THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS

Consequences of the Coleman-Noll
inequality for isotropic materials

Miroslav Silhavy

Preprint No. 61-2018
PRAHA 2018






Consequences of the
Coleman-Noll inequality for
isotropic materials

Miroslav Silhavy

Institute of Mathematics, CAS
Zitnd 25

115 67 Prague 1

Czech Republic

e-mail: silhavy@math.cas.cz

Abstract The paper establishes necessary and sufficient conditions for the Coleman-
Noll inequality for isotropic materials.

AMS 2010 classification 74B20 - 74A20

Keywords Coleman-Noll inequality - isotropy - second derivative of the stored
energy - Baker-Ericksen inequalities

Statement and proof

Towards the end of the formatting period of the nonlinear elasticity, in 1956, in his
paper Das ungeloste Hauptproblem der endlichen Elastizitdtstheorie, [11], Truesdell
points out that the nonlinear elasticity misses conditions on the strain-energy that
would guarantee reasonable behavior (existence of solutions, stability, reality of wave
speeds, uniqueness etc.). These restrictions should be nonlinear counterparts of the
well-known inequalities on Lamé constants in linear elasticity. After a debate that
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lasted more than two decades, the final solution of the Hauptproblem came in 1977
with J. M. Ball [1], who showed that Morrey’s condition of quasiconvexity is exactly
what is missing in the analysis of the nonlinear response in elasticity. The virtues and
consequences of the quasiconvexity are well-known and will not be repeated here.

The early paper of Coleman & Noll [8] (1959) is, on the contrary, probably the
first response to Truesdell’s paper. The authors postulate an inequality that now bears
their name. The subsequent discussion showed the untenability of the Coleman-Noll
inequality. Nevertheless, in this note I discuss the consequences of the inequality for
isotropic materials. This class of materials is treated in the original paper by Coleman
& Noll [8; §12], where the authors show that the Coleman-Noll inequality implies that
the free energy is a convex function of principal stretches, i.e., Condition (i) below.
Here I complement that condition with Inequality (8) below to get conditions that are
simultaneously necessary and sufficient.

We shall consider only an isothermal version, which deals with the material gov-
erned by the constitutive equations for the specific free energy and Piola-Kirchhoff
stress of the form

Yy =y(F), S=S8(F),

where F is the deformation gradient. Throughout this note, it is assumed that the
common domain of ¥ and S is the set Lin* of all second-order tensors with posi-
tive determinant, and that v is twice continuously differentiable and S continuously
differentiable.

The isothermal version of the Coleman-Noll inequality reads

Y(F*) 2 y(F)+S8(F)-(F*-F) (1)

forall F* € Lin™ such that
F* = GF

where G is a symmetric positive definite tensor. (We have also replaced the strict
inequality by a non-strict one.)

If H is any symmetric second-order tensor, then G(¢) := 1 + tH is positive
definite tensor for all # € R sufficiently close to 0. Hence if (1) holds for the given F,
the excess function

¢(t) =y (F*(t)) —y(F) - S(F) - (F*(t) - F),

where F*(t) = G(¢)F, has a local minimum at ¢ = 0. The conditions ([)(0) =0
gives the stress relation

S(F) = gy (F) )

while ¢ (0) > 0 reads
D2y(F)[HF,HF] > 0 (3)

forevery F € Lin™ and every H € Sym. Here D 2 W (F)[-,-] is the second derivative
of  interpreted as a quadratic form. Conversely, assume that (2) and (3) hold for all
F € Lin" . If G is positive definite symmetric, then the tensor F (t) = F +tH, where
H = G—-1,belongs to Lin™ forall t € [0, 1] and hence the replacement of F by F (¢)
in (3) gives Dle(F (t))[HF (t),HF (t)] = 0. Upon the integration with respect to
t and upon the use of (2) this gives (1). Thus, when postulated for all F € Lin™,
Inequality (1) is equivalent to the joint satisfaction of (2) and (3) for all F € Lin™.
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We shall discuss Condition (3) for isotropic materials, i.e., for materials that sat-
isfy B B
YW (QFR) = Y/ (F) “4)

for every F e Lin™ and every proper orthogonal tensors Q and R. Equation (4) is
equivalent to the representation theorem

Y (F) = f (v, 0y,03) (5)

for every F € Lin™ where v;, v,, v are the principal stretches of F, i.e., the eigen-
values of VFFT, and where f : (0,0)3 — R is a function given by

fw,wy,wi) = lﬁ(diag(wl,wz,w3))

for any (w,w,,w3) € (0, ) 3 Tt follows that f 1s invariant under any permutation
of (w;,w,,ws3). Our hypothesis implies that f is twice continuously differentiable.
For isotropic materials it suffices to examine Condition (3) only for diagonal tensors
F; Equation (4) then implies that Condition (3) holds for all F € Lin™. We now
apply the following assertion [3-6, 2, 9-10]: if F = diag(v,, v,,v3) € Lin then

Dy (F) = diag(f,, /2. f3)

where the subscripts attached to f indicate the partial derivatives of f evaluated at
(vy,v,,v3). Furthermore, if the components v|, v,, v are distinct, then

