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Statement and proof

Towards the end of the formatting period of the nonlinear elasticity, in 1956, in his
paper Das ungelöste Hauptproblem der endlichen Elastizitätstheorie, [11], Truesdell
points out that the nonlinear elasticity misses conditions on the strain-energy that
would guarantee reasonable behavior (existence of solutions, stability, reality of wave
speeds, uniqueness etc.). These restrictions should be nonlinear counterparts of the
well-known inequalities on Lamé constants in linear elasticity. After a debate that
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lasted more than two decades, the final solution of the Hauptproblem came in 1977
with J. M. Ball [1], who showed that Morrey’s condition of quasiconvexity is exactly
what is missing in the analysis of the nonlinear response in elasticity. The virtues and
consequences of the quasiconvexity are well-known and will not be repeated here.

The early paper of Coleman & Noll [8] (1959) is, on the contrary, probably the
first response to Truesdell’s paper. The authors postulate an inequality that now bears
their name. The subsequent discussion showed the untenability of the Coleman-Noll
inequality. Nevertheless, in this note I discuss the consequences of the inequality for
isotropic materials. This class of materials is treated in the original paper by Coleman
&Noll [8; §12], where the authors show that the Coleman-Noll inequality implies that
the free energy is a convex function of principal stretches, i.e., Condition (i) below.
Here I complement that condition with Inequality (8) below to get conditions that are
simultaneously necessary and sufficient.

We shall consider only an isothermal version, which deals with the material gov-
erned by the constitutive equations for the specific free energy and Piola-Kirchhoff
stress of the form

ψ ¨ t�F�Ù S ¨ v�F�Ù
where F is the deformation gradient. Throughout this note, it is assumed that the
common domain of t and v is the set Lin+ of all second-order tensors with posi-
tive determinant, and that t is twice continuously differentiable and v continuously
differentiable.

The isothermal version of the Coleman-Noll inequality reads

t�F � ³ t�F� + v�F� ċ �F  − F� (1)

for all F  X Lin+ such that
F  ¨ GF

where G is a symmetric positive definite tensor. (We have also replaced the strict
inequality by a non-strict one.)

If H is any symmetric second-order tensor, then G�t� Ú¨ 1 + tH is positive
definite tensor for all t X R sufficiently close to 0ØHence if (1) holds for the given FÙ
the excess function

φ�t� ¨ t�F �t�	 − t�F� − v�F� ċ �F �t� − F	Ù
where F �t� ¨ G�t�F Ù has a local minimum at t ¨ 0Ø The conditions G�0� ¨ 0

gives the stress relation
v�F� ¨ ã

F
t�F� (2)

while ��0� ³ 0 reads
ÿ

2t�F��HFÙHF� ³ 0 (3)

for every F X Lin+ and everyH X Sym. Hereÿ2t�F��ċÙ ċ� is the second derivative
of t interpreted as a quadratic form. Conversely, assume that (2) and (3) hold for all
F X Lin+Ø IfG is positive definite symmetric, then the tensor F�t� ¨ F+ tHÙwhere
H ¨ G−1Ùbelongs to Lin+ for all t X �0Ù 1� and hence the replacement ofF byF�t�
in (3) gives ÿ2t�F�t���HF�t�ÙHF�t�� ³ 0Ø Upon the integration with respect to
t and upon the use of (2) this gives (1). Thus, when postulated for all F X Lin+,
Inequality (1) is equivalent to the joint satisfaction of (2) and (3) for all F X Lin+.
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We shall discuss Condition (3) for isotropic materials, i.e., for materials that sat-
isfy

t�QFR� ¨ t�F� (4)

for every F X Lin+ and every proper orthogonal tensors Q and RØ Equation (4) is
equivalent to the representation theorem

t�F� ¨ f �v
1
Ùv

2
Ùv

3
� (5)

for every F X Lin+ where v
1
Ù v

2
Ù v

3
are the principal stretches of FÙ i.e., the eigen-

values of
√

FFT Ù and where f Ú �0Ùð�3 r R is a function given by

f �w
1
Ùw

2
Ùw

3
� ¨ t�diag�w

1
Ùw

2
Ùw

3
��

for any �w
1
Ùw

2
Ùw

3
� X �0Ùð�3Ø It follows that f is invariant under any permutation

of �w
1
Ùw

2
Ùw

3
�. Our hypothesis implies that f is twice continuously differentiable.

For isotropic materials it suffices to examine Condition (3) only for diagonal tensors
FÛ Equation (4) then implies that Condition (3) holds for all F X Lin+Ø We now
apply the following assertion [3–6, 2, 9–10]: if F ¨ diag�v

1
Ùv

2
Ùv

3
� X Lin then

ÿt�F� ¨ diag�f
1
Ù f

2
Ù f

3
�Ù

where the subscripts attached to f indicate the partial derivatives of f evaluated at

�v
1
Ùv

2
Ùv

3
�Ø Furthermore, if the components v

1
Ù v

2
Ù v

3
are distinct, then

ÿ
2t�F��BÙB� ¨

3

�
iÙj¨1

f ijBiiBj j + �
1²i©j²3

�M+
ij B

2
ij +M−

ij BijBj i	 (6)

for any second-order tensor B , where

M+
ij ¨

vif i − vj f j

v2i − v2j
Ù M−

ij ¨
vj f i − vif j

v2i − v2j
Ø

Observing that �HF�ij ¨ Hijvj we see from (6) that Condition (3) reads

ÿ
2t�F��HFÙHF� ¨

3

�
iÙj¨1

f ij vivjHiiHj j + �
1²i©j²3

CijH
2

ij (7)

where

Cij ¨ M+
ij v

2

j +M−
ij vivj ¨

2v2j vif i − v3j f j − v2i vj f j

v2i − v2j
Ø

For the given F ¨ diag�v
1
Ùv

2
Ùv

3
�with distinct diagonal elements, the independence

of the diagonal and off-diagonal elements of H and the symmetry of H show that
Inequality (7) is is equivalent to the following two assertions:
(i) the matrix �f ij �3iÙj¨1

is positive-semidefinite at �v
1
Ùv

2
Ùv

3
�;

(ii) one has Cij + Cj i ³ 0 whenever 1 ² i © j ² 3Ù i.e.,

�3v2j + v2i �vif i − �3v2i + v2j �vj f j
v2i − v2j

³ 0 (8)

where the partial derivatives are evaluated at �v
1
Ùv

2
Ùv

3
�.
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Conversely, if Conditions (i) and (ii) hold at all �v
1
Ùv

2
Ùv

3
�with distinct elements then

(3) holds for all F X Lin+ with distinct principal stretches. Hence for all F X Lin+

by continuity and density. Thus for an isotropic material, Inequality (1) holds for all
F X Lin+ if and only if

v�F� ¨ diag�f
1
Ù f

2
Ù f

3
� (9)

for ever F X Lin+ and Conditions (i) and (ii) hold for all �v
1
Ùv

2
Ùv

3
� with distinct

elements.

Recall that the partial derivatives f i are called the principal forces, while the quan-
tities ti ¨ vif i¤v1v2v3, i.e., the eigenvalues of the Cauchy stress tensor, are called the
principal stresses. Consequence (i), i.e., the convexity of f , was derived by Coleman
& Noll, together with a well-known consequence for symmetric convex functions,
the ordered-force inequality

�vi − vj��f i − f j � ³ 0Ø (10)

In terms of the principal stresses, Condition (ii) reads

�3v2j + v2i �ti − �3v2i + v2j �tj
v2i − v2j

³ 0Ø (11)

Let us now mention some consequences. Hence assume that (i) holds for all
�v

1
Ùv

2
Ùv

3
� X �0Ùð�3 and that (ii) holds for all �v

1
Ùv

2
Ùv

3
� X �0Ùð�3 with dis-

tinct components. We have the following assertions.

Consequence A (Nonnegativity of pressure) If the stress reduces to the hydro-
static pressure, i.e., if t

1
¨ t

2
¨ t

3
¨ −p then (11) reduces to p ³ 0Ø

Consequence B (Coleman-Noll inequality and Baker-Ericksen inequalities) Re-
call that the Baker-Ericksen inequalities read

�vi − vj ��ti − tj � ³ 0 (12)

whenever 1 ² i © j ² 3Ø To discuss the relationship to the Coleman-Noll inequality,
assume that vi ± vj (so that f i ³ f j by (10)) and (12) reduces to

ti − tj ³ 0Ø (13)

Note first that
tj ³ 0

then (13) holds. Second, note that if (13) is violated, i.e., if

ti − tj ° 0Ù (14)

then
ti ° tj ° 0Ø (15)

Proof For vi ± vj Inequality (11) reduces to

�3v2j + v2i �ti − �3v2i + v2j �tj ³ 0Ø (16)

Thus if tj ³ 0 then �3v2i +v2j �tj ³ �3v2j +v2i �tj and hence (16) gives (13). Similarly,

if (14) holds then �3v2j + v2i �ti ° �3v2j + v2i �tj and one finds that (11) gives �2v2j −
2v2i �tj ± 0Ù i.e., tj ° 0, and (15) follows by combination with (14). è
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Consequence C (Coleman-Noll inequality and fluids) Fluids satisfy the require-
ment

t�QFH� ¨ t�F� (17)

for every F X Lin+, every proper orthogonal tensors Q , and every second-order
tensor H with detH ¨ 1Ø Hence, in particular, (4) holds, i.e., fluids are isotropic
materials. Equation (17) is satisfied if and only if

t�F� ¨ ��v�
for every F X Lin+ and some function � Ú �0Ùð� r R, where

v¨ detF ¨ v
1
v
2
v
3

is the specific volume. Thus we have (5) with f �v
1
Ùv

2
Ùv

3
� ¨ ��v

1
v
2
v
3
�Ø The

Coleman-Noll inequality is equivalent to the stress relation (9) and Conditions (i)
and (ii). The stress relation reduces to

t
1
¨ t

2
¨ t

3
¨ −p with p ¨ −� ′Ø

One finds that f ij ¨ ��1 − δij �v� ′ + v2� ′′	¤vivj and hence the positive definite

character of the matrix �f ij �3iÙj¨1
is expressed by the inequality

�v� ′ + v2� ′′��
3

�
i¨1

xi�
2 − v� ′@x@2 ³ 0 (18)

for every x X R
3Ø The choice x ¨ �1Ù 1Ù 1� gives

2� ′ + 3v� ′′ ³ 0Ø (19)

It is easily found that actually (19) is sufficient for (18) and these conditions are, in
turn, equivalent to the assertion that��v� is a convex function of 3

√

vØ If the pressure
p ¨ −� ′ is expressed in term of the density ρ ¨ 1¤vÙ i.e., p ¨ p�ρ�Ùwe have [7]

p�ρ� ³ 0Ù dp�ρ�
dρ

³ 2

3
p�ρ�Ø
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