\|}{\|z\|}=\left\{\max _{\boldsymbol{w} \in \mathbb{R}^{k} \backslash\{\mathbf{0}\}} \min \right\} \frac{\left\|A Q_{k} \boldsymbol{w}\right\|}{\left\|Q_{k} \boldsymbol{w}\right\|}=\left\{\max _{\boldsymbol{w} \in \mathbb{R}^{k} \backslash\{\mathbf{0}\}} \min \right\} \frac{\left\|H_{k+1, k} \boldsymbol{w}\right\|}{\|\boldsymbol{w}\|} .
$$

The accuracy of \boldsymbol{x}_{k} computed in finite precision arithmetic is affected by the conditioning of $H_{k+1, k}$.

GMRES applied to nonsingular systems

¿From $A Q_{k}=Q_{k+1} H_{k+1, k}$ and $Q_{k+1}^{T} Q_{k+1}=I_{k+1}$ it follows that

$$
\left\|H_{k+1, k}\right\|=\left\|A Q_{k}\right\| \leq\|A\|\| \| Q_{k}\|=\| A \|
$$

and for nonsingular A we have

$$
\sigma_{k}\left(H_{k+1, k}\right)=\sigma_{k}\left(A Q_{k}\right) \geq \sigma_{n}(A) \sigma_{k}\left(Q_{k}\right) \geq \sigma_{n}(A)>0
$$

Then the solution $\boldsymbol{y}_{k}=H_{k+1, k}^{\dagger}\left\|\boldsymbol{r}_{0}\right\| \boldsymbol{e}_{1}$ of the upper Hessenberg least squares problem satisfies the bounds

$$
\left\|\boldsymbol{y}_{k}\right\| \leq \frac{\left\|\boldsymbol{r}_{0}\right\|}{\sigma_{k}\left(H_{k+1, k}\right)} \leq \frac{\left\|\boldsymbol{r}_{0}\right\|}{\sigma_{n}(A)}
$$

GMRES on singular systems - example of a breakdown

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \in \mathcal{R}(A), \\
\mathcal{R}(A)=\mathcal{N}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}, \quad \mathcal{R}\left(A^{\top}\right)=\mathcal{N}\left(A^{\top}\right)=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \\
\boldsymbol{x}_{0}=0, \quad \boldsymbol{r}_{0}=\boldsymbol{b}-A \boldsymbol{x}_{0} \in \mathcal{N}(A)
\end{gathered}
$$

If $\boldsymbol{b} \in \mathcal{R}(A)$ and $\boldsymbol{r}_{0} \in \mathcal{R}(A) \cap \mathcal{N}(A) \neq\{\mathbf{0}\}$, then GMRES breaks down at step 1 without determining a solution of $A \boldsymbol{x}=\boldsymbol{b}$.

Range-symmetric (EP) systems

A matrix $A \in \mathbb{R}^{n \times n}$ s.t. $\mathcal{R}\left(A^{\top}\right)=\mathcal{R}(A)$, is called an EP (equal projection) or range-symmetric matrix.

Theorem ([Brown, Walker, SIMAX 97])
If $\mathcal{R}\left(A^{\top}\right)=\mathcal{R}(A)$, then GMRES gives a solution \boldsymbol{x}_{*} of $\min _{\boldsymbol{x} \in \mathbb{R}^{n}}\|\boldsymbol{b}-A \boldsymbol{x}\|$ without breakdown for all $\boldsymbol{b} \in \mathbb{R}^{n}$ and $\forall \boldsymbol{x}_{0} \in \mathbb{R}^{n}$.

Note that $\mathcal{R}\left(A^{\top}\right)=\mathcal{R}(A) \Longrightarrow \mathcal{N}(A) \cap \mathcal{R}(A)=\{\mathbf{0}\}$.
We say a matrix A such that $\mathcal{N}(A) \cap \mathcal{R}(A)=\{0\}$ is a group (GP) matrix.

