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Abstract. We identify some situations where mappings related to left centralizers, deriva-
tions and generalized (α, β)-derivations are free actions on semiprime rings. We show that
for a left centralizer, or a derivation T , of a semiprime ring R the mapping ψ : R → R

defined by ψ(x) = T (x)x − xT (x) for all x ∈ R is a free action. We also show that for a
generalized (α, β)-derivation F of a semiprime ring R, with associated (α, β)-derivation d,
a dependent element a of F is also a dependent element of α + d. Furthermore, we prove
that for a centralizer f and a derivation d of a semiprime ring R, ψ = d ◦ f is a free action.
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1. Introduction

Murray and von Neumann [14] and von Neumann [15] introduced the notion of

free action on abelian von Neumann algebras and used it for the construction of

certain factors (see Dixmier [9]). Kallman [12] generalized the notion of free action of

automorphisms of von Neumann algebras, not necessarily abelian, by using implicitly

the dependent elements of an automorphism. Choda, Kashahara and Nakamoto [7]

generalized the concept of freely acting automorphisms to C∗-algebras by introducing

dependent elements associated to automorphisms. Several other authors have studied

dependent elements on operator algebras (see [8] and references therein). A brief

account of dependent elements in W ∗-algebras has also appeared in the book of

Stratila [17]. It is well-known that all C∗-algebras and von Neumann algebras are

semiprime rings; in particular, a von Neumann algebra is prime if and only if its center

consists of scalar multiples of identity. Thus a natural extension of the notions of

dependent elements of mappings and free actions on C∗-algebras and von Neumann
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algebras is the study of these notions in the context of semiprime rings and prime

rings.

Laradji and Thaheem [13] initiated a study of dependent elements of endomor-

phisms of semiprime rings and generalized a number of results of [7] to semiprime

rings. Recently, Vukman and Kosi-Ulbl [19] and Vukman [20] have made further

study of dependent elements of various mappings related to automorphisms, deriva-

tions, (α, β)-derivations and generalized derivations of semi-prime rings. The main

focus of the authors of [19], [20] has been to identify various freely acting mappings

related to these mappings, on semiprime and prime rings.

The theory of centralizers (also called multipliers) of C∗-algebras and Banach

algebras is well established (see [1], [2] and references therein). Recently, Zalar [22],

Vukman [18] and Vukman and Kosi-Ulbl [21] have studied centralizers in the general

framework of semiprime rings.

On the one hand, motivated by the work of Laradji and Thaheem [13], Vukman and

Kosi-Ulbl [19] and Vukman [20] on dependent elements of mappings and free actions

of semiprime rings and, on the other hand, by the work of Zalar [22], Vukman [18] and

Vukman and Kosi-Ulbl [21] on centralizers of semiprime ring, we investigate some

mappings related to left centralizers, centralizers, derivations, (α, β)-derivations and

generalized (α, β)-derivations which are free actions on semiprime rings. We show

that for a left centralizer T of a semiprime ring R, the mapping ψ : R → R defined by

ψ(x) = T (x)x−xT (x) (x ∈ R), is a free action. We also prove that for a generalized

(α, β)-derivation F of a semiprime ring R with the associated (α, β)-derivation d, a

dependent element a of F is also a dependent element of α+ d.

Throughout, R will stand for associative ring with center Z(R). As usual, the

commutator xy − yx will be denoted by [x, y]. We shall use the basic commutator

identities [xy, z] = [x, z]y+x[y, z] and [x, yz] = [x, y]z+y[x, z]. Recall that a ring R is

prime if aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0)

implies a = 0. An additive mapping D : R → R is called a derivation provided

D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. Let α be an automorphism

of a ring R. An additive mapping D : R → R is called an α-derivation if D(xy) =

D(x)α(y) + xD(y) holds for all x, y ∈ R. Note that the mapping, D = α− I, where

I denotes the identity mapping on R, is an α-derivation. Of course, the concept

of an α-derivation generalizes the concept of a derivation, since any I-derivation is

