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Abstract

We consider a class of “wild” initial data to the compressible Euler system that give rise to
infinitely many admissible weak solutions via the method of convex integration. We identify
the closure of this class in the natural L1−topology and show that its complement is rather
large, specifically it is an open dense set.
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1 Introduction

The motion of a fluid in gas dynamics is described by means of the standard variables: the fluid
density % = %(t, x), the macroscopic velocity u = u(t, x), and the absolute temperature ϑ = ϑ(t, x)
satisfying the Euler system:

∂t% + divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = 0,

∂t

(
1

2
%|u|2 + %e(%, ϑ)

)
+ divx

[(
1

2
%|u|2 + %e(%, ϑ)

)
u

]
+ divx(p(%, ϑ)u) = 0.

(1.1)

We suppose the fluid is confined to a smooth bounded domain Ω ⊂ RN , N = 2, 3, with the
impermeable boundary:

u · n|∂Ω = 0. (1.2)

The state of the system at the reference time t = 0 is given by the initial conditions:

%(0, ·) = %0, u(0, ·) = u0, ϑ(0, ·) = ϑ0. (1.3)
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1.1 Thermodynamics

The system (1.1) contains two thermodynamics functions: the presure p = p(%, ϑ) and the internal
energy e = e(%, ϑ). In accordance with the Second law, we postulate the existence of the entropy
s = s(%, ϑ) related to p and e via Gibbs’ equation

ϑDs = De + D

(
1

%

)
p.

If the functions %, u, and ϑ are continuously differentiable, the relations (1.1) give rise to the
entropy balance:

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) = 0. (1.4)

In the context of weak solutions considered in this paper, it is customary to relax (1.4) to inequality

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) ≥ 0. (1.5)

The Euler system (1.1) can be written in the conservative variables: the density %, the momen-
tum m = %u, and the energy E = 1

2
%|u|2 + %e(%, ϑ):

∂t% + divxm = 0,

∂tm + divx

(
m⊗m

%

)
+∇xp(%,m, E) = 0,

∂tE + divx

(
E

m

%

)
+ divx

(
p(%,m, E)

m

%

)
= 0.

(1.6)

The forthcoming analysis leans essentially on the hypothesis of thermodynamics stability. The
latter can be formulated either in the standard variables:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0; (1.7)

or in the conservative variables:

(%,m, E) 7→ S(%,m, E) ≡ %s(%,m, E) is a strictly concave function of (%,m, E). (1.8)

1.2 Smooth and weak solutions

Smooth solutions are at least continuously differentiable on the set [0, T ) × Ω, % > 0, ϑ > 0, and
satisfy (1.1–1.3) pointwise. Smooth solutions are known to exist locally on a maximal interval
[0, Tmax) as long as the initial data are smooth enough and satisfy the corresponding compatibility
conditions on ∂Ω, see last part of Section 4 for details. Moreover, it is well known that Tmax < ∞
for a “generic” class of data.

The weak solutions satisfy (1.1), (1.2) in the sense of distributions, the conservative variables
are weakly continuous in time so that the initial conditions are well defined. The weak solutions are
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called admissible if the entropy inequality (1.5) holds in the weak sense. The existence of global in
time weak (admissible) solutions for given initial data is an open problem. Recently, however, the
method of convex integration developed in the context of the incompressible Euler system by De
Lellis and Székelyhidi [11] has been adapted to identify a class of initial data for which the problem
(1.1–1.3) admits infinitely many admissible weak solutions defined on a given time interval (0, T ),
[8]. Similar results have been obtained also for the associated Riemann problem in [1].

The initial data for which the problem admits local smooth solution will be termed regular,
the data giving rise to infinitely many admissible weak solutions are called wild. Our goal is to
identify the class of regular data that can be obtained as limits of wild data. Note that for the
incompressible Euler system, the wild data (velocities) are dense in the Lebesgue space L2(Ω; RN),
see Székelyhidi and Wiedemann [9].

In the present paper, we restrict ourselves to the class of wild solutions resulting from a rather
general splitting method which goes back to [7]. To the best of our knowledge, all convex integration
results for the Euler system (1.6) in the literature use such a splitting method.

A vector field m can be decomposed by means of Helmholtz decomposition, i. e. it can be
written as the sum of a solenoidal vector field H[m] and the gradient of a scalar field.

More precisely, the Helmholtz projection operator H is defined as

m = H[m] + H⊥[m], where H⊥ = ∇xΦ, ∆xΦ = divxm, (∇xΦ−m) · n|∂Ω = 0,

∫
Ω

Φ dx = 0.