Range-symmetric (EP) system, consistent case $b \in \mathcal{R}(A)$

Since $\mathcal{K}_{k} \subseteq \mathcal{R}(A)$, we have

$$
\sigma_{k}\left(H_{k+1, k}\right)=\min _{z \in \mathcal{K}_{k} \backslash\{0\}} \frac{\|A z\|}{\|z\|} \geq \min _{z \in \mathcal{R}(A) \backslash\{0\}} \frac{\|A z\|}{\|z\|}
$$

and thus $\kappa\left(H_{k+1, k}\right) \leq \kappa\left(\left.A\right|_{\mathcal{R}(A)}\right)$. If A is EP, then

$$
\min _{z \in \mathcal{R}(A) \backslash\{0\}} \frac{\|A z\|}{\|z\|}=\min _{z \in \mathcal{R}\left(A^{\top}\right) \backslash\{0\}} \frac{\|A z\|}{\|z\|}=\sigma_{\min }(A)>0
$$

and

$$
\kappa\left(\left.A\right|_{\mathcal{R}(A)}\right)=\frac{\|A\|}{\min _{\left.z \in \mathcal{R}\left(A^{\top}\right) \backslash 0\right\}}\|A z\| /\|z\|}=\kappa(A) .
$$

Consistent EP case \sim nonsingular case, i.e., $\kappa\left(H_{k+1, k}\right) \leq \kappa(A)$.

Range-symmetric (EP) system, inconsistent case

$\boldsymbol{b} \notin \mathcal{R}(A)$

Since $\mathcal{R}\left(A^{\top}\right)=\mathcal{R}(A) \Longleftrightarrow \mathcal{N}\left(A^{T}\right)=\mathcal{N}(A)$, the LS residual $\boldsymbol{r}_{*}=\left.\boldsymbol{b}\right|_{\mathcal{N}\left(A^{T}\right)}$ satisfies $A^{\top} \boldsymbol{r}_{*}=0$, and so $\boldsymbol{r}_{*} \in \mathcal{N}\left(A^{\top}\right)$ belongs also to $\mathcal{N}(A)$ with

$$
\sigma_{k}\left(H_{k+1, k}\right)=\min _{z \in \mathcal{\mathcal { K } _ { k } \backslash \{ 0 \}}} \frac{\|A z\|}{\|z\|} \geq \min _{z \in \operatorname{span}\left\{\boldsymbol{r}_{\boldsymbol{z}}\right\} \cup \mathcal{R}(A) \backslash\{0\}} \frac{\|A z\|}{\|z\|}=0 .
$$

Since $\boldsymbol{r}_{k-1} \in \mathcal{K}_{k}$ satisfies $\boldsymbol{r}_{k-1}-\boldsymbol{r}_{*} \in \mathcal{R}(A)$ and $A \boldsymbol{r}_{*}=\mathbf{0}$, we have
$\sigma_{k}\left(H_{k+1, k}\right)=\min _{z \in \mathcal{K}_{k} \backslash\{0\}} \frac{\|A z\|}{\|z\|} \leq \frac{\left\|A \boldsymbol{r}_{k-1}\right\|}{\left\|\boldsymbol{r}_{k-1}\right\|}=\frac{\left\|A\left(\boldsymbol{r}_{k-1}-\boldsymbol{r}_{*}\right)\right\|}{\left\|\boldsymbol{r}_{k-1}\right\|} \leq\|A\| \frac{\left\|\boldsymbol{r}_{k-1}-\boldsymbol{r}_{*}\right\|}{\left\|\boldsymbol{r}_{k-1}\right\|}$.
The Hessenberg least squares problem thus becomes very ill-conditioned before a LS solution is reached by GMRES.

EP case for $\boldsymbol{b} \notin \mathcal{R}(A)$

Figure: Geometric illustration of residual vectors.

Example: small singular EP system

$$
A=\left[\begin{array}{cc}
\operatorname{diag}\left(10^{\frac{0}{127}}, 10^{\frac{-4}{127}}, 10^{\frac{-8}{127}}, \ldots, 10^{-4}\right) & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right] \in \mathbb{R}^{128 \times 128}, \quad \boldsymbol{b}=\left[\begin{array}{l}
\gamma \\
\delta
\end{array}\right]
$$

where $\gamma=[\gamma, \ldots, \gamma]^{\top} \in \mathbb{R}^{64}$ and $\delta=[\delta, \ldots, \delta]^{\top} \in \mathbb{R}^{64}$, i.e., $\kappa(A)=10^{4}$, and $\boldsymbol{b} \notin \mathcal{R}(A) \Longleftrightarrow \delta \neq 0$.