a derivation. α-derivations are further generalized as (α, β)-derivations. Let α, β

be automorphisms of R, then an additive mapping D : R → R is called an (α, β)-

derivation if D(xy) = D(x)α(y)+β(x)D(y) holds for all pairs x, y ∈ R. α-derivations

and (α, β)-derivations have been applied in various situations; in particular, in the

solution of some functional equations. For more information on α-derivations and

(α, β)-derivations we refer the reader to [3]–[6] and references therein.
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An additive mapping F of a ring R into itself is called a generalized derivation,

with the associated derivation d, if there exists a derivation d of R such that F (xy) =

F (x)y + xd(y) for all x, y ∈ R. The concept of a generalized derivation covers both

the concepts of a derivation and of a left centralizer provided F = d and d = 0,

respectively (see [11] and references therein). An additive mapping f : R → R is

called centralizing (commuting) if [f(x), x] ∈ Z(R) ([f(x), x] = 0) for all x ∈ R.

By Zalar [22], an additive mapping T : R → R is called a left (right) centralizer if

T (xy) = T (x)y (T (xy) = xT (y)) for all x, y ∈ R. If a ∈ R, then La(x) = ax and

Ra(x) = xa (x ∈ R) define a left centralizer and a right centralizer of R, respectively.

An additive mapping T : R → R is called a centralizer if T (xy) = T (x)y = xT (y)

for all x, y ∈ R. Following [13], an element a ∈ R is called a dependent element of

a mapping F : R → R if F (x)a = ax holds for all x ∈ R. A mapping F : R → R

is called a free action if zero is the only dependent element of F. It is shown in [13]

that in a semiprime ring R there are no nonzero nilpotent dependent elements of a

mapping F : R → R. We shall use this fact without any specific reference. For a

mapping F : R → R, D(F ) denotes the collection of all dependent elements of F.

For other ring theoretic notions used but not defined here we refer the reader to [10].

2. Results

In order to prove our results we first give the proof of our earlier theorem [16,

Theorem 2.1] for completeness. The first part of this result is a special case of

Theorem 4 in [19].

Theorem 2.1. Let R be a semiprime ring and T a left centralizer of R. Then

a ∈ D(T ) if and only if a ∈ Z(R) and T (a) = a.

P r o o f. Let a ∈ D(T ). Then

(1) T (x)a = ax

Replacing x by xy in (1), we get T (xy)a = axy. That is,

(2) T (x)ya = axy.

Multiplying (2) by z on the right, we get

(3) T (x)yaz = axyz.

Replacing y by yz in (2), we get

(4) T (x)yza = axyz.
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Subtracting (4) from (3), we get T (x)y(az − za) = T (x)y[a, z] = 0. Replacing y by

ay and then using semiprimeness of R, we get T (x)a[a, z] = 0. That is, ax[a, z] =

0, which, by semiprimeness of R, implies a[a, z] = 0 for all a ∈ R. Now using

Lemma 1.1.4 [10], we get a ∈ Z(R).

Since a ∈ Z(R), we have ay = ya. Thus T (ay) = T (ya). That is, T (a)y = T (y)a =

ay. So (T (a) − a)y = 0, which, by semiprimeness of R, implies T (a) − a = 0. Thus

T (a) = a.

Conversely, let T (a) = a and a ∈ Z(R). Then T (x)a = T (xa) = T (ax) = T (a)x =

ax. Thus a ∈ D(T ).

Theorem 2.2. Let R be a prime ring and T 6= I a left centralizer of R. Then T

is a free action on R.

P r o o f. Let a ∈ D(T ). Then T (x)a = ax. Moreover, a ∈ Z(R) by Theorem 2.1.

Thus T (x)a = xa. That is,

(5) (T (x) − x)a = 0.

