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Abstract. A semigroup S is called a generalized F -semigroup if there exists a group
congruence on S such that the identity class contains a greatest element with respect to the
natural partial order 6S of S. Using the concept of an anticone, all partially ordered groups
which are epimorphic images of a semigroup (S, ·,6S) are determined. It is shown that a
semigroup S is a generalized F -semigroup if and only if S contains an anticone, which is a
principal order ideal of (S,6S). Also a characterization by means of the structure of the set
of idempotents or by the existence of a particular element in S is given. The generalized F -
semigroups in the following classes are described: monoids, semigroups with zero, trivially
ordered semigroups, regular semigroups, bands, inverse semigroups, Clifford semigroups,
inflations of semigroups, and strong semilattices of monoids.
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1. Introduction

A semigroup (S, ·) is called F -inverse if S is inverse and for the least group congru-

ence σ on S, every σ-class has a greatest element with respect to the natural partial

order 6S of S (see [16] or [10] for a detailed treatment of this class of semigroups).

This concept appeared originally in [19]. A construction of such semigroups was

given in [12] by means of groups acting on semilattices with identity obeying certain

axioms.

Dropping the condition that the semigroup is inverse we will call a semigroup S

an F -semigroup if for some group congruence % on S every %-class of S contains a
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greatest element with respect to the natural partial order 6S of S. Recall that for

any semigroup S, 6S is defined by

a 6S b if and only if a = xb = by, xa = a for some x, y ∈ S1

(see [13]). In this paper we will more generally study generalized F -semigroups,

which are semigroups S for which there exists a group congruence % such that the

identity class (only) has a greatest element with respect to the natural partial order

6S of S (equivalently, there exists a homomorphism of S onto a group G such that

the preimage of the identity element of G has a greatest element with respect to 6S).

Thus we are dealing with semigroups, which are extensions of a subsemigroup T with

greatest element by a group (the semigroups of type T were first characterized in

[18]). The particular case of F -semigroups will be considered in a subsequent paper.

This generalization of F -inverse semigroups is motivated by a class of partially

ordered semigroups (i.e., semigroups S endowed with a partial order 6 which is

compatible with multiplication). (S, ·,6) is called a Dubreil-Jacotin semigroup if

there exists an isotone semigroup homomorphism of (S, ·,6) onto a partially ordered

group (G, ·,�) such that the preimage of the negative cone of G is a pricipal order

ideal of (S,6). This concept was introduced in [6] (see also [4], Theorem 25.3).

Specializing the partial order 6 given on S to the natural partial order 6S and

dropping the compatibility condition for 6S (which is not satisfied, in general) it

turns out that in this case the partial order � given on G reduces to the equality

relation, so that the negative cone of G consists of the identity element of G alone.

Thus we arrive at the concept of a generalized F -semigroup.

In Section 2 we determine all partially ordered groups, which are isotone semi-

group-homomorphic images of an arbitrary semigroup S with S considered partially

ordered by its natural partial order. In the particular case that S is inverse this

question was dealt with in [3], where the greatest such partially ordered group was

considered. For this purpose we use the concept of an anticone of S defined in [2]

(see also [4]). In Section 3 we specialize the concept of an anticone to be princi-

pal in the sense that it is also a principal order ideal of (S,6S). In analogy with

F -inverse semigroups we show that for generalized F -semigroups S the congruence

% appearing in the definition is the least group congruence on S. Characterizations

by the existence of a principal anticone, of a particular element, and by properties

of the set of all idempotents are provided. Also, generalized F -semigroups which

are regular or contain an identity, are considered. The characterization of the latter

allows a construction of all generalized F -inverse monoids. In Section 4 the gen-

eralized F -semigroups in the following classes are described: semigroups with zero,

trivially ordered semigroups, bands, inflations of semigroups, and strong semilattices

of monoids (in particular, Clifford semigroups).
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2. Epimorphic partially ordered groups

Throughout the paper, S stands for an arbitrary semigroup unless specified other-

wise, and 6S for the natural partial order defined on S. No other partial order on S

will be considered.

Since we are interested in homomorphic images of a semigroup S onto groups, we

first observe that for any group G and every homomorphism ϕ : S → G, a 6S b

implies aϕ = bϕ, i.e., ϕ is trivially isotone.