D2y (F)[B,B] = z fllB”B”+ Y (M5B} +MjB;B;) (6
i,j=1 1<i£j<3

for any second-order tensor B, where

vifi = v;f; M- = vifi = vif;
1)2—1)2 ’ j - 1)2—1)2 '
i Y i Y

Observing that (HF') i = H;v; we see from (6) that Condition (3) reads

D2y(F)[HF ,HF] = z fllvlv]HH + Y CyH} (7
i,j=1 / 1<ifj<3

where

2v v.f; — 113 - v v;
Gy = MZJ;U]2 + M;;vv; = ifi vz _fvz f
For the given F = diag(v,, v,, v5) with distinct diagonal elements, the independence
of the diagonal and off-diagonal elements of H and the symmetry of H show that
Inequality (7) is is equivalent to the following two assertions:
(1) the matrix [f]] _j=1 IS positive-semidefinite at (v;,0,5,03);
(ii) one has C;; + C;; =2 0 whenever 1 < i +j < 3, 1i.e,

(3vz+v-2)v-f-— (3v-2+vz)v-f-
J 1 l ; > 1 J J7 ] > 0 (8)

Vi U

where the partial derivatives are evaluated at (v, v,, v3).
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Conversely, if Conditions (i) and (ii) hold at all (v,, v,, v3) withdistinct elements then
(3) holds for all F € Lin* with distinct principal stretches. Hence for all F € Lin*
by continuity and density. Thus for an isotropic material, Inequality (1) holds for all
F e Lin™ ifand only if B

S (F) = diag(fy, f5./f3) 9)

for ever F e Lin" and Conditions (i) and (ii) hold for all (vy, vy, v3) With distinct
elements.

Recall that the partial derivatives f; are called the principal forces, while the quan-
tities t; = v;f; /v 0,03, i.e., the eigenvalues of the Cauchy stress tensor, are called the
principal stresses. Consequence (i), i.e., the convexity of f', was derived by Coleman
& Noll, together with a well-known consequence for symmetric convex functions,
the ordered-force inequality

(Uj_vj)(fi_f/') 2 0. (10)
In terms of the principal stresses, Condition (ii) reads

2 2 2 2

2 .2
Vi — U

2> 0. (11)

Let us now mention some consequences. Hence assume that (i) holds for all
(v, 05,v3) € (O, ®)? and that (ii) holds for all (v;,05,v3) € (0, )3 with dis-
tinct components. We have the following assertions.

Consequence A (Nonnegativity of pressure) If the stress reduces to the hydro-
static pressure, i.e., if #; = 1, = t; = —p then (11) reduces to p = 0.

Consequence B (Coleman-Noll inequality and Baker-Ericksen inequalities) Re-
call that the Baker-Ericksen inequalities read

(Uj_vj)(tj_tj) 20 (12)

whenever 1 < i # j < 3. To discuss the relationship to the Coleman-Noll inequality,
assume that v; > v; (so that f; 2 fj by (10)) and (12) reduces to

;=1 20. (13)
Note first that
t;20
then (13) holds. Second, note that if (13) is violated, i.e., if
t;—t; <0, (14)
then
1, <t; <0. (15)
Proof For v; > v; Inequality (11) reduces to
(3v7 +v7)t; — (3v7 +v7)1; 2 0. (16)

Thus if 7; > 0 then (307 +v7)1; 2 (3v7 +v/)1; and hence (16) gives (13). Similarly,
if (14) holds then (307 + v7)t; < (30} + v})t; and one finds that (11) gives (2v7 —
2vi2)tj >0, 1.e., 1; < 0, and (15) follows by combination with (14). O
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Consequence C (Coleman-Noll inequality and fluids) Fluids satisfy the require-
ment

Y (QFH) =y (F) (17)

for every F € Lin™, every proper orthogonal tensors @, and every second-order
tensor H with det H = 1. Hence, in particular, (4) holds, i.e., fluids are isotropic
materials. Equation (17) is satisfied if and only if

Y(F) =¢(v)
forevery F € Lin™ and some function ¢ : (0, %) — R, where
v =detF = vjvyv;

is the specific volume. Thus we have (5) with f (v[,v,,v3) = @ (v vv5). The
Coleman-Noll inequality is equivalent to the stress relation (9) and Conditions (i)
and (ii). The stress relation reduces to

th=t,=t3=-p with p= -0’

One finds that f;; = ((1 - J;,)v9’ + v*¢") /v,v; and hence the positive definite
character of the matrix [f;;] 13] _ 1s expressed by the inequality

3 2
(vg" +0%¢") (X x;)" —vo'lx|? 2 0 (18)
1=

for every x € R3. The choice x = (1,1,1) gives
20" + 3vp" 2 0. (19)

It is easily found that actually (19) is sufficient for (18) and these conditions are, in

turn, equivalent to the assertion that ¢ (v) is a convex function of 3/v . If the pressure

p = —¢’ is expressed in term of the density p = 1/v,i.e.,p = p(p), we have [7]
dap(p) | 2

p(p) 20, dp —§p(p).
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