Since a ∈ Z(R), from (5) we get (T (x) − x)za = 0 for all z ∈ R. Since T 6= I and R

is prime, we have a = 0. So T is a free action. �

Theorem 2.3. Let R be a semiprime ring and T an injective left centralizer of

R. Then ψ = T + I is a free action on R.

P r o o f. Obviously T + I is a left centralizer of R. Let a ∈ D(T + I). Then by

Theorem 2.1, a ∈ Z(R) and (T + I)(a) = a. Thus T (a) = 0. So a ∈ Ker(T ). Since T

is injective, we have a = 0. Hence T is a free action. �

Theorem 2.4. Let T be a left centralizer of a semiprime ring R. Then ψ : R→ R,

defined by ψ(x) = [T (x), x] for all x ∈ R, is a free action.

P r o o f. Let a ∈ D(ψ). Then

(6) [T (x), x]a = ax for all x ∈ R.

Linearizing (6) and using (6) after linerization, we get

(7) [T (x), y]a+ [T (y), x]a = 0.

Replacing y by ay in (7), we get

0 = [T (x), ay]a+ [T (ay), x]a = a[T (x), y]a+ [T (x), a]ya+ [T (a)y, x]a

= a[T (x), y]a+ [T (x), a]ya+ T (a)[y, x]a+ [T (a), x]ya.
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That is,

(8) a[T (x), y]a+ [T (x), a]ya+ T (a)[y, x]a+ [T (a), x]ya = 0.

Using [7], from (8) we get −a[T (y), x]a+ [T (x), a]ya+ T (a)[y, x]a+ [T (a), x]ya = 0,

which implies

(9) −a[T (a), a]a+ [T (a), a]a2 + [T (a), a]a2 = 0.

Replacing y and x by a in (6) and using (6), from (9) we get −a3 + a3 + a3 = 0.

That is, a3 = 0, which implies a = 0. Hence ψ is a free action.

Theorem 2.5. Let R be a semiprime ring and d : R → R a derivation. Then the

mapping ψ : R → R, defined by ψ(x) = [d(x), x] for all x ∈ R, is a free action.

P r o o f. Let a ∈ D(ψ). Then

(10) ψ(x)a = [d(x), x]a = ax.

Linearizing (10) and using (10) after linearization, we get

(11) [d(x), y]a+ [d(y), x]a = 0 for all x, y ∈ R.

Replacing y by x in (11), we get

(12) 2[d(x), x]a = 0 for all x ∈ R.

Replacing y by xy in (11), we get

0 = [d(x), xy]a+ [d(xy), x]a

= x[d(x), y]a+ [d(x), x]ya + [d(x)y + xd(y), x]a

= x[d(x), y]a+ [d(x), x]ya + d(x)[y, x]a + [d(x), x]ya+ x[d(y), x]a.

That is,

(13) 0 = x{[d(x), y]a + [d(y), x]a} + 2[d(x), x]ya + d(x)[y, x]a.

Using (11), from (13) we get

(14) 2[d(x), x]ya + d(x)[y, x]a = 0 for all x, y ∈ R.
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Replacing y by ya in (14), we get

0 = 2[d(x), x]ya2 + d(x)[ya, x]a

= 2[d(x), x]ya2 + d(x)[y, x]a2 + d(x)y[a, x]a.

That is,

(15) (2[d(x), x]ya + d(x)[y, x]a)a + d(x)y[a, x]a = 0.

Using (14), from (15) we get

(16) d(x)y[a, x]a = 0.

Replacing y by xy in (16), we get

(17) d(x)xy[a, x]a = 0.

Multiplying (16) by x on the left, we get

(18) xd(x)y[a, x]a = 0.

Subtracting (18) from (17), we get [d(x), x]y[a, x]a = 0. Replacing y by ay in the last

identity and then using (10), we get

(19) axy[a, x]a = 0.

Replacing y by a2y in (19), we get

(20) axa2y[a, x]a = 0.

Multiplying (19) on the left by a and replacing y by ay in (19), we get

(21) a2xay[a, x]a = 0.

Subtracting (20) from (21), we get

(22) a(ax− xa)ay[a, x]a = 0.