Accordingly, for m = v +∇xΦ, v = H[m], the system (1.6) can be written in the form

∂t% + ∆xΦ = 0,

∂tv + H

[
divx

(
m⊗m

%
− 1

N

|m|2

%
I
)]

= 0,

∂t(∇xΦ) + H⊥
[
divx

(
m⊗m

%
− 1

N

|m|2

%
I
)]

+∇x

(
1

N

|m|2

%

)
+∇xp(%,m, E) = 0,

∂tE + divx

(
E

m

%

)
+ divx

(
p(%,m, E)

m

%

)
= 0.

(1.9)

To the best of our knowledge, there are only two convex integration ansatzes for obtaining wild
solutions to the Euler system (1.6) in the literature. Let us begin with the first one, which is used
in [8]. This ansatz is based on replacing equations (1.9)2, (1.9)3 by the system

∂tv + divx

(
m⊗m

%
− 1

N

|m|2

%
I
)

= 0,
(
divxv = 0

)
,

∂t(∇xΦ) +∇x

(
1

N

|m|2

%

)
+∇xp(%,m, E) = 0,

(
∂t% + ∆xΦ = 0

)
.

(1.10)

Equation (1.10)1 represents the volume preserving part of the motion, while (1.10)2 may be seen
as a wave equation governing the propagation of acoustic waves. Note that the fields v and ∇xΦ
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as well as the fluxes in (1.10) are orthogonal with respect to the L2 scalar product, specifically,∫
Ω

v · ∇xΦ dx = 0,

[
m⊗m

%
− 1

N

|m|2

%
I
]

:

[(
1

N

|m|2

%
+ p(%,m, E)

)
I
]

= 0,

where the latter is true since it is a product of a traceless matrix and a multiple of the identity
matrix.

Although (1.10)1 is apparently overdetermined, it admits (infinitely many) weak solutions for
any fixed % and Φ, cf. Appendix A.

Definition 1.1. A weak solution [%,m, E] of the Euler system (1.6) is called wild solution if
[%,m, E] satisfy (1.10), with v = H[m], ∇xΦ = H⊥[m]. The corresponding initial data [%0,m0, E0]
are called wild initial data.

Note that a technique similar to (1.10) has been used also for the simplified isentropic Euler
system by Chiodaroli [4].

The second convex integration ansatz, that is available in the literature, is based on the analysis
of the corresponding Riemann problem, see [1], [6], [10] among others. We will first focus on the
ansatz (1.10) and afterwards extend our results to the wild solutions obtained via the Riemann
problem in Section 5.

1.3 Main result

We are ready to formulate our main result. To avoid the situation when the temperature approaches
absolute zero, we restrict ourselves to the phase space

L1
+,s0

(Ω; RN+2) =
{

[%,m, E] ∈ L1(Ω; RN+2)
∣∣∣ % ≥ 0, E ≥ 0, s(%,m, E) ≥ s0 > −∞

}
.

Note that this is not very restrictive as any admissible weak solution satisfies the minimum principle

s(%,m, E)(t, x) ≥ ess inf
y∈Ω

s(%0(y),m0(y), E0(y)) a.a. in (0, T )× Ω,

cf. [2, Section 2.1.1].
We say that a sequence of data {%0,n,u0,n, ϑ0,n}∞n=1, or, equivalently, {%0,n,m0,n, E0,n}∞n=1,

(W)-converges to [%0,m0, E0],

[%0,n,m0,n, E0,n]
(W )→ [%0,m0, E0],

if

•
%0,n > 0, s(%0,n,m0,n, E0,n) ≥ s0 > −∞;
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•
[%0,n,m0,n, E0,n] → [%0,m0, E0] in L1(Ω; RN+2); (1.11)

• the initial data [%0,n,m0,n, E0,n] give rise to a sequence of admissible weak solutions [%n,mn, En]
satisfying∫ T

0

∫
Ω

(
mn ⊗mn

%n

− 1

N

|mn|2

%n

I
)

: ∇2
xϕ dx dt → 0 as n →∞ for any ϕ ∈ C∞

c ((0, T )× Ω).

(1.12)

Note that, in view of (1.10),

H⊥
[
divx

(
mn ⊗mn

%n

− 1

N

|mn|2

%n

I
)]

= 0

whenever [%n,mn, En] are wild solutions in the sense of Definition 1.1. In particular, (1.12) is
trivially satisfied for any sequence of wild initial data in the sense of Definition 1.1.

Finally, note that the sequence of solutions {%n,mn, En}∞n=1 need not a priori converge strongly,
and, consequently, (1.12) does not impose any similar restriction on a possible limit solution
emanating from [%0,m0, E0].

Definition 1.2. We say that a trio [%0,m0, E0] is reachable if there exists a sequence of initial
data {%0,n,m0,n, E0,n}∞n=1 such that

[%0,n,m0,n, E0,n]
(W )→ [%0,m0, E0].

