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SOME COMMON ASYMPTOTIC PROPERTIES OF SEMILINEAR
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Abstract. We consider three types of semilinear second order PDEs on a cylindrical
domain Ω × (0,∞), where Ω is a bounded domain in �N , N � 2. Among these, two are
evolution problems of parabolic and hyperbolic types, in which the unbounded direction of
Ω × (0,∞) is reserved for time t, the third type is an elliptic equation with a singled out
unbounded variable t. We discuss the asymptotic behavior, as t → ∞, of solutions which
are defined and bounded on Ω× (0,∞).
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1. The equations and their gradient-like structure

Let Ω be a bounded domain in �N with a C2-boundary, and let g : Ω × � → �

be a sufficiently regular function (assume g is of class C1 at least). We consider the

following three types of semilinear problems in the cylindrical domain Ω× (0,∞):

(PP)




ut = ∆u+ g(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with u0 ∈ H10 (Ω) ∩ L∞(Ω);

(HP)




utt + αut = ∆u+ g(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = v0(x), x ∈ Ω,
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with (u0, v0) ∈ (H10 (Ω) ∩ L∞(Ω))× L2(Ω) and α > 0; and

(EP)




−utt + αut = ∆u+ g(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = v0(x), x ∈ Ω,

with (u0, v0) ∈ (H10 (Ω) ∩ L∞(Ω))× L2(Ω) and α �= 0.
In all cases we are interested in solutions defined on Ω× (0,∞) for which

(1.1) sup
t>0

{‖u(·, t)‖H1(Ω), ‖u(·, t)‖L∞(Ω)} < ∞.

We want to understand the possible behavior of such solutions as t → ∞.
Problems (PP), (HP) are evolution problems of parabolic and hyperbolic type,

respectively. The given initial-value problems are well-posed (in the case of (HP),

under additional growth conditions on g), and the solutions define a local dynamical
system on a suitable state space (see [1], [10], [29]). For these evolution problems

the objective we have set ourselves is a rather standard one—to understand the
asymptotic behavior of bounded solutions.

The elliptic problem (EP) is usually viewed as a static, rather than an evolution
one, in particular the initial-value problem (EP) is in general ill posed (note, however,

that dynamical system ideas have proved very useful in the study of (EP), see [4],
[17], [19], [20], for example). In any case, the behavior of bounded solutions as t → ∞
is of interest. In particular, one would like to know whether each such solution has
to asymptotically settle down to some fixed profile ϕ(x), x ∈ Ω, or whether there
can be oscillations for large values of t.
All the three problems share a common property that significantly restricts the

way bounded solutions may behave. Namely, each of the problems has a gradient-like
structure, which is to say that it admits a Lyapunov functional. For the parabolic

problem, the functional is given by the usual “energy”:

VP (u) :=
1
2

∫
Ω
|∇u(x)|2 dx −

∫
Ω

G(x, u(x)) dx,

where

G(x, u) =
∫ u

0
g(x, ξ) dξ.

For problems (HP) and (EP) the functionals are given, respectively, by

VH(u) := VP (u) +
1
2

∫
Ω

u2t (x) dx

302



and

VE(u) :=

(
VP (u)− 12

∫
Ω

u2t (x) dx

)
signα.

A standard computation shows that if u is a solution of any of the above problems

that satisfies (1.1) and is not constant in t, then for the corresponding functional V ,
the function t �→ V (u(·, t)) is strictly decreasing on (0,∞). Using this property, one
can show (see for example [4], [10], [20]) that as t → ∞, any solution u(·, t) satisfying
(1.1) approaches a set of solutions of the elliptic problem on the cross-section Ω:

(EC)

{ ∆v + g(x, v) = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

To say this more precisely, assume u(x, t) is a solution of one of the problems (PP),
(HP), (EP) satisfying (1.1). Then {u(·, t) : t > 0} is relatively compact in H10 (Ω)

and its ω-limit set,

ω(u) = {z ∈ H10 (Ω): u(·, tn)→ z in H10 (Ω) for some tn → ∞},

is a connected subset of H10 (Ω) consisting of solutions of (EC). One can also show
that ut(·, t) → 0 (in L2(Ω) at least). Hence if oscillations occur at all, they must

slow down.