Replacing y by ya in (22), we get a[a, x]aya[a, x]a = 0, which, by semiprimeness of

R, implies that a[a, x]a = 0. In particular, a[d(a), a]a = 0. This, by (10), implies that

a3 = 0. Hence a = 0, which implies that ψ(x) = [d(x), x] is a free action on R.

We now define a generalized (α, β)-derivation of a ring R.
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Definition 2.6. Let α and β be automorphisms of a ring R. An additive map-

ping F : R → R is called a generalized (α, β)-derivation, with the associated (α, β)-

derivation d, if there exists an (α, β)-derivation d of R such that F (xy) = α(x)F (y)+

d(x)β(y).

R em a r k 2.7. We note that for F = d, F is an (α, β)-derivation and for d = 0

and α = I, F is a right centralizer. So a generalized (α, β)-derivation covers both

the concepts of an (α, β)-derivation and a right centralizer.

Theorem 2.8. Let R be a semiprime ring. Let α, β be centralizing automor-

phisms of R and let F : R→ R be a generalized (α, β)-derivation with the associated

(α, β)-derivation d. If a is a dependent element of F, then a ∈ D(α+ d).

P r o o f. Let a ∈ D(F ). Then

(23) F (x)a = ax for all x ∈ R.

Replacing x by xy in (23), we get F (xy)a = axy, which implies α(x)F (y)a +

d(x)β(y)a = axy. That is, α(x)ay + d(x)β(y)a = axy = F (x)ay. Thus

(24) (F (x)a− α(x)a)y = d(x)β(y)a.

Multiplying (24) by z on the right, we get

(25) (F (x)a− α(x)a)yz = d(x)β(y)az.

Replacing y by yz in (24), we get

(26) (F (x)a− α(x)a)yz = d(x)β(y)β(z)a.

Subtracting (25) from (26), we get d(x)β(y)[β(z)a−az] = 0,which, due to surjectivity

of β, implies

(27) d(x)y[β(z)a − az] = 0.

Since β is centralizing and R is semiprime, from (27) we get

d(x)[β(z)a − a] = 0.

That is,

(28) d(x)β(z)a = d(x)az for all x, z ∈ R.
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Using (28), from (24) we get (F (x)a−α(x)a)y = d(x)ay. That is, (F (x)a−α(x)a−

d(x)a)y = 0, which, due to semiprimeness of R, implies that

(29) F (x)a− (α+ d)(x)a = 0.

Using (23), from (29) we get

(30) (α+ d)(x)a = ax.

This shows that a ∈ D(α+ d).

We now have the following result of Vukman and Kosi-Ulbl [19, Theorem 10] as a

corollary of Theorem 2.8.

Corollary 2.9. If F is an (α, β)-derivation of a semiprime ring R, then F is a

free action.

P r o o f. Let F = d. Then d is an (α, β)-derivation and so equation (30) gives

(α+F )(x)a = ax. That is, α(x)a+F (x)a = ax, which implies that α(x)a+ax = ax.

Thus α(x)a = 0 for all x ∈ R. Since α is onto, we have xa = 0 for all x ∈ R. Thus

axa = 0, which implies that a = 0. Hence F is a free action. �

Corollary 2.10. Let R be a semiprime ring and α a centralizing automorphism

of R. Let F : R → R be an additive mapping satisfying F (xy) = α(x)F (y) for all

x, y ∈ R. If a ∈ D(F ), then a ∈ Z(R).

P r o o f. We take d = 0 in Theorem 2.8. Then F (xy) = α(x)F (y) and a ∈ D(F )

implies that a ∈ D(α). Since α is a centralizing automorphism, by [13, Proposition 3]

we conclude that a ∈ Z(R). �

R em a r k 2.11. If in the above corollary we take α = I, the identity automor-

phism, then F is a right centralizer. Thus all dependent elements of a right centralizer

F of a semiprime ring R lie in Z(R).

Theorem 2.12. Let R be a semiprime ring. Let f be a centralizer and d a

derivation of R. Then ψ = d ◦ f is a free action.