Our goal is to show that the set of reachable data is “small” in the sense that its complement
is an open dense set in L1

+,s0
(Ω; RN+2). For the sake of simplicity, we focus on the equations of gas

dynamics, where the pressure is given by Boyle–Mariotte law

p(%, ϑ) = %ϑ, and e(%, ϑ) = cvϑ, cv > 0.

Equivalently, in the conservative variables,

p =
1

cv

(
E − 1

2

|m|2

%

)
, ϑ =

1

cv%

(
E − 1

2

|m|2

%

)
> 0. (1.13)

Here the kinetic energy is defined as

|m|2

%
=


0 if m = 0
∞ if % = 0
|m|2

%
otherwise.

The entropy reads

S(%,m, E) = %cv log

(
E − 1

2
|m|2

%

cv%
1+ 1

cv

.

)
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Here is our main result.

Theorem 1.3. Let s0 ∈ R be given. Let Ω ⊂ RN , N = 2, 3 be a bounded smooth domain.

Then the complement of the set of reachable data is an open dense set in L1
+,s0

(Ω; RN+2).

Corollary 1.4. The complement of the set of wild initial data (in the sense of Definition 1.1)
contains an open dense set in L1

+,s0
(Ω; RN+2).

The main part of the paper is devoted to the proof of Theorem 1.3. Our strategy is to identify
a large (dense) set of regular data for the Euler system that are not reachable. To see this, we
consider initial data [%0,m0, E0] giving rise to a smooth solution [%,m, E] defined on a maximal
time interval [0, Tmax). Then we proceed in several steps:

• Assuming the data [%0,m0, E0] are reachable we show that the associated sequence of solu-
tions {%n,mn, En}∞n=1 generates a Young measure that can be identified with a dissipative
measure valued (DMV) solution to the Euler system in the sense of [2], see Section 2.

• Next we realize that, thanks to the strong convergence required in (1.11), the limit DMV
solution starts from the initial data represented by the parameterized family of Dirac masses,{

δ%0(x),m0(x),E0(x)

}
x∈Ω

.

Thanks to the general weak–strong uniqueness principle, we conclude that the DMV solution
coincides with the strong solution on the time interval [0, Tmax), more specifically, the DMV
solution is represented by the parameterized family of Dirac masses,{

δ%(t,x),m(t,x),E(t,x)

}
(t,x)∈(0,Tmax)×Ω

,

see Section 3. In particular, the solutions [%n,mn, En] converge strongly and we may assume

%n → %, mn → m, En → E a.a. in (0, Tmax)× Ω. (1.14)

• Thanks to the strong convergence (1.14), condition (1.12), and smoothness of the limit
solution, we deduce that

divxdivx

(
m⊗m

%

)
− 1

N
∆x

(
|m|2

%

)
= 0 in (0, T )× Ω.

see Section 3 for details. In particular, as the limit solution is continuous up to t = 0,

divxdivx

(
m0 ⊗m0

%0

)
− 1

N
∆x

(
|m0|2

%0

)
= 0 in Ω. (1.15)
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• In Section 4, we show that (1.15) can be satisfied for a very narrow class of the initial data.
In particular, we complete the proof of Theorem 1.3.

A related result for the wild solutions obtained via the Riemann problem is shown in Section 5.

2 Dissipative measure valued (DMV) solutions

2.1 Definitions

First we recall the standard definition of the admissible weak solutions to the Euler system:

Definition 2.1 (admissible weak solution). Let γ = 1+ 1
cv

. We say that [%,m, E] is an admissible
weak solution to the Euler system (1.1–1.3) if

% ∈ Cweak([0, T ]; Lγ(Ω)), % ≥ 0, m ∈ Cweak([0, T ]; L
2γ

γ+1 (Ω; RN)), E ∈ Cweak([0, T ]; L1(Ω)), E ≥ 0,

and the following holds:

• ∫ T

0

∫
Ω

[%∂tϕ + m · ∇xϕ] dx dt = −
∫

Ω

%0ϕ(0, ·) dx

for any ϕ ∈ C1
c ([0, T )× Ω);

• ∫ T

0

∫
Ω

[
m · ∂tϕϕϕ +

(
m⊗m

%

)
: ∇xϕϕϕ + p (%,m, E) divxϕϕϕ

]
dx dt = −

∫
Ω

m0 ·ϕϕϕ(0, ·) dx

for any ϕϕϕ ∈ C1
c ([0, T )× Ω; RN), ϕϕϕ · n|∂Ω = 0;

• ∫ T

0

∫
Ω

[
E∂tϕ + (E + p(%,m, E))

(
m

%

)
· ∇xϕ

]
dx dt = −

∫
Ω

E0ϕ(0, ·) dx (2.1)

for any ϕ ∈ C1
c ([0, T )× Ω);

•

−
∫

Ω

%0Z (s (%0,m0, E0)) ϕ(0, ·) dx

≥
∫ T

0

∫
Ω

[%Z (s (%,m, E)) ∂tϕ + Z (s (%,m, E))m · ∇xϕ] dx dt

(2.2)

for any ϕ ∈ C1
c ([0, T )× Ω), ϕ ≥ 0, and Z(s) ≤ Z, Z ′(s) ≥ 0.
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Remark 2.2. Here the entropy inequality is satisfied in the renormalized sense, see e. g. [3].