2. Stabilization or not?

Having said the above, the basic question concerning the asymptotic behavior of a
bounded solutions is now whether ω(u) must be a single function, or whether it can be

a nontrivial continuum of solutions of (EC). In the former case, we say the solution u

is stabilizing or convergent ; otherwise u is said to be nonstabilizing or nonconvergent.

In literature, one can find various sufficient conditions for stabilization of all bounded
solutions. Let us list a few such conditions that are common to the three problems.

• One-dimensional domains. If N = 1, bounded solutions have been proved to
stabilize (converge to a single solution of (EC)). The proofs are given in [31],

[18], [11] for (PP), [11] for (HP) and [2], [20] for (EP) (see [2], [3], [5], [6], [8] for
related results in 1D).

• Analytic nonlinearities. If g is real analytic in u, then bounded solutions for
each of the three problems stabilize. The proof is given in [26] for (PP) and

(EP), and in [14] for (HP) (see [15], [12], [9], [28] for other results based on
similar ideas).

• Positive solutions on a ball. If Ω is a ball and u(·, t) is a positive bounded
solution of any of the three problems, then it stabilizes to a single radially
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symmetric solution of (CE). The proofs for all three problems are given in [13];

see also [7] for a related convergence result in periodic-parabolic equations.

We thus have a rather complete understanding of the behavior of bounded so-
lutions if N = 1 or if N � 1 and g is analytic. In case N > 1 and g is merely
smooth, the situation is more complicated. The solutions may no longer stabilize.

The following theorem gives a specific statement to that effect.

Theorem 1. Let Ω be any bounded domain in �N (N = 2, 3) with a C2 bound-

ary. There exists a C∞ function g : Ω × � −→ � such that each of the problems

(PP), (HP) and (EP) has (for suitable initial functions u0 or (u0, v0)) a solution

u(·, t) which is bounded in H2(Ω) and whose ω-limit set ω(u) is a continuum in
H10 (Ω) homeomorphic to S1.

We restrict our attention to dimensions N = 2, 3 for simplicity, so that we can

treat all the three problems simultaneously and work in the L2-setting.

The theorem has been proved in [25] for (PP) (see [24] for an earlier weaker result)
and in [23] for (HP) and (EP). Notice the curious fact that the nonstabilizing solu-

tions occur for each of the problems with the same function g. This is an interesting
example of similarities in the behavior of solutions of the three problems. It may be
instructive to discuss certain common features of these problems, and, in doing so,

explain why one function g yields nonconvergent examples in all the three problems.

3. Common features of (PP), (HP) and (EP)

As already mentioned above, a consequential feature common to (PP), (HP) and

(EP) is the presence of a Lyapunov functional. This forces bounded solutions to
approach a set of “steady-states”, that is t-independent solutions. Such solutions are

given by (EC), the equation for steady-states shared by (PP), (HP) and (EP).

The next common property is associated with the linearization at steady-states.
Namely, the three problems have a common central part of the spectrum of the

linearization. To be more specific, let us write the nonlinearity g in the form

g(x, u) = a(x)u + f(x, u).

One can think of this as the linearization around a solution ϕ of (EC), in which

case a(x) = gu(x, ϕ(x)) and f(x, u) = g(x, ϕ(x) + u) − a(x)u − ∆ϕ(x), so that
f(x, 0) ≡ fu(x, 0) ≡ 0. We rewrite each of the problems in the abstract form

(3.1) U ′ = AU + f̂(U).
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This is done as follows. Let E = L2(Ω) for (PP) and E = H10 (Ω) × L2(Ω) for

(HP) and (EP). We define a closed operator A on E with the domain Dom(A) = X

(X := H2(Ω) ∩ H10 (Ω) for (PP) and X := (H2(Ω) ∩ H10 (Ω)) × H10 (Ω) for (HP) and
(EP)) as follows:

for (PP): Au = (∆ + a(x))u (u ∈ X),

for (HP): AU =

(
0 I

∆+ a(x) −αI

)
U

(
U =

(
u

v

)
∈ X

)
,

for (EP): AU =

(
0 I

−∆− a(x) αI

)
U

(
U =

(
u

v

)
∈ X

)
,

where I is the identity operator. The nonlinearity f̂ is defined in the following way:

for (PP): f̂(u)(x) = f̃(u)(x) := f(x, u(x)) (u ∈ X)

for (HP): f̂(U) =

(
0

f̃(u)

) (
U =

(
u

v

)
∈ X

)
,

for (EP): f̂(U) =

(
0

−f̃(u)

) (
U =

(
u

v

)
∈ X

)
.

Observe that f̂ : X → X is a smooth function if f is smooth (this is due to our

assumption N � 3, see [27]).

Im

0 Re

(PP): Im

0 Re

(HP): Im

0 Re

(EP):

Figure 1. σ(A): the arrows indicate directions in which σ(A) is unbounded.

Let us now examine the spectrum of the operator A (see Fig. 1). In the parabolic
case, σ(A) consists of real eigenvalues µ1 > µ2 > µ3 > . . . accumulating at −∞;
each of them has the same algebraic and geometric multiplicity and the multiplicity
is finite. In the hyperbolic case, σ(A) consists of the eigenvalues

1
2

( − α ±
√

α2 + 4µk

)
(the roots of λ2 + αλ = µk), k = 1, 2, . . . .

In particular, the only possible eigenvalue on the imaginary axis is λ = 0; it occurs

if and only if µk = 0 for some k and then the algebraic multiplicity of this eigen-
value coincides with the geometric multiplicity and is equal to the multiplicity of the
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eigenvalue µk of ∆ + a(x). This can be seen by examining the spectral projection

associated with the eigenvalue λ = 0 (see [23]).
In the elliptic case, σ(A) consists of the eigenvalues

1
2

(
α ±

√
α2 − 4µk

)
(the roots of λ2 − αλ = −µk), k = 1, 2, . . . .

Again, the only eigenvalue on the imaginary axis occurs if µk = 0, and it is the

eigenvalue λ = 0 with the same multiplicity as µk.
Although the structure of the spectra is quite different in the three cases, they have

the same intersection with the imaginary axis: if nonempty, it is just the eigenvalue
λ = 0 which has the same multiplicity for all the three problems. This is what we

have meant by the common central part of the spectrum.
An important consequence of the above property is that center manifolds of steady

states have the dimension independent of the type of the problem. The center mani-
fold plays a crucial role in the proofs of Theorem 1, so let us discuss it in some detail.

We do so in terms of the abstract equation (3.1).
Assume 0 is an eigenvalue of A and let P ∈ L(E) denote the spectral projection

onto the corresponding eigenspaceE1 (note that the eigenspace coincides with kerA).
Let further E2 denote the range of I−P (I is the identity on E) and let X2 = X∩E2.
One can then prove (see [30], for example) that for any given positive integer k,

if f̂ ∈ Ck
b (that is, all its Frechet derivatives up to order k are continuous and

bounded) and if the Lipschitz constant of f̂ is sufficiently small, then there is a Ck
b

map σf : E1 → X with its image contained in X2 such that the manifold

Wf = {U1 + σf (U1) : U1 ∈ E1}

has the following invariance property (see Fig. 2). If U0 = U01 + σf (U01 ) ∈ Wf and
U1(t) is the solution of

(3.2)
U̇1 = P f̂

(
U1(t) + σf (U1(t)

)
,

U1(0) = U01 ,

then U(t) := U1(t) + σf (U1(t)) ∈ Wf is a solution of (3.1) (with U(0) = U0). Thus

X2

E1

Wf U(t)

U1(t)U01

U0

Figure 2. The center manifold of (3.1).
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the center manifold Wf consists of solutions of (3.1) which are defined for all t � 0
(since the nonlinearity in (3.2) is globally Lipschitz). Note on passing that the elliptic
initial value problem (EP) is well posed if the initial data are chosen in the center
manifold. Equation (3.2), usually referred to as the center manifold reduction, is

an ODE on the finite dimensional space E1. Using real coordinates on E1, we can
rewrite it as an ODE on �n with n = dimE1:

(3.3) ξ̇ = hf (ξ).

This ODE depends on the nonlinearity and on the type of problem we consider.
However, for all the three problems (PP), (HP) and (EP), the ODE is posed on the

same Euclidean space �n .