P r o o f. Let a ∈ D(ψ). Then ψ(x)a = ax. That is,

(31) d ◦ f(x)a = ax for all x ∈ R.

Replacing x by xy in (31), we get

axy = d ◦ f(xy)a = d(f(x)y)a = d ◦ f(x)ya+ f(x)d(y)a.
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That is,

d ◦ f(x)ya+ f(x)d(y)a = axy = (d ◦ f)(x)ay.

Thus,

(32) d ◦ f(x)[a, y] = f(x)d(y)a for all x, y ∈ R.

Replacing y by ay in (32), we get d ◦ f(x)[a, ay] = f(x)d(ay)a. That is,

(33) d ◦ f(x)a[a, y] = f(x)d(a)ya+ f(x)ad(y)a.

Using (31), from (33) we get

(34) ax[a, y] = f(x)d(a)ya + f(x)ad(y)a.

Multiplying (34) on the left by z, we get

(35) zax[a, y] = zf(x)d(a)ya+ zf(x)ad(y)a.

Replacing x by zx in (34), we get azx[a, y] = f(zx)d(a)ya + f(zx)ad(y)a =

zf(x)d(a)ya+ zf(x)ad(y)a. That is,

(36) azx[a, y] = zf(x)d(a)ya+ zf(x)ad(y) for all x, y, z ∈ R.

Subtracting (35) from (36), we get [a, z]x[a, y] = 0. In particular, [a, y]x[a, y] = 0,

which, by semiprimeness of R, implies [a, y] = 0 for all y ∈ R. Thus a ∈ Z(R), so

from (32) we get

(37) f(x)d(y)a = 0 for all x, y ∈ R.

Replacing y by f(y) in (37) and then using (31) we get f(x)ay = 0, which, by

semiprimeness of R, implies that

(38) f(x)a = 0.

Thus d(f(x)a) = d(0) = 0. That is

d ◦ f(x)a+ f(x)d(a) = 0,

which implies that

(39) d ◦ f(x)a2 + f(x)d(a)a = 0.

Using (37) and (31), from (39) we get axa = 0. Thus a = 0, which implies that d ◦ f

is a free action.
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Theorem 2.13. Let f be a left centralizer of a semiprime ring R. Let ψ(x) =

f(x)x + xf(x). Then ψ is a free action on R.

P r o o f. Let a ∈ D(ψ). Then ψ(x)a = ax. That is,

(40) [f(x)x+ xf(x)]a = ax.

Linearizing (40), we get

(41) [f(x)y + f(y)x+ yf(x) + xf(y)]a = 0.

Replacing both x and y by a in (41) and using (40), we get 0 = [f(a)a + f(a)a +

af(a) + af(a)] = 2[f(a)a+ af(a)]a = 2a2. That is,

(42) 2a2 = 0.

Now replacing y by xa in (41) and using (40), we get

0 = [f(x)xa + f(xa)x+ xaf(x) + xf(xa)]a

= [f(x)xa + f(x)ax+ xaf(x) + xf(x)a]a

= (f(x)x + xf(x))a2 + f(x)axa+ xaf(x)a

= axa+ f(x)axa+ xaf(x)a.

That is,

(43) axa+ f(x)axa+ xaf(x)a = 0 for all x ∈ R.

Replacing x by a in (43) and using (40) and (42), we get 0 = a3 +f(a)a3+a2f(a)a =

a3 + f(a)a3 − a2f(a)a. That is,

(44) a3 + f(a)a3 − a2f(a)a = 0.

Replacing x by a in (40), we get

(45) f(a)a2 + af(a)a = a2.

Multiplying (45) by a on the left as well as on the right, we get

(46) af(a)a2 + a2f(a)a = a3

206



and

(47) f(a)a3 + af(a)a2 = a3,

respectively. Subtracting (46) from (47), we get

(48) f(a)a3 − a2f(a)a = 0.

Using (48), from (44) we get a3 = 0. Thus a = 0, which implies that ψ is a free

action.
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