To carry out the programme delineated at the end of the preceding section, we introduce the
concept of dissipative measure valued (DMV) solution, see [2]. Let

P =
{

[%,m, E]
∣∣∣ % ≥ 0, m ∈ RN , E ≥ 0

}
be the phase space associated to the Euler system.

Definition 2.3 (DMV solution). A parametrized family of probability measures {Vt,x}(t,x)∈(0,T )×Ω

on the set P ,
V ∈ L∞weak−(∗)((0, T )× Ω; prob[P ])

is called a dissipative measure–valued (DMV) solution to the compressible Euler system with the
initial data {V0,x}x∈Ω, if the following holds:

• ∫ T

0

∫
Ω

[〈Vt,x; %〉 ∂tϕ + 〈Vt,x;m〉 · ∇xϕ] dx dt = −
∫

Ω

〈V0,x; %〉ϕ(0, ·) dx

for any ϕ ∈ C1
c ([0, T )× Ω);

• ∫ T

0

∫
Ω

[
〈Vt,x;m〉 · ∂tϕϕϕ +

〈
Vt,x;

m⊗m

%

〉
: ∇xϕϕϕ + 〈Vt,x; p (%,m, E)〉 divxϕϕϕ

]
dx dt

=

∫ T

0

∫
Ω

∇xϕϕϕ : dµC −
∫

Ω

〈V0,x;m〉 ·ϕϕϕ(0, ·) dx

for any ϕϕϕ ∈ C1
c ([0, T ) × Ω; RN), ϕϕϕ · n|∂Ω = 0, where µC is a (vectorial) signed measure on

[0, T ]× Ω;

• ∫
Ω

〈Vτ,x; E〉 dx +D(τ) ≤
∫

Ω

〈V0,x; E〉 dx (2.3)

for a.a. τ ∈ (0, T ), where D ∈ L∞(0, T ), D ≥ 0 is called dissipation defect;

•

−
∫

Ω

〈V0,x; %Z (s (%,m, E))〉ϕ(0, ·) dx

≥
∫ T

0

∫
Ω

[〈Vt,x; %Z (s (%,m, E))〉] ∂tϕ dx dt +

∫ T

0

∫
Ω

[〈Vt,x; Z (s (%,m, E))m〉 · ∇xϕ] dx dt

for any ϕ ∈ C1
c ([0, T )× Ω), ϕ ≥ 0, and Z(s) ≤ Z, Z ′(s) ≥ 0;
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•
‖µC‖M([0,τ ]×Ω) ≤ c

∫ τ

0

D(t) dt for a.a. τ ∈ (0, T ).

The reader will have noticed that Definition 2.3 is not a mere measure–valued variant of De-
finition 2.1. In particular, the energy equation (2.1) has been replaced by its integrated version
(2.3). The reader may consult [2] for a thorough discussion of this new concept of solution.

2.2 Generating a DMV solution

Suppose now that

%0,n → %0 in L1(Ω), m0,n → m0 in L1(Ω), and E0,n → E0 in L1(Ω),

%0,n > 0 a.a. in Ω, s(%0,n,m0,n, E0,n) ≥ s0 > −∞,
(2.4)

where [%0,n,m0,n, E0,n] are initial data of admissible weak solutions [%n,mn, En] defined on (0, T )×
Ω.

Passing to a suitable subsequence, we may suppose that {%n,mn, En}∞n=1 generates a Young
measure

{Vt,x}(t,x)∈(0,T )×Ω) , Vt,x ∈ prob[P ].

As shown in [2, Section 2.1], the Young measure {Vt,x}(t,x)∈(0,T )×Ω) is a DMV solution of the Euler

system in the sense of Definition 2.3. Moreover, in view of (2.4), the initial measure {V0,x}x∈Ω

reads
V0,x = δ%0(x),m0(x),E0(x) for a.a. x ∈ Ω.

3 Application of the weak–strong uniqueness principle

The weak-strong uniqueness principle (Theorem 3.3 in [2]) asserts that a DMV solution coincides
with the strong solution emanating from the same initial data at least on the life span of the latter.
Evoking the situation from Section 2.2, we suppose now that

[%0,n,m0,n, E0,n]
(W )→ [%0,m0, E0],

where [%0,m0, E0] are now regular initial data generating a C1−solution [%,m, E] of the Euler
system (1.1–1.3) on a maximal time interval [0, Tmax). Without loss of generality, we may suppose
that 0 < T < Tmax.

Applying the weak strong uniqueness principle we obtain

Vt,x = δ%(t,x),m(t,x),E(t,x) for a.a. (t, x) ∈ (0, T )× Ω. (3.1)

In particular, we may assume

%n → %, mn → m, En → E a.a. in (0, T )× Ω

10



for the associated weak solutions [%n,mn, En]. Consequently, as [%n,mn, En] satisfy (1.12), we get∫ T

0

∫
Ω

[(
m⊗m

%

)
: ∇2

xϕ−
1

N

|m|2

%
∆xϕ

]
dx dt = 0 for any ϕ ∈ C∞

c ((0, T )× Ω).

Finally, as the limit solution is continuous up to the time t = 0, we may infer that in particular,∫
Ω

[(
m0 ⊗m0

%0

)
: ∇2

xϕ−
1

N

|m0|2

%0

∆xϕ

]
dx = 0 for any ϕ ∈ C∞

c (Ω). (3.2)

For C2 initial data, relation (3.2) can be rewritten as a non–linear differential equation

divxdivx

(
m0 ⊗m0

%0

)
−∆x

(
1

N

|m0|2

%0

)
= 0 in Ω.

4 Reachability

In this section we finish the proof of Theorem 1.3. Introducing w = m0√
%0

we may write (3.2) in a

concise form ∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx = 0 for any ϕ ∈ C∞

c (Ω). (4.1)

We consider solutions of (4.1) in the space L2(Ω; RN),

S =
{
w ∈ L2(Ω; RN)

∣∣∣ w solves (4.1)
}

.

It is easy to check that:

• the set S is closed in L2(Ω; RN);

• if w ∈ S, then λw ∈ S for any λ ∈ R.

Lemma 4.1. The set S is nowhere dense in L2(Ω; RN), meaning the (closure of the) set S does
not contain any ball in L2(Ω; RN).

Proof. Arguing by contradiction, we suppose that there is w0 ∈ L2(Ω; RN) and r > 0 such that
the ball centered at w0 with radius r is contained in S. Hence∫

Ω

[
(w + w0)⊗ (w + w0) : ∇2

xϕ−
1

N
|w + w0|2∆xϕ

]
dx = 0 for any ϕ ∈ C∞

c (Ω),

and any w, ‖w‖L2(Ω;RN ) ≤ r.

(4.2)
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Next, we show that this implies that the ball centered at 0 with radius r is contained in S, too.
To this end, we write∫

Ω

[
(w + w0)⊗ (w + w0) : ∇2

xϕ−
1

N
|w + w0|2∆xϕ

]
dx

=

∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx +

∫
Ω

[
(w ⊗w0 + w0 ⊗w) : ∇2

xϕ−
2

N
w ·w0∆xϕ

]
dx

+

∫
Ω

[
w0 ⊗w0 : ∇2

xϕ−
1

N
|w0|2∆xϕ

]
dx.

Thus using the fact that w0 solves (4.1) and (4.2) we conclude∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx +

∫
Ω

[
(w ⊗w0 + w0 ⊗w) : ∇2

xϕ−
2

N
w ·w0∆xϕ

]
dx = 0

for any ϕ ∈ C∞
c (Ω) and any w, ‖w‖L2(Ω;RN ) ≤ r.

(4.3)

If relation (4.3) holds for any w, ‖w‖L2(Ω;RN ) ≤ r, it must hold for λw, 0 ≤ λ ≤ 1. Conse-
quently, we get from (4.3),

0 = (λ2 − λ)

∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx

+λ

∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx + λ

∫
Ω

[
(w ⊗w0 + w0 ⊗w) : ∇2

xϕ−
2

N
w ·w0∆xϕ

]
dx

=(λ2 − λ)

∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx for any 0 ≤ λ ≤ 1.

We deduce ∫
Ω

[
w ⊗w : ∇2

xϕ−
1

N
|w|2∆xϕ

]
dx = 0 for any ϕ ∈ C∞

c (Ω),

and any w, ‖w‖L2(Ω;RN ) ≤ r.

Thus the set S contains the ball of radius r > 0 centered at 0 but as it is invariant with respect to
multiplication by any real constant, we conclude

S = L2(Ω; RN),

which is obviously false as soon as N ≥ 2.