We now come to the last (in our list) common feature of problems (PP), (HP) and
(EP). It concerns the gradient-like structure of the center manifold reduction. As

mentioned above, each of the problems admits a Lyapunov functional V , which can
be viewed as a functional on X (identifying U = (u, v) with (u, ut) for (HP), (EP)).
From the invariance property of the center manifold, it follows that the composition

U1 �→ V (U1+ σf (U1)) is a Lyapunov functional for the reduction (3.3). Thus in real
coordinates on E1, equation (3.3) has a Lyapunov functional Hf . For the parabolic

problem (PP), one can even prove (see [24]) that hf in (3.3) is the gradient of Hf

with respect to a Riemannian metric on �n . This is not necessarily true for (HP)

and (EP), but still all equilibria of (3.3) are critical points of Hf (see [23]). Again,
Hf depends on the type of the problem. However, inspecting formulas for Hf , one

discovers a term which is independent of the type and which is, in some sense, the
most important one. Specifically, if (ϕ1, . . . , ϕn) denotes an L2(Ω)-orthonormal basis

of ker(∆ + a(x)) (under the Dirichlet boundary condition), then one has (see [24],
[25], [23])

(3.4) Hf (ξ) =
∫
Ω

F (x, ξ · ϕ(x)) dx+ . . .

where F (x, u) =
∫ u

0 f(x, s) ds, ϕ = (ϕ1, . . . , ϕn) and “·” stands for the usual scalar
product in �n . The missing terms in this formula are of higher order than the first

term, which roughly speaking means that if we take f = εf0 with ε → 0, then those
terms are of order O(ε2) (note that the integral term is linear in f). The missing

terms depend on the type of the problem and they involve the function σf from
the center manifold. On the other hand, the first term is common to all the three

problems. In addition, it does not involve σf , hence it is much easier to control when
one wants to construct examples.
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Let us now indicate how the proofs of Theorem 1 in [25], [23] utilize (3.4). First

the function a(x) is taken such that n = dim(ker(∆ + a(x)) = 2 and such that the
eigenfunctions ϕ1, ϕ2 satisfy additional conditions that we do not specify here.

One then wants to show that f can be chosen such that

(3.5)
∫
Ω

F (x, ξ · ϕ(x)) dx = H0(ξ),

where H0(ξ) is the smooth function on �2 given by

H0(	 cos γ, 	 sinγ) =

{
be1/(1−�M(γ)) sin(1/(	M(γ)− 1)− γ) if 	M(γ) > 1,

0 if 	M(γ) � 1,

where b ∈ � \ {0} and γ �→ M(γ) is a smooth positive 2�-periodic function. This is

a modification of a function used in [21] in an example of a planar gradient vector
field with a nonconvergent bounded trajectory. By careful estimates of the missing

terms in (3.4), one can show that if (3.5) holds, then Hf has certain geometric
properties which are not affected by the missing terms and which guarantee that

(3.3) has a nonconvergent bounded trajectory. This information is then “lifted” to
the center manifold Wf and one obtains a bounded nonconvergent solution of the

original PDE. Thus to prove Theorem 1, it is sufficient to show that (3.5) can be
solved for F (and then set f = F ′). Note that (3.5) is a linear integral equation with
respect to the unknown F , but it is not of any standard form. It actually requires
quite a bit of technical work to solve it (the method of solution relies on properties

of the eigenfunctions ϕ1, ϕ2 for a suitably chosen a(x)). The existence of a smooth
solution F is established in [25], where parabolic equations are considered. Taking

advantage of the fact that the leading term of the Lyapunov functional on the center
manifold is common to all the three problems, the construction of [25] is used in [23]
in the proof of the theorem for (HP) and (EP).

We remark that for the evolution equations (PP), (HP) one can use invariant
foliations to prove that there actually exist infinite-dimensional manifolds of initial

conditions that give nonconvergent bounded trajectories.

As the above discussion briefly outlines, our method for constructing examples of
nonconvergent bounded solutions relies on “controlling” the center manifold reduc-

tion by adjusting the nonlinearity in the PDE. Similar ideas are of course not limited
to gradient-like equations. In more general problems a similar method can be used

to reveal even more interesting dynamics. See [22] for a survey of applications of this
method.
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