Inconsistency is controlled by δ / γ.

Example: GMRES

Example: GMRES

(a) Weakly inconsistent cases $\gamma=1$.

Singular value decomposition of A

$$
A=U \Sigma V^{\top}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right]\left[V_{1}, V_{2}\right]^{T},
$$

where Σ_{1} is diagonal with positive singular values, $U=\left[U_{1}, U_{2}\right]$ and $V=\left[V_{1}, V_{2}\right]$ are orthogonal matrices,

$$
\begin{aligned}
\mathcal{R}(A) & =\mathcal{R}\left(U_{1}\right), & \mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{\top}\right) & =\mathcal{R}\left(U_{2}\right), \\
\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{\top}\right) & =\mathcal{R}\left(V_{1}\right), & \mathcal{N}(A) & =\mathcal{R}\left(V_{2}\right),
\end{aligned}
$$

EP and GP matrices via singular value decomposition

- An EP matrix $A, \mathcal{R}\left(A^{\top}\right)=\mathcal{R}(A)$, satisfies

$$
\mathcal{R}\left(V_{1}\right)=\mathcal{R}\left(U_{1}\right) \quad \Longleftrightarrow V_{1}^{\top} U_{1} \text { is orthogonal }
$$

since $V_{1}^{\top} U_{2}=\mathrm{O}$.

- A GP matrix $A, \mathcal{N}(A) \cap \mathcal{R}(A)=\{\mathbf{0}\}$, satisfies
$\mathcal{R}\left(U_{1}\right) \cap \mathcal{R}\left(V_{2}\right)=\{\mathbf{0}\} \Longleftrightarrow \operatorname{rank}\left(\left[U_{1}, V_{2}\right]\right)=n \Longleftrightarrow V_{1}^{\top} U_{1}$ is nonsingular, but $V_{1}^{\top} U_{1}$ can be ill-conditioned.
The cosines of the principal angles between $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{\top}\right)$ are the singular values of $V_{1}^{\top} U_{1}$.
- EP: Cosines between $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{\top}\right)$ are all zero
- GP: Condition number of $V_{1}^{\top} U_{1}$ are the ratio of the cosines

Group inverse and Moore-Penrose inverse of A

$$
\begin{gathered}
A^{\dagger}=\left[V_{1}, V_{2}\right]\left[\begin{array}{cc}
\Sigma_{1}^{-1} & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right]\left[U_{1}, U_{2}\right]^{T} \\
\mathcal{R}(A)+\mathcal{N}(A)=\mathbb{R}^{n} \Longleftrightarrow \operatorname{index}(A)=1 \\
A=S\left[\begin{array}{ll}
J & \mathrm{O} \\
\mathrm{O} & 0
\end{array}\right] S^{-1}, \quad A^{\#}=S\left[\begin{array}{cc}
J^{-1} & \mathrm{O} \\
\mathrm{O} & 0
\end{array}\right] S^{-1}, \quad \mathcal{R}\left(A^{\#}\right)=\mathcal{R}(A) \\
A^{\#}=A^{\dagger} \Longleftrightarrow \mathcal{R}\left(A^{\top}\right)=\mathcal{R}(A)
\end{gathered}
$$

Convergence of GMRES applied to group (GP) systems

$$
\begin{aligned}
& \text { Theorem ([Brown, Walker, SIMAX 97]) } \\
& \text { If } \mathcal{R}(A) \cap \mathcal{N}(A)=\{\boldsymbol{0}\} \text {, then GMRES gives a solution of } A \boldsymbol{x}=\boldsymbol{b} \text { without } \\
& \text { breakdown for all } \boldsymbol{b} \in \mathcal{R}(A) \text { and for all } \boldsymbol{x}_{0} \in \mathbb{R}^{n} \text {. The solution is } \\
& \boldsymbol{x}_{0}+A^{\#} \boldsymbol{r}_{0}=\boldsymbol{x}_{\#}+\left(I-A^{\#} A\right) \boldsymbol{x}_{0} \text {. } \\
& \boldsymbol{x}_{*}=A^{\dagger} b \in \mathcal{R}\left(A^{\top}\right), \quad \boldsymbol{x}_{\#}=A^{\#} b \in \mathcal{R}\left(A^{\top}\right), \quad \boldsymbol{x}_{*}=P_{\mathcal{R}\left(A^{\top}\right)} \boldsymbol{x}_{\#}=V_{1} V_{1}^{\top} U_{1} U_{1}^{\top} \boldsymbol{x}_{\#} \\
& \qquad \sigma_{\min }\left(V_{1}^{\top} U_{1}\right)\left\|\boldsymbol{x}_{\#}\right\| \leq\left\|\boldsymbol{x}_{*}\right\| \leq\left\|\boldsymbol{x}_{\#}\right\|
\end{aligned}
$$

GP case for $\boldsymbol{b} \in \mathcal{R}(A)$

Figure: Geometric illustration of solution vectors.

Group (GP) system, consistent case $\boldsymbol{b} \in \mathcal{R}(A)$

Since $\mathcal{K}_{k} \subseteq \mathcal{R}(A)$, we have

$$
\begin{gathered}
\sigma_{k}\left(H_{k+1, k}\right)=\min _{z \in \mathcal{K}_{k} \backslash\{0\}} \frac{\|A z\|}{\|z\|} \geq \min _{z \in \mathcal{R}(A) \backslash\{0\}} \frac{\|A z\|}{\|z\|} \\
\min _{z \in \mathcal{R}(A) \backslash\{0\}} \frac{\|A z\|}{\|z\|}=\min _{z \in \mathbb{R}^{k} \backslash\{0\}} \frac{\left\|U_{1} \Sigma_{1} V_{1}^{\top} U_{1} z\right\|}{\left\|U_{1} z\right\|} \geq \sigma_{\min }(A) \sigma_{\min }\left(V_{1}^{\top} U_{1}\right)
\end{gathered}
$$

Condition number of the Hessenberg matrix $H_{k+1, k}$ depends on the principal angles between $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{\top}\right)$!

Example: small singular GP system

$$
A=\left[\begin{array}{ll}
D & \mathrm{I} \\
\mathrm{O} & \mathrm{O}
\end{array}\right] \in \mathbb{R}^{128 \times 128}, \quad \boldsymbol{b}=\left[\begin{array}{l}
f \\
\mathbf{0}
\end{array}\right]
$$

D is a diagonal matrix whose values of the diagonal entries have the so-called Strakoš distribution [Strakoš, LAA 91]

$$
d_{1,1}=1, \quad d_{64,64}=10^{-\rho}, \quad d_{j, j}=d_{64,64}+\frac{64-j}{63}\left(d_{1,1}-d_{64,64}\right) \cdot 0.7^{j-1},
$$

$f=\left\{f_{i}\right\} \in \mathbb{R}^{r}$ has the entries $f_{r-i+1}=10^{-(i-1) \rho / 63}$. For $\rho \gg 1$,

$$
\begin{aligned}
\kappa(A) & =\sqrt{2 /\left(10^{-\rho}+1\right)} \simeq \sqrt{2}, \\
\kappa\left(V_{1}^{\top} U_{1}\right) & =10^{\rho} \sqrt{\left(10^{-2 \rho}+1\right) / 2} \simeq 10^{\rho} / \sqrt{2} .
\end{aligned}
$$

Example: GMRES

(a) Relative residual norm $\left\|\boldsymbol{r}_{k}\right\| /\|\boldsymbol{b}\|$.

(b) Smallest singular value of $H_{k+1, k}$. Figure: Different condition numbers of $V_{1}^{\top} U_{1}$.

Thank you for your attention!

Morikuni Keiichi, R: On GMRES for singular EP and GP systems, SIAM Journal on Matrix Analysis and Applications 39 (2), 2018, 1033-1048.