Lemma 4.2. The set of reachable data in the sense of Definition 1.2 is closed in L1((0, T )× Ω).
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Proof. Let [%0,n,m0,n, E0,n] be a sequence of reachable data such that

[%0,n,m0,n, E0,n] → [%0,m0, E0] in L1((0, T )× Ω; RN+2).

To see that the limit is reachable, we have to find a generating sequence satisfying (1.11), (1.12).
To this end, consider the generating sequences of data [%0,n,m,m0,n,m, E0,n,m] satisfying

[%0,n,m,m0,n,m, E0,n,m]
(W )→ [%0,n,m0,n, E0,n] as m →∞,

meaning, in particular,∫ T

0

∫
Ω

(
mn,m ⊗mn,m

%n,m

− 1

N

|mn,m|2

%n,m

I
)

: ∇2
xϕ dx dt → 0 as m →∞ for any ϕ ∈ C∞

c ((0, T )× Ω)

for the corresponding solutions %n,m, mn,m and any fixed n. Now, let{
ϕk
}∞

k=1
, ϕk ∈ C∞

c ((0, T )× Ω)

be a countable dense set in the Sobolev space

W `,2
0 ((0, T )× Ω) ≡ C∞

c ((0, T )× Ω)
‖·‖`,2

↪→ C2([0, T ]× Ω) as soon as ` >
N + 5

2
. (4.4)

By the diagonal method, we can find a subsequence

[%0,(n,m)(j),m0,(n,m)(j), E0,(n,m)(j)] → [%0,m0, E0] as j →∞ in L1((0, T )× Ω; RN+2)

such that∫ T

0

∫
Ω

(
m(n,m)(j) ⊗m(n,m)(j)

%(n,m)(j)

− 1

N

|m(n,m)(j)|2

%(n,m)(j)

I
)

: ∇2
xϕ

k dx dt → 0 as j →∞ for any k. (4.5)

Indeed, for given j ≥ 1, we find n(j) such that∥∥[%0,n(j),m0,n(j), E0,n(j)]− [%0,m0, E0]
∥∥ <

1

j
,

and m = m(n(j)) such that∥∥[%0,n(j),m(n(j)),m0,n(j),m(n(j)), E0,n(j),m(n(j))]− [%0,n(j),m0,n(j), E0,n(j)]
∥∥ <

1

j
,

∣∣∣∣∫ T

0

∫
Ω

(
mn(j),m(n(j)) ⊗mn(j),m(n(j))

%n(j),m(n(j))

− 1

N

|mn(j),m(n(j))|2

%n(j),m(n(j))

I
)

: ∇2
xϕ

k dx dt

∣∣∣∣ < 1

j

for all ϕk ∈ C∞
c ((0, T )× Ω), k ≤ j.

13



Finally, by virtue of (4.4), any ∇2
xϕ can be uniformly approximated by ∇2

xϕ
k, and, as the

energy En(j),m(j) are bounded, we conclude that (4.5) holds for any ϕ ∈ C∞
c ((0, T )× Ω). Thus we

have shown that

[%0,n(j),m(j),m0,n(j),m(j), E0,n(j),m(j)]
(W )→ [%0,m0, E0] as j →∞;

whence [%0,m0, E0] is reachable.

We are ready to complete the proof of Theorem 1.3. The set of reachable data being closed
(cf. Lemma 4.2), its complement is open. In view of Lemma 4.1, we have only to show that the
set of the smooth initial data [%0,m0, E0] giving rise to local-in-time regular solutions is dense in
the space L1

+,s0
(Ω; RN+2). To this end, we record the following result by Schochet [13, Theorem 1]

that asserts the existence of smooth solutions whenever:

• Ω ⊂ RN is a bounded domain with a sufficiently smooth boundary, say ∂Ω of class C∞;

• the initial data [%0,E, ϑ0,E,u0,E] belong to the class

%0,E, ϑ0,E ∈ Wm,2(Ω), u0,E ∈ Wm,2(Ω; RN), %0,E, ϑ0,E > 0 in Ω, m > N ;

• the compatibility conditions
∂k

t u0,E · n|∂Ω = 0

hold for k = 0, 1, . . . ,m.

In particular, any trio of initial data,

[%0,m0, E0] ∈ C∞(Ω; RN+2), m0 = 0, %0 = % > 0, ϑ0 = ϑ > 0 on a neighborhood of ∂Ω, (4.6)

gives rise to a smooth solution defined on a maximal time interval [0, Tmax). Seeing that the set
(4.6) is dense in L1

+,s0
(Ω; RN+2), we have completed the proof of Theorem 1.3.

Remark 4.3. Note that the result is basically independent of the choice of boundary conditions.
Similarly, it can be easily extended to more general equation of state satisfying (1.8), including
the isentropic case. Of course, the wild solution class is restricted only to those solutions that can
be obtained by the splitting of the incompressible and acoustic part as specified in (1.10).