In this section we give a method for constructing all groups G and all partial

orders on G such that the partial ordered group G is a semigroup- and an order-

homomorphic image of S. For this purpose we follow the account given in [4, Sec-

tion 24] using the concept of an anticone in a partially ordered semigroup introduced

in [2]. Since the natural partial order of S need not be compatible with multiplica-

tion, the theory developed in [4] cannot be applied directly to our case. At several

stages other proofs have to be given in order to establish the corresponding results

needed in the sequel.

Let X ⊆ S and a, b ∈ S. Define

X .. a = {x ∈ S ; ax ∈ X} and X .. a = {x ∈ S ; xa ∈ X}.

It is readily seen that

X .. ab = (X .. a) .. b and X .. ab = (X .. b) .. a.

We say that X 6= ∅ is reflexive if ab ∈ X implies ba ∈ X (a, b ∈ S). If X is reflexive

then X .. a = X .. a for any a ∈ S, in which case we will use the notation X : a. We

say that X is neat if X is reflexive and X : c 6= ∅ for all c ∈ S. If X is a reflexive

subsemigroup of S, define

IX = {x ∈ S ; X : x = X}.

We call a subsemigroup H of S an anticone of S if IH ∩H 6= ∅ and both H and

IH are reflexive and neat. As we will see later, this definition is equivalent to the

definition given in [4] in the context of partially ordered semigroups.

A subset T of a semigroup S is called unitary in S if (i) t, ta ∈ T implies that

a ∈ T , and (ii) t, at ∈ T implies that a ∈ T (see [5]). If T is reflexive then (i) and

(ii) are equivalent.
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Proposition 2.1. Let H be an anticone of S. Then IH is a maximal unitary

subsemigroup of S contained in H . In particular, IIH
= IH is also an anticone of S,

and IH = H if and only if H is unitary in S.

�! #"$"&%
. Clearly, by the definition of an anticone, IH 6= ∅. That IH is a unitary

subsemigroup follows easily from the fact that H : xy = (H : x) .. y = (H : y) .. x

for all x, y ∈ S. If x ∈ IH then H : x = H and so xH ⊆ H . Let k ∈ IH ∩H . Then

xk ∈ H , i.e., x ∈ H : k = H . Thus IH ⊆ H .

Next let us consider any unitary subsemigroup K of S such that IH ⊆ K ⊆ H .

Let u ∈ K. Since I
H
is neat, choose v ∈ S such that uv ∈ IH . But K is unitary,

so v ∈ K. If z ∈ H : u then uz ∈ H , so vuz ∈ H , giving z ∈ H : vu. Since IH is

reflexive and uv ∈ IH , we have vu ∈ IH . Thus H : vu = H and so z ∈ H . Since

H ⊆ H : u, we get H : u = H , proving u ∈ IH . Hence K ⊆ IH and so IH is a

maximal unitary subsemigroup of S contained in H . We now show that IIH
= IH .

As IH is unitary, IIH
⊆ IH . If x ∈ IH and y ∈ IH : x then xy ∈ IH and so, since IH

is unitary, y ∈ IH . Since IH is a subsemigroup of S, it follows that IH : x = IH , that

is x ∈ IIH
. That IH is an anticone is now immediate. The assertion follows and the

proof is complete. �

Let H be an anticone. Since H is reflexive, we can define the Dubreil equivalence

RH on S by

(a, b) ∈ RH ⇐⇒ H : a = H : b.

Following the proof in [4, Section 24] we obtain that S/RH is a group whose

identity is IH . Also, the binary relation on S/RH given by

aRH � bRH ⇐⇒ H : b ⊆ H : a

is a partial order which is compatible with multiplication. Hence G = (S/RH , ·,�)

is a partially ordered group. Moreover, following the arguments given in [4,

pages 249–251], H is the pre-image, under the natural homomorphism, of the

set {xRH ∈ S/RH |xRH � IH}, called the negative cone of S/RH .

')(+*-,� #.
2.2. 1. Notice that any anticone H of (S,6S) is an order ideal of

(S,6S). In fact, if h ∈ H and x ∈ S, then hRH belongs to the negative cone of

S/RH and

x 6S h =⇒ x = th = tx for some t ∈ S

=⇒ xRH = tRH · hRH = tRH · xRH

=⇒ xRH = hRH � IH

=⇒ x ∈ H.
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2. From the observation at the beginning of this section it follows that the natural

homomorphism ϕ : S → S/RH is isotone.

3. Since IH is a subsemigroup of H (Proposition 2.1) and H is an order ideal of S,

the definition of an anticone that we have given is equivalent to the definition given

in [4] in the context of partially ordered semigroups.

We summarize the previous results in

Theorem 2.3. Let S be a semigroup and H an anticone. Then S/RH , partially

ordered by the relation � defined by aRH � bRH ⇐⇒ H : b ⊆ H : a, is an (isotone)

homomorphic group image of S under the natural homomorphism such that H is

the preimage of the negative cone of (S/RH ,�).

The next result shows that every partially ordered group which is an (isotone)

homomorphic image of a semigroup S arises in this way, i.e., is given by an anticone

of S.

Theorem 2.4. Let S be a semigroup, G a group with compatible partial order

6 and ϕ : S → G an (isotone) epimorphism. Let H = {x ∈ S ; xϕ 6 1G}. Then H

is an anticone and ψ : S/RH → G, given by xRH 7−→ xϕ, is an isomorphism such

that ψ and ψ−1 are order preserving.

�! #"$"&%
. To justify that H is an anticone of S we can apply the arguments given

in [4, Section 24] since compatibility of the partial order given on S is not used in

those arguments. By Theorem 2.3, S/RH is a partially ordered group, where RH

denotes the Dubreil equivalence with respect to H and � is the partial order given

above. Following the proof of Theorem 24.1 in [4], we obtain that the mapping

ψ : S/RH → G, (xRH )ψ = xϕ is an isomorphism such that ψ and ψ−1 are order

preserving. �

Corollary 2.5. Let ϕ : S → G be an isotone epimorphism where G is a group

with compatible partial order 6. Then 6 is trivial if and only if the anticone H =

{x ∈ S ; xϕ 6 1G} is unitary in S.

�! #"$"&%
. By Theorem 2.4, since ψ is an isomorphism, IH = 1Gϕ

−1. If 6 is

trivial then clearly H = IH , by definition of H . Conversely, if H = IH and aϕ 6 bϕ

(a, b ∈ S) then, by Theorem 2.4, aRH � bRH , i.e., H : b ⊆ H : a. Hence ax ∈ IH
for any x ∈ S such that bx ∈ IH . So (bx)ϕ = 1G = (ax)ϕ giving bϕ = aϕ. Thus,

6 is trivial if and only if H = IH , and this is equivalent to H being unitary, by

Proposition 2.1. �
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/ 01,�*32546(
2.6. Let B be a band, (G,6) a partially ordered group and let S =

B ×G be their direct product. Then the natural partial order on S is given by

(e, a) 6S (f, b) ⇐⇒ e 6B f and a = b.

Notice that 6S is not compatible with multiplication, in general. The projection

ϕ : S → G defined by (e, a)ϕ = a is an isotone epimorphism. By Theorem 2.4, the

set H = {(e, a) ∈ S ; a 6 1G} is an anticone of S and the mapping ψ : S/RH → G

defined by xRH 7−→ xϕ is an isomorphism such that ψ and ψ−1 are order preserving.

By Corollary 2.5, the anticone H is not unitary if the partial order 6 on G is not

trivial.

/ 01,�*32546(
2.7. Let S be an inverse semigroup. Then the natural partial order

of S has the form

a 6S b⇐⇒ a = eb for some e ∈ ES (see [16]).

It was shown in [17] that H = {h ∈ S ; e 6 h for some e ∈ ES} is the least

anticone of S yielding the greatest isotone homomorphic group image of S. The

latter is given by the congruence σ on S defined by

aσb⇐⇒ ea = eb for some e ∈ ES ;

in fact, RH = σ by [3]. We show that H is unitary in S. Let h, ha ∈ H . Then

e 6S h, f 6S ha for some e, f ∈ ES , whence e = jh, f = iha for some i, j ∈ ES .

Since the idempotents of S commute, we get jf = ijha = iea, where ie ∈ ES . Thus

jf 6S a with jf ∈ ES ; hence a ∈ H and so H is unitary. It follows by Corollary 2.5,

that any compatible partial order on the homomorphic group image S/σ of S is

trivial.

We next introduce a class of semigroups which contain (unitary) anticones: the

class of E-inversive, E-unitary semigroups.

(i) A semigroup S is called E-inversive if for every a ∈ S there exists x ∈ S such

that ax ∈ ES (see [5], Ex. 3.2 (8)). In this case there also exists y ∈ S such that

ay, ya ∈ ES . Examples are provided by periodic (in particular, finite) or regular

semigroups (see [14]).

(ii) S is called E-unitary if ES is unitary in S, that is, if e, ea ∈ ES implies that

a ∈ ES , and if e, ae ∈ ES implies that a ∈ ES . In fact, these two conditions on S

are equivalent (see the beginning of Section 3 in [14]).

Let S be an E-unitary semigroup and let a, b ∈ S be such that ab ∈ ES . Then

(ba)3 = bababa = b(ab)2a = b(ab)a = (ba)2
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and

(ba)4 = (ba)2.

Hence (ba)2 ∈ ES and (ba)(ba)2 = (ba)3 = (ba)2 ∈ ES . It follows that ba ∈ ES .

So ES is reflexive.

If S is also E-inversive, easy calculations show that ES is a neat subsemigroup

of S and IES
= ES . Hence ES is an anticone of S. Also, if H is an anticone of

S, then by Theorems 2.3 and 2.4, H = {x ∈ S ; xϕ 6 1G}, ϕ being the natural

homomorphism ϕ : S → S/RH = G. Since eϕ = 1G for every idempotent e ∈ S, it

follows that ES ⊆ H . Thus we have

Proposition 2.8. Every E-inversive, E-unitary semigroup S has a (least) anti-

cone, namely H = ES .

Notice that since by Theorem 2.3 every anticone of a semigroup S gives rise to a

group G which is an isotone homomorphic image of S the result of Proposition 2.8

is implicitly contained in [1] Theorem 3.1.

3. Generalized F -semigroups

We will now specialize our study to the case of semigroups S containing an anticone

H with a greatest element, i.e., an anticone which (by Remark 2.2) is a principal

order ideal of (S,6S). Such an anticone will be called a principal anticone. This

additional condition leads to the concept of generalized F -semigroups. We call a

semigroup a generalized F -semigroup if there exists a group congruence % on S such

that the identity %-class 1G ∈ G = S/% has a greatest element ξ. The element ξ will

be called a pivot of S.

If a semigroup S has a principal anticone H whose greatest element is ξ, i.e.,

H = (ξ] = {x ∈ S ; x 6S ξ}, then RH is a group congruence. Using the natural

homomorphism of S onto the group S/RH whose identity is IH , we have

t, ta ∈ H =⇒ t, ta 6S ξ =⇒ tRH · aRH = ξRH = tRH

=⇒ aRH = 1S/RH
= IH

=⇒ a ∈ IH ⊆ H [by Proposition 2.1].

HenceH is unitary and so, by Proposition 2.1, H = IH . It follows that the identity

RH -class IH has a greatest element, namely ξ. So S is a generalized F -semigroup.

Conversely, let S be a generalized F -semigroup, % a corresponding group congru-

ence on S and ϕ : S → G = S/% the natural epimorphism. Considering on G the

identity relation for 6 we have by Theorem 2.4 that H = {x ∈ S ; xϕ = 1G} is an
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anticone of S. By hypothesis, the identity %-class 1G ∈ S/%, that is, H = 1Gϕ
−1,

has a greatest element, say, ξ. Therefore H is a principal (hence unitary) anticone

and H = IH = (ξ].

We have proved the following characterization:

Theorem 3.1. Let S be a semigroup. Then S is a generalized F -semigroup if

and only if S has a principal (unitary) anticone H . In this case H = IH = (ξ], where

ξ is a pivot of S.

')(+*-,� #.
3.2. 1. A unitary anticone is not necessarily principal. Indeed, consider

any E-unitary inverse semigroup S. By Proposition 2.8, ES is a unitary anticone

and by [10] Proposition 7.1.3, ES contains a greatest element if and only if S has an

identity.

2. Since for any anticone H of a semigroup S, IH is unitary (by Proposition 2.1),

the natural partial order on IH is just the restriