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Abstract. A semigroup S is called a generalized F-semigroup if there exists a group
congruence on S such that the identity class contains a greatest element with respect to the
natural partial order <g of S. Using the concept of an anticone, all partially ordered groups
which are epimorphic images of a semigroup (5,, <g) are determined. It is shown that a
semigroup S is a generalized F-semigroup if and only if S contains an anticone, which is a
principal order ideal of (S, <g). Also a characterization by means of the structure of the set
of idempotents or by the existence of a particular element in S is given. The generalized F'-
semigroups in the following classes are described: monoids, semigroups with zero, trivially
ordered semigroups, regular semigroups, bands, inverse semigroups, Clifford semigroups,
inflations of semigroups, and strong semilattices of monoids.
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1. INTRODUCTION

A semigroup (.5, -) is called F-inverse if S is inverse and for the least group congru-
ence o on S, every o-class has a greatest element with respect to the natural partial
order <g of S (see [16] or [10] for a detailed treatment of this class of semigroups).
This concept appeared originally in [19]. A construction of such semigroups was
given in [12] by means of groups acting on semilattices with identity obeying certain
axioms.

Dropping the condition that the semigroup is inverse we will call a semigroup S
an F-semigroup if for some group congruence g on S every p-class of S contains a
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greatest element with respect to the natural partial order <g of S. Recall that for
any semigroup S, <g is defined by

a <gbif and only if a = zb = by, za = a for some z,y € S!

(see [13]). In this paper we will more generally study generalized F-semigroups,
which are semigroups S for which there exists a group congruence ¢ such that the
identity class (only) has a greatest element with respect to the natural partial order
<g of S (equivalently, there exists a homomorphism of S onto a group G such that
the preimage of the identity element of G has a greatest element with respect to <g).
Thus we are dealing with semigroups, which are extensions of a subsemigroup 7" with
greatest element by a group (the semigroups of type T were first characterized in
[18]). The particular case of F-semigroups will be considered in a subsequent paper.

This generalization of F-inverse semigroups is motivated by a class of partially
ordered semigroups (i.e., semigroups S endowed with a partial order < which is
compatible with multiplication). (5,-,<) is called a Dubreil-Jacotin semigroup if
there exists an isotone semigroup homomorphism of (5, -, <) onto a partially ordered
group (G, -, <) such that the preimage of the negative cone of G is a pricipal order
ideal of (S,<). This concept was introduced in [6] (see also [4], Theorem 25.3).
Specializing the partial order < given on S to the natural partial order <g and
dropping the compatibility condition for <g (which is not satisfied, in general) it
turns out that in this case the partial order < given on G reduces to the equality
relation, so that the negative cone of GG consists of the identity element of G alone.
Thus we arrive at the concept of a generalized F-semigroup.

In Section 2 we determine all partially ordered groups, which are isotone semi-
group-homomorphic images of an arbitrary semigroup S with S considered partially
ordered by its natural partial order. In the particular case that S is inverse this
question was dealt with in [3], where the greatest such partially ordered group was
considered. For this purpose we use the concept of an anticone of S defined in [2]
(see also [4]). In Section 3 we specialize the concept of an anticone to be princi-
pal in the sense that it is also a principal order ideal of (S, <g). In analogy with
F-inverse semigroups we show that for generalized F-semigroups S the congruence
o appearing in the definition is the least group congruence on S. Characterizations
by the existence of a principal anticone, of a particular element, and by properties
of the set of all idempotents are provided. Also, generalized F-semigroups which
are regular or contain an identity, are considered. The characterization of the latter
allows a construction of all generalized F-inverse monoids. In Section 4 the gen-
eralized F-semigroups in the following classes are described: semigroups with zero,
trivially ordered semigroups, bands, inflations of semigroups, and strong semilattices
of monoids (in particular, Clifford semigroups).

204



2. EPIMORPHIC PARTIALLY ORDERED GROUPS

Throughout the paper, S stands for an arbitrary semigroup unless specified other-
wise, and <g for the natural partial order defined on S. No other partial order on S
will be considered.

Since we are interested in homomorphic images of a semigroup S onto groups, we
first observe that for any group G and every homomorphism ¢: S — G, a <g b
implies ap = by, i.e., ¢ is trivially isotone.

In this section we give a method for constructing all groups G and all partial
orders on GG such that the partial ordered group G is a semigroup- and an order-
homomorphic image of S. For this purpose we follow the account given in [4, Sec-
tion 24] using the concept of an anticone in a partially ordered semigroup introduced
in [2]. Since the natural partial order of S need not be compatible with multiplica-
tion, the theory developed in [4] cannot be applied directly to our case. At several
stages other proofs have to be given in order to establish the corresponding results
needed in the sequel.

Let X C S and a,b € S. Define

Xoa={zreS;areX}tand X .a={2x€S; za € X}.
It is readily seen that
X. ab=(X.a) band X .ab=(X".0) . a.

We say that X # 0 is reflexive if ab € X implies ba € X (a,b € S). If X is reflexive
then X .-a = X -.a for any a € S, in which case we will use the notation X : a. We
say that X is neat if X is reflexive and X : ¢ # () for all c € S. If X is a reflexive
subsemigroup of S, define

Ix={z€S; X:z=X}.

We call a subsemigroup H of S an anticone of S if Iy N H # () and both H and
Iy are reflexive and neat. As we will see later, this definition is equivalent to the
definition given in [4] in the context of partially ordered semigroups.

A subset T of a semigroup S is called unitary in S if (i) ¢, ta € T implies that
a € T, and (ii) t, at € T implies that a € T (see [5]). If T is reflexive then (i) and
(ii) are equivalent.
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Proposition 2.1. Let H be an anticone of S. Then Iy is a maximal unitary
subsemigroup of S contained in H. In particular, It,, = Iy is also an anticone of S,
and Iy = H if and only if H is unitary in S.

Proof. Clearly, by the definition of an anticone, Iy # (). That Iy is a unitary
subsemigroup follows easily from the fact that H : zy = (H : 2) ..y = (H : y) .
forall z,y € S. If v € Iy then H :x = H and so xH C H. Let k € Iy N H. Then
zke Hjie,x € H:k=H. Thus Iy C H.

Next let us consider any unitary subsemigroup K of S such that Iy C K C H.
Let uw € K. Since I, is neat, choose v € § such that uv € Iy. But K is unitary,
soveEe K. If z€ H:uthen uz € H, sovuz € H, giving z € H : vu. Since Iy is
reflexive and uv € Iy, we have vu € Iyg. Thus H : vu = H and so z € H. Since
HCH:u, weget H: u= H, proving u € Iyg. Hence K C Iy and so Iy is a
maximal unitary subsemigroup of S contained in H. We now show that I, = Iy.
As Iy is unitary, Iy, CIy. If x € Iy and y € Iy : x then zy € Iy and so, since Iy
is unitary, y € Iy. Since I is a subsemigroup of S, it follows that Iz : * = Iy, that
is ¢ € Iy,,. That Iy is an anticone is now immediate. The assertion follows and the
proof is complete. O

Let H be an anticone. Since H is reflexive, we can define the Dubreil equivalence
Ry on S by
(a,b) e Ry <= H:a=H:b.

Following the proof in [4, Section 24| we obtain that S/Ry is a group whose
identity is Iy. Also, the binary relation on S/Ry given by

aRHjbRH@H:bQH:a

is a partial order which is compatible with multiplication. Hence G = (S/Rpy, -, <)
is a partially ordered group. Moreover, following the arguments given in [4,
pages 249-251), H is the pre-image, under the natural homomorphism, of the
set {xRy € S/Ry|rRy = Iy}, called the negative cone of S/Ry.

Remark 2.2. 1. Notice that any anticone H of (5,<g) is an order ideal of
(S,<g). In fact, if h € H and = € S, then hRy belongs to the negative cone of
S/Ry and

r<gh=—=x=th=tz forsometec S
= tRy =tRy -hRy =tRy - zRy
— Ry = hRy =< Iy
—x € H.
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2. From the observation at the beginning of this section it follows that the natural
homomorphism ¢: S — S/Ry is isotone.

3. Since Iy is a subsemigroup of H (Proposition 2.1) and H is an order ideal of S,
the definition of an anticone that we have given is equivalent to the definition given
in [4] in the context of partially ordered semigroups.

We summarize the previous results in

Theorem 2.3. Let S be a semigroup and H an anticone. Then S/Ry, partially
ordered by the relation < defined by aRy < bRy <= H : b C H : a, is an (isotone)
homomorphic group image of S under the natural homomorphism such that H is
the preimage of the negative cone of (S/Ry, =<).

The next result shows that every partially ordered group which is an (isotone)

homomorphic image of a semigroup S arises in this way, i.e., is given by an anticone

of S.

Theorem 2.4. Let S be a semigroup, G a group with compatible partial order
< and ¢: S — G an (isotone) epimorphism. Let H = {x € S; z¢ < 1lg}. Then H
is an anticone and ¢: S/Ry — G, given by xRy —— xy, is an isomorphism such
that ¢ and 1~! are order preserving.

Proof. To justify that H is an anticone of S we can apply the arguments given
in [4, Section 24] since compatibility of the partial order given on S is not used in
those arguments. By Theorem 2.3, S/Ry is a partially ordered group, where Ry
denotes the Dubreil equivalence with respect to H and =< is the partial order given
above. Following the proof of Theorem 24.1 in [4], we obtain that the mapping
v: S/Ry — G, (xRyg)y = xp is an isomorphism such that 1) and ! are order
preserving. (]

Corollary 2.5. Let ¢p: S — G be an isotone epimorphism where G is a group
with compatible partial order <. Then < is trivial if and only if the anticone H =
{r €S; zp <1¢} is unitary in S.

is
trivial then clearly H = Iy, by definition of H. Conversely, if H = Iy and ap < by
(a,b € S) then, by Theorem 2.4, aRy = bRy, i.e., H : b C H : a. Hence ax € Iy
for any x € S such that bz € Iy. So (bx)p = 1g = (ax)p giving by = ap. Thus,

Proof. By Theorem 2.4, since 9 is an isomorphism, Iy = 1gp~!. If <
<

< is trivial if and only if H = Iy, and this is equivalent to H being unitary, by
Proposition 2.1. O
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Example 2.6. Let B be a band, (G, <) a partially ordered group and let S =
B x G be their direct product. Then the natural partial order on S is given by

(e,a) <s (f,b) <= e<p fand a=0b.

Notice that <g is not compatible with multiplication, in general. The projection
p: S — @ defined by (e,a)p = a is an isotone epimorphism. By Theorem 2.4, the
set H = {(e,a) € S; a < 1g} is an anticone of S and the mapping ¢: S/Ry — G
defined by xRy — ¢ is an isomorphism such that 1) and 1) ~! are order preserving.
By Corollary 2.5, the anticone H is not unitary if the partial order < on G is not

trivial.

Example 2.7. Let S be an inverse semigroup. Then the natural partial order
of S has the form

a <s b<= a=eb for some e € Eg (see [16]).

It was shown in [17] that H = {h € S; e < h for some e € Eg} is the least
anticone of S yielding the greatest isotone homomorphic group image of S. The
latter is given by the congruence o on S defined by

acb < ea = eb for some e € Fg;

in fact, Ry = o by [3]. We show that H is unitary in S. Let h,ha € H. Then
e <s h, f <s ha for some e, f € Eg, whence e = jh, f = iha for some i,j € Eg.
Since the idempotents of S commute, we get jf = ijha = iea, where ie € Eg. Thus
if <s awith jf € Eg; hence a € H and so H is unitary. It follows by Corollary 2.5,
that any compatible partial order on the homomorphic group image S/o of S is
trivial.

We next introduce a class of semigroups which contain (unitary) anticones: the
class of E-inversive, F-unitary semigroups.

(i) A semigroup S is called E-inversive if for every a € S there exists x € S such
that ax € Eg (see [5], Ex.3.2 (8)). In this case there also exists y € S such that
ay,ya € Eg. Examples are provided by periodic (in particular, finite) or regular
semigroups (see [14]).

(ii) S is called E-unitary if Eg is unitary in S, that is, if e,ea € Eg implies that
a € Eg, and if e,ae € Eg implies that a € Eg. In fact, these two conditions on S
are equivalent (see the beginning of Section 3 in [14]).

Let S be an F-unitary semigroup and let a,b € S be such that ab € Eg. Then

(ba)® = bababa = b(ab)?a = b(ab)a = (ba)*
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and
(ba)* = (ba)?.

Hence (ba)? € Es and (ba)(ba)? = (ba)® = (ba)? € Eg. It follows that ba € Eg.
So FEg is reflexive.

If S is also E-inversive, easy calculations show that Eg is a neat subsemigroup
of S and Ig, = Es. Hence Eg is an anticone of S. Also, if H is an anticone of
S, then by Theorems 2.3 and 2.4, H = {z € S; z¢ < lg}, ¢ being the natural
homomorphism ¢: S — S/Ry = G. Since ep = 14 for every idempotent e € S, it
follows that EFg C H. Thus we have

Proposition 2.8. Every E-inversive, E-unitary semigroup S has a (least) anti-
cone, namely H = FEg.

Notice that since by Theorem 2.3 every anticone of a semigroup S gives rise to a
group G which is an isotone homomorphic image of S the result of Proposition 2.8
is implicitly contained in [1] Theorem 3.1.

3. GENERALIZED F-SEMIGROUPS

We will now specialize our study to the case of semigroups S containing an anticone
H with a greatest element, i.e., an anticone which (by Remark 2.2) is a principal
order ideal of (S;<g). Such an anticone will be called a principal anticone. This
additional condition leads to the concept of generalized F-semigroups. We call a
semigroup a generalized F-semigroup if there exists a group congruence g on S such
that the identity o-class 1¢ € G = S/p has a greatest element £. The element & will
be called a pivot of S.

If a semigroup S has a principal anticone H whose greatest element is ¢, i.e.,
H=( ={x€S; x <5 &}, then Ry is a group congruence. Using the natural
homomorphism of S onto the group S/Ry whose identity is I, we have

t,taeH:>t7ta <S§:>tRH-aRH :fRH =tRy
— aRy = 1S/RH =1y

=a€cly CH [by Proposition 2.1].

Hence H is unitary and so, by Proposition 2.1, H = I. It follows that the identity
Rpy-class Iy has a greatest element, namely £. So S is a generalized F-semigroup.

Conversely, let S be a generalized F-semigroup, ¢ a corresponding group congru-
ence on S and ¢: S — G = S/p the natural epimorphism. Considering on G the
identity relation for < we have by Theorem 2.4 that H = {z € S; z¢ = 1¢} is an
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anticone of S. By hypothesis, the identity o-class 1¢ € S/p, that is, H = 1gp~ !,

has a greatest element, say, . Therefore H is a principal (hence unitary) anticone
and H = Iy = (&].

We have proved the following characterization:

Theorem 3.1. Let S be a semigroup. Then S is a generalized F-semigroup if
and only if S has a principal (unitary) anticone H. In this case H = Iy = (§], where
¢ is a pivot of S.

Remark 3.2. 1. A unitary anticone is not necessarily principal. Indeed, consider
any F-unitary inverse semigroup S. By Proposition 2.8, Eg is a unitary anticone
and by [10] Proposition 7.1.3, Es contains a greatest element if and only if S has an
identity.

2. Since for any anticone H of a semigroup S, Iy is unitary (by Proposition 2.1),
the natural partial order on Iy is just the restriction of <g to Iy.

3. If S is a generalized F-semigroup then any group G appearing in the definition
admits only the identity relation as a compatible partial order (by Theorem 3.1 and
Corollary 2.5). Hence the negative cone of G consists of the identity alone.

Our next aim is to show that the group in the definition of a generalized F-
semigroup is unique. We show even more:

Theorem 3.3. Let S be a generalized F'-semigroup and g a corresponding group
congruence. Then o is the least group congruence on S. In particular, both the
congruence and the pivot of S are uniquely determined.

Proof. Let 7 be any group congruence on S and let a, b € S be such that aob. If
c € (ap)™! = (bo)™! then co = (ap)~! so that (co) - (ap) = Iy, the identity of S/Ry
(H being the principal (unitary) anticone of S corresponding to ¢ in Theorem 3.1).
Therefore, ca € Iy = H = (§] by Theorem 3.1, that is, ca <g . Similarly, ¢b <g &.
If ¢ denotes the natural homomorphism corresponding to 7, then it follows that
() - (ap) = & = () - (b)) (see the beginning of Section 2). Therefore, ay) = by
(by cancellation), that is, arb. O

Due to the definition, the knowledge of semigroups 7" containing a greatest element
is relevant to the study of generalized F-semigroups. A characterization of such
semigroups T was given in [18]. Here we provide an independent proof. For this
purpose, we first show
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Lemma 3.4. Let S be a semigroup with a greatest element, say, . Then ¢3 = ¢2
and §2 € FEs.

Proof. By hypothesis £2 <g & If €2 = € then € € Eg. If €2 <g £ then
€2 =26 = &y = €2 for some z,y € S. Thus &3 = 262 = €2 and so €2 € Es. O

Theorem 3.5 ([18]). A semigroup S admits a greatest element if and only if S
is one of the following types:

(i) S is a band with identity;

(ii) S = TU{¢}, where T is a band with identity e such that £? = e and af = £a = a
for every a € T.

Proof. If S is a semigroup of type (i) then the identity e € S is the greatest
element of S. On the other hand, if S is of type (ii) then a{ = &a = a for every
a € T implies that a < £ (since a € Eg). Thus £ is the greatest element of S.

Conversely, let S be a semigroup with greatest element £. Then a < & for every
a € S. If £ € Eg, it follows by [15], Lemma 2.1, that a € Fs. Hence S is a band
with identity &, i.e., S is of type (i). If £ ¢ Fs then we have the following results:

1. T = S\ {¢} is a subsemigroup of S:

Let a,b € T; then a <g £ and so a = x§ = £y = za for some x,y € S. Assume
that ab ¢ T. Then ab = £ and

a=x€=x-ab=xa-b=ab=¢,

a contradiction. Thus ab € T.
2. af = af?, fa = £%a for every a € S:
If a = £ then by Lemma 3.4

ag == =6 = ag’

and similarly éa = €2a.
If a # & then a <g £ and so a = x§ = {y = xa for some z,y € S. It follows by
Lemma 3.4 that

af = a6 € = a€® =€ = 6 - € = o
and similarly £a = £2a.
3. €2 € T is the identity of T
Since ¢ ¢ Eg, we have €2 € S\ {¢} = T. Let a € T. Then a <s £ and so
a = x€ = £y = xa for some z,y € S. Therefore, by 2,

af? = af = xf - € = 28% = 2 = a.
Similarly, £2a = a.
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4. T = 5\ {{} is a band:

By 2 and Lemma 3.4, a <g & for every a € T implies that a <g &2. Since £2 € Eg
by Lemma 3.4, it follows by [15], Lemma 2.1 that a € Fg. Hence by 1, T is a band.

We have shown that S = T'U {¢}, where T is a band with identity &2 such that
aé = a&? = a and £a = £2a = a for every a € T. Therefore, S is of type (ii). O

Corollary 3.6. If S is a generalized F-semigroup with the pivot £ then either
((]=Es or (§] = EsU{¢} with £? € Es and e =¢e =e for all e € Es.

Proof. By Theorem 3.1, H = (£] is a principal anticone of S, hence a subsemi-
group of S with the greatest element £ (note that by Remark 2.2, the natural partial
order on H is the restriction of <g to H). Therefore (2 € Eg by Lemma 3.4. Since
e = 1g for any e € Eg, Eg C (&]. The assertion now follows from Theorem 3.5. O

This description of the identity class yields the following properties of a generalized
F-semigroup.

Proposition 3.7. Every generalized F-semigroup S with the pivot £ is E-
inversive. Furthermore, Eg is a subsemigroup of S with the greatest element £2.

Proof. By Corollary 3.6, either ((] = Eg or (§] = Es U {¢} where &2 is the
identity of Es. By the proof of Theorem 3.5, T' = FEg is a subsemigroup of S. It
follows that Es contains a greatest element: £2. We show now that S is E-inversive.
Let a € S and let p: S — G = S/p be the surjective homomorphism satisfying
lgp~t = (£]. Then we have

ap € G = (ap)™! = by for some b € S
—abclge ! = (¢
—abe Egorab=¢
= abec Egor a-bab=¢? € Eg.

Hence S is E-inversive. O

The two properties given in Proposition 3.7 are not sufficient for a semigroup to
be a generalized F-semigroup. For example, consider the multiplicative monoid S
of natural numbers together with 0; then S is F-inversive and Fg = {0,1} is a
subsemigroup with the greatest element 1. If S were a generalized F-semigroup with
pivot ¢ then Proposition 3.7 would imply ¢2 = 1 and so ¢ = 1. Hence (¢] = {0,1},
which is not unitary, a contradiction (see Theorem 3.1).

The next theorem establishes a characterization of a generalized F-semigroup in
terms of the idempotents of S.
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Theorem 3.8. Let S be a semigroup. Then S is a generalized F'-semigroup with
the pivot & if and only if S is E-inversive, £ is an upper bound of Eg and Eg U {{}

is unitary.

Proof. Necessity follows by Proposition 3.7, Corollary 3.6 and Theorem 3.1.

Conversely, let S be E-inversive, let £ be an upper bound of Eg and let Eg U {¢}
be unitary. Suppose first that £ € Eg. Then S is an FE-inversive and FE-unitary
semigroup. It follows by Proposition 2.8 that H = Eg is a (unitary) anticone with
the greatest element £&. Thus by Theorem 3.1, S is a generalized F-semigroup with
the pivot . Suppose now that £ ¢ Eg. We show that H = Eg U {£} is a principal
anticone of S.

1. H is a subsemigroup of S:

Let h,k € H. Since S is E-inversive, there exists x € S such that hkx € Es C H.
Since H is unitary, we have successively kx € H, x € H and finally hk € H.

2. H is reflexive:

Let a,b € S be such that ab € H. Consider first the case ab € Eg. Then

(ba)® = b(ab)*a = (ba)?> = (ba)* € Es C H.

Since (ba)(ba)? = (ba)? € H and since H is unitary, we have that ba € H. Consider
next the case ab = €. By 1, H is a subsemigroup (with the greatest element &). Thus
by Lemma 3.4, £3 = £2,

(ba)* = b(ab)®a = b€3a = b&?a = (ba)?

and so (ba)® € Es C H. Thus (ba)3(ba) = (ba)® € H; since H is unitary, it follows
that ba € H.

3. H is neat:

This follows from 2 and the fact that S is E-inversive and Fg C H.

4. Iy = H:

Since by 1, H is a subsemigroup of S, we have H C H : x for any z € H. Also,
because H is unitary, H : xt C H. Thus H = H : x for any x € H. Thus H C Iy.
Conversely, let a € Ig;then H:a=H andhe€ H=H :a=—ah € H=—ac H
(since H is unitary).

We have shown that H is an anticone. Since, by hypothesis, ¢ € H is an upper
bound of Es C EsU{¢{} = H, & is the greatest element of H. Sufficiency now follows
by Theorem 3.1. O

Notice that in Theorem 3.8 the attribute “with the pivot £” is essential. In fact,
consider the following example.
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Example 3.9. Let T = {0,1} be the two-element semilattice and let S =
{0,1,a} with a0 = 0a = 0, al = la = 1, a® = 1 (see Theorem 3.5). Then a € S is
the greatest element of S and S satisfies the conditions of Theorem 3.8 with £ = a.
Hence S is a generalized F-semigroup with the pivot £ = a. Now, 1 is also an upper
bound of Eg, but Eg U {1} = Eg is not unitary in S since a-1=1¢€ Eg, a ¢ Es.
This means that S is not a generalized F-semigroup with the pivot & = 1.

As an immediate consequence of Theorem 3.8, we give a characterization of those
elements of a semigroup S which may serve as the pivot of S. Notice that by
Theorem 3.3 there is at most one such element.

Corollary 3.10. Let S be a semigroup. Then S is a generalized F-semigroup
with the pivot ¢ if and only if (i) £2 is the greatest idempotent of S and £? <s &, (ii)
for any a € S there exists a’ € S such that aa’ <g &2, (iii) Eg U {¢} is unitary in S.

Note that the conditions of Corollary 3.10 also characterize those order ideals of
a semigroup (.5, -, <g) which are (principal) anticones of S.

As a special case of Theorem 3.8, consider a semigroup S such that EFg has a
greatest element. Then we obtain

Corollary 3.11. Let S be a semigroup containing a greatest idempotent, say e.
Then S is a generalized F-semigroup with the pivot e if and only if S is E-inversive
and F-unitary.

The condition imposed on S in Corollary 3.11 is certainly satisfied if S has an
identity. In this case it is easy to show that the identity, being a maximal element
of (5,<g), is the pivot of S. Thus, we obtain a characterization of generalized
F-monoids:

Corollary 3.12. Let S be a monoid. Then S' is a generalized F'-semigroup if and
only if S is E-inversive and E-unitary.
Next we study generalized F-semigroups which are regular. We begin with the

more general situation where only the pivot of S is regular. First we show

Proposition 3.13. For a generalized F-semigroup with the pivot ¢ the following
conditions are equivalent:

(1) & is regular; (ii) £ is (the greatest) idempotent; (iii) S is E-unitary.

Proof. By hypothesis, there exists a group G and a surjective homomorphism
¢: S — G such that 1gp~! = (¢].
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(i) = (ii). Let & € S be such that £ = ££’¢. Since &€&’ € Eg, we have that
(€)Y = 1¢ so that &€ € (€]. Hence £¢' < € and so

§ = af =&y = 2t

for some z,y € S'. Thus £ = 2 = £¢' € Eg. (It follows by Theorem 3.8 that ¢ is
the greatest idempotent.)

(if) = (iii). This follows from Corollary 3.10.

(iii) == (i). Since by Theorem 3.1, (£] is a semigroup with the greatest element
¢, we have £€3 = ¢€2 € E5 by Lemma 3.4. Thus, by hypothesis, £2¢ € Eg implies that
¢ € Eg. Hence ¢ is regular. (]

As a consequence of Proposition 3.13, the conditions of Corollary 3.11 characterize
the generalized F-semigroups with a regular pivot. Also they yield a characterization
of regular generalized F-semigroups:

Theorem 3.14. Let S be a regular semigroup. Then S is a generalized F'-
semigroup if and only if S' is an E-unitary monoid.

Proof. Let S be a regular semigroup. Then S is E-inversive. If S is an E-
unitary monoid it follows from Corollary 3.12 that S is a generalized F-semigroup.

Conversely, if S is a regular generalized F-semigroup with the pivot £ then by
Proposition 3.13, £ is the greatest idempotent of S and S is E-unitary. Following
the proof of Proposition 7.1.3 in [10], we show that £ is the identity of S. Let a € S
and a’ € S be such that a = ad’a. Since aa’,a’a € Es we have by Corollary 3.6 that
aa’,a'a <g & and so a’aé = d’a and £aa’ = aa’. Hence, af = £a = a and so £ is the
identity of S. O

Example 3.15. Let B be a band with an identity 15, let G be a group with
the identity 1¢ and let S = B x G be their direct product. Then S is a regular
monoid with identity (1p,1q) and Eg = {(e,1g) € S; e € B}. Simple calculations
show that S is E-unitary. Thus S is a generalized F-semigroup. The corresponding
group is the given group G and (1p,1¢) is the greatest element of its identity class
since ¢: S — G, (e,a) ¢ = a, is a surjective homomorphism.

A construction of all reqular generalized F-semigroups is given in [§].
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4. EXAMPLES

In this section we characterize in several classes of semigroups those members
which are generalized F-semigroups. Moreover, two types of constructions are inves-
tigated with the aim to produce generalized F-semigroups: inflations of semigroups
and strong semilattices of monoids. The proofs concerning the last two cases are not
given because they consist of extensive calculations.

1. Every group G is a (generalized) F-semigroup (the identity relation on G is the
desired group congruence).

2. Every semigroup S with a greatest element is a generalized F-semigroup (the
universal relation on S is the corresponding group congruence).

3. A band B is a generalized F-semigroup if and only if B has an identity (this is
a consequence of 2 and of Theorem 3.5).

In the class of all monoids the generalized F-semigroups were characterized by
Corollary 3.12. For a much bigger class of semigroups, we have

4. Let S be a semigroup containing a maximal element m, which is idempotent.
Then S is a generalized F-semigroup if and only if S is E-inversive, F-unitary and
has a greatest idempotent (this follows from Theorem 3.8 and Corollary 3.11).

5. Let S be a trivially ordered semigroup (i.e., the natural partial order of S is the
identity relation). Then S is a generalized F-semigroup if and only if S is a group.
(Necessity: Since by Theorem 3.8, S is E-inversive and Eg = {{}, S is regular by
[14], Proposition 3; hence S is a group by [16], Lemma I1.2.10.)

Examples of trivially ordered semigroups S (without zero) are provided by weakly
cancellative semigroups, right-(left-) simple semigroups, right-(left-) stratified semi-
groups, in particular, completely simple semigroups (see [7]).

6. Let S be a semigroup with zero. Then S is a generalized F-semigroup if and
only if S has a greatest element (that is, S is of type (i) or (ii) in Theorem 3.5).

In the class of all regular semigroups, the generalized F-semigroups were charac-
terized by Theorem 3.14 as the F-unitary monoids. The inverse case deserves to be
mentioned separately. Note that every E-unitary inverse semigroup is isomorphic
to a McAlister P-semigroup P, and that P has an identity if and only if Y has a
greatest element (see [10] Theorem 7.1.1). Thus we obtain

7. Let S be an inverse semigroup. Then S is a generalized F-semigroup if and only
if S is isomorphic to a P-semigroup P(Y, G; X) such that Y has a greatest element
with respect to <x.

Remark 4.1. This result provides a method for the construction of all general-
ized F-inverse semigroups. Take a lower directed partially ordered set X (see [16],
Lemma VII.1.3), a principal order ideal Y of X, which is also a subsemilattice, and
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a group G acting on the left by order-automorphisms on X such that G - Y = X
then S = P(Y,G; X) is a generalized F-inverse semigroup. Conversely, every such
semigroup can be constructed in this way. It is worthwhile to note the difference
of this construction from that of all F-inverse semigroups: by [11], Theorem 2.8, a
semigroup S is F-inverse if and only if S is isomorphic to P(Y, G; X) constructed as
above with X a semilattice instead of a lower directed partially ordered set (see also
[16], Proposition VII.5.11).

In the following, for two constructions necessary and sufficient conditions on the
ingredients are given, which allow to produce further examples of generalized F-
semigroups.

8. Inflations of semigroups.

Let T' be a semigroup; for every a € T' let T, be a set such that T, N7 = 0 for all
a#BinT and T,NT = {a}foranya € T. On S = |J T, there is a multiplication
defined by et

a-b=afifa €Ty, beTp.

Then S is a semigroup called an inflation of T'. If T satisfies the condition that for
every a € T there exist 3,7 € T such that o = fa = ay (for example, if T has an
identity or if T is regular), the natural partial order on S was characterized in [7]:

a<gb(aeT,beTs) ifand only if a =bora=a <z .

In particular, if a,b € T,, then a <g b if and only if a = «.
As can be expected, the structure of S depends heavily on that of T', in particular,
the property to be a generalized F-semigroup.

Theorem 4.2. Let S = |J T, be an inflation of the semigroup T' such that
acT
for every a € T there exist 3,y € T with o« = o = ay. Then S is a generalized

F-semigroup if and only if
(i) T is a generalized F-semigroup with the pivot &,
(ii) |Ta| =1 for every a € T with o <7 &;
(iif) |Te| < 2.

A particular case of inflations should be mentioned.
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Corollary 4.3. Let G be a group and let S = |J T, be an inflation of G. Then
geG
S is a generalized F-semigroup if and only if |T1,| < 2.

9. Strong semilattices of monoids.

Let Y be a semilattice and for every o € Y let S, be a monoid (whose identity
is 1,) such that S, NSz =0 for all « # B in Y. For any a, 3 € Y with 8 <y «,
let @q,3: Sa — Sz be a homomorphism such that ¢, =idg, for every a € Y and
©a,80 P8y =Pan~yfor y<y <y ainY. On S = |J S, there is a multiplication

acY
defined by
a-b=(apa,as)(bps.ap) if a € Sq,b € S,

where aff = inf{a,} in Y. The semigroup S is called a strong semilattice of
monoids and is denoted by S = [Y; Sq, ¢a.s]- By [15], the natural partial order on
S is characterized by

a<gb(ae€SybeSs) ifandonlyif a <y f5,a < bpg,a,
where <, denotes the natural partial order on S, (o € Y).

Proposition 4.4. Let S be a strong semilattice of monoids. Then S is a gener-
alized F-semigroup if and only if S is an E-inversive, E-unitary monoid.

Theorem 4.5. Let S = [Y; Sq, ¢a,p] be a strong semilattice of monoids. Then S
is a generalized F-semigroup if and only if

(i) Y has a greatest element w and for every o € Y, ¢, o is a monoid-homo-
morphism;

(i) Sy is E-unitary for any o € Y and ¢, s is idempotent pure for all <y « in
Y;ie,ifapaps € Es, then A€ Eg_;

(ili) For every o € Y and a € S, there exist § <y a in Y and = € Sg such that
(agpa,g)x S ESB‘

Remark 4.6. Concerning condition (iii) notice that it is possible that no com-
ponent S, of S is E-inversive but that S is so. For example, let Y be a chain,
unbounded from below, let S, = (N,-) (0 ¢ N), let a0 = idg, for every @ € Y, and
for all B <y a, a € Sq, let apq, 3 = 1 (the identity of Sg). Then for any a € S, say
a € S, we have alg = 13 € Eg whenever 3 <y o.

Two particular cases of this construction should be mentioned.
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Corollary 4.7. Let S = [Y; Sa, ¢a.3] be a strong semilattice of unipotent monoids
(ie., Eg, = {14} for every o € Y). Then S is a generalized F-semigroup if and only
if

(i) Y has a greatest element;

(ii) @a,p is idempotent pure for all 3 <y a inY;

(iii) for every o € Y and a € S, there exists § <y « inY and x € Sg such that
(a(paﬁg)x S ESB'

The other particular case is a specialization of Corollary 4.7, supposing that every
So (v €Y) is a group, that is, S is a Clifford semigroup.

Corollary 4.8. Let S = [Y;Gq, 93] be a strong semilattice of groups. Then
S is a generalized F-semigroup if and only if Y has a greatest element and @, g is
injective for all B <y a in Y.
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