5 Reachability for the Riemann problem

To the best of our knowledge there are only two methods available in the literature that give rise
to infinitely many solutions of the compressible Euler system, which are both based on a splitting
as in (1.9). The first method [8] was explained above, see (1.10). The second method considers
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initial data constant in each of the two half spaces (Riemann data), see [1] and also [6], [5], [10]
for the isentropic case. Here – instead of (1.10) – equations (1.9)2 and (1.9)3 are replaced by

∂tv + divx

(
m⊗m

%
− 1

N

|m|2

%
I− %U

)
= 0,

(
divxv = 0

)
,

∂t(∇xΦ) + divx(%U) +∇x

(
1

N

|m|2

%

)
+∇xp(%,m, E) = 0,

(
∂t% + ∆xΦ = 0

)
,

with a suitable matrix field U. The density %, the acoustic potential ∇xΦ as well as the field U are
piecewise constant in (0, T )×Ω. In particular, there exists a partition of the set (0, T )×Ω into a
finite number of sectors Qi, i = 1, . . . m, such that the wild solutions satisfy∫

Qi

[
m⊗m

%
− 1

N

|m|2

%
I
]

: ∇2
xϕ dx dt = 0 for any ϕ ∈ C∞

c (Qi), i = 1, . . . ,m.

Consequently, we may accommodate the data reachable by this method replacing (1.12) by∫ T

0

∫
Ω

(
mn ⊗mn

%n

− 1

N

|mn|2

%n

I
)

: ∇2
xϕ dx dt → 0 as n →∞ for any ϕ ∈ C∞

c (Q),

where Q ⊂ (0, T )× Ω is an open set such that Q = [0, T ]× Ω.
The above observation motivates the following extension of the concept of reachability. We say

that Q is a partition of the domain (0, T )× Ω if

• Q ⊂ (0, T )× Ω is an open set;

• Q = [0, T ]× Ω.

We say that a family of partitions Q is a closed partition set if it is closed with respect to the
Hausdorff complementary topology. More specifically, any sequence {Qn}∞n=1 ⊂ Q contains a
subsequence such that

Qc
n(k)

(H)→ Qc as k →∞ for some Q ∈ Q,

where the symbol
(H)→ denotes convergence in the Hausdorff metric and Qc

n denotes the complement
Qc

n ≡ ([0, T ]× Ω) \Qn.
An example of a closed partition set related to the convex integration method is

Q =
{

Q ⊂ (0, T )× Ω
∣∣∣ Q = ((0, T )× Ω) \ (∪M

i=1Hi), Hi − a hyperplane in RN+1
}

,

where M is a given positive integer. Note that this is indeed a closed partition set since (0, T )×Ω
is a bounded subset of RN+1.

The following property is well known, cf. [12]:

Qc
n

(H)→ Qc and K ⊂ Q is a compact set ⇒ there exist n(K) such that K ⊂ Qn for all n ≥ n(K).
(5.1)
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Next, we introduce the following generalization of (W )−convergence. Let Q be a closed parti-
tion set. We say that a sequence of data {%0,n,m0,n, E0,n}∞n=1 (W [Q])-converges to [%0,m0, E0],

[%0,n,m0,n, E0,n]
(W [Q])→ [%0,m0, E0],

if

•
%0,n > 0, s(%0,n,m0,n, E0,n) ≥ s0 > −∞;

•
[%0,n,m0,n, E0,n] → [%0,m0, E0] in L1(Ω; RN+2);

• the initial data [%0,n,m0,n, E0,n] give rise to a sequence of admissible weak solutions [%n,mn, En]
satisfying∫ T

0

∫
Ω

(
mn ⊗mn

%n

− 1

N

|mn|2

%n

I
)

: ∇2
xϕ dx dt → 0 as n →∞ for any ϕ ∈ C∞

c (Q) (5.2)

for some Q ∈ Q.

Definition 5.1. Let Q be a closed partition set. We say that a trio [%0,m0, E0] is Q−reachable if
there exists a sequence of initial data {%0,n,m0,n, E0,n}∞n=1 such that

[%0,n,m0,n, E0,n]
(W [Q])→ [%0,m0, E0].

Obviously any reachable data in the sense of Definition 1.2 are Q-reachable so the set of
Q−reachable data is always larger for any closed partition set.

In order to adapt the arguments used in Sections 3, 4 we need the following result.

Lemma 5.2. Let Q be a closed partition set.
Then the set of Q−reachable data is closed in L1((0, T )× Ω; RN+2).

Proof. Let [%0,n,m0,n, E0,n] be a sequence of Q−reachable data such that

[%0,n,m0,n, E0,n] → [%0,m0, E0] in L1((0, T )× Ω; RN+2).

Let [%0,n,m,m0,n,m, E0,n,m] be the corresponding generating sequences,

[%0,n,m,m0,n,m, E0,n,m]
(W [Q])→ [%0,n,m0,n, E0,n] as m →∞.

In particular, the corresponding solutions %m,n, mm,n satisfy∫ T

0

∫
Ω

(
mn,m ⊗mn,m

%n,m

− 1

N

|mn,m|2

%n,m

I
)

: ∇2
xϕ dx dt → 0 as m →∞ for any ϕ ∈ C∞

c (Qn)
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for some Qn ∈ Q and any fixed n.
As the partition set Q is closed, there exists a partition Q ∈ Q such that

K ⊂ Q a compact set ⇒ there exist n(K) such that K ⊂ Qn for all n ≥ n(K). (5.3)

at least for a suitable subsequence (not relabeled).
Let {

ϕk
}∞

k=1
, ϕ ∈ C∞

c (Q)

be a countable dense subset of the Sobolev space

W `,2
0 (Q) ≡ C∞

c (Q)
‖·‖`,2

↪→ C2(Q) as soon as ` >
N + 5

2
. (5.4)

Using property (5.3), we can find a subsequence

[%0,n(j),m(j),m0,n(j),m(j), E0,n(j),m(j)] → [%0,m0, E0] as j →∞ in L1((0, T )× Ω; RN+2)

satisfying∫ T

0

∫
Ω

(
mn(j),m(j) ⊗mn(j),m(j)

%n(j),m(j)

− 1

N

|mn(j),m(j)|2

%n(j),m(j)

I
)

: ∇2
xϕ

k dx dt → 0 as j →∞ for any k. (5.5)

By virtue of (5.4), any ∇2
xϕ can be uniformly approximated by ∇2

xϕ
k, and, as the energies

En(j),m(j) are bounded, we conclude that (5.5) holds for any ϕ ∈ C∞
c (Q). We may infer that

[%0,n(j),m(j),m0,n(j),m(j), E0,n(j),m(j)]
(W [Q])→ [%0,m0, E0] as j →∞;

whence [%0,m0, E0] is Q−reachable.

Finally, we observe that any regular initial data [%0,m0, E0] satisfy (3.2). To see this, we first
observe, similarly to Section 3, that∫ T

0

∫
Ω

[(
m⊗m

%

)
: ∇2

xϕ−
1

N

|m|2

%
∆xϕ

]
dx dt = 0 for any ϕ ∈ C∞

c (Q).

As %, m are smooth, we get

divxdivx

(
m⊗m

%

)
− 1

N
∆x

|m|2

%
= 0 in Q.

However, as Q = [0, T ]× Ω and the second derivatives of ρ, m are continuous, this implies

divxdivx

(
m⊗m

%

)
− 1

N
∆x

|m|2

%
= 0 in (0, T )× Ω.
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In particular, we obtain (3.2) for the initial data.
We have shown the following extension of Theorem 1.3.

Theorem 5.3. Let s0 ∈ R be given. Let Ω ⊂ RN , N = 2, 3 be a bounded smooth domain. Let
Q be a closed partition set in (0, T )× Ω.

Then the complement of the set of Q−reachable data is an open dense set in L1
+,s0

(Ω; RN+2).

As already pointed out, Theorem 5.3 accommodates the limits of the wild initial data con-
structed via the Riemann problem with M fans in the sense of [5].

A Wild solutions

The existence of weak solutions for the Euler system in higher space dimensions is an outstanding
open problem. Nevertheless, the recently developed adaptation of the convex integration technique
to the incompressible Euler system provided certain results also for the compressible case. We
report the following result proved in [8].

Theorem A.1. Let the initial data %0 and ϑ0 be piecewise constant strictly positive functions
defined on Ω. And let T > 0 be given.

Then there exists a constant Λ0 > 0 such that for any Λ ≥ Λ0 there is u0 ∈ L∞(Ω; RN) such
that the problem (1.1), (1.5), (1.8) admits infinitely many weak solutions in (0, T ) × Ω, with the
initial data

%0, m0 = %0u0, E0 =
1

2
%0|u0|2 + %0e(%0, ϑ0).

In addition, these solutions enjoy the following properties:

− 1

N

|m|2

%
= −Λ + p for a.a. (t, x) including t = 0, (A.1)

divxm = 0, (A.2)

%(t, x) = %0(x) for all t ≥ 0, (A.3)

S(t, x) = S0(x) for all t ≥ 0, (A.4)

and the renormalized entropy inequality (2.2) holds as equality.

Note that here (1.10) is satisfied with Φ = 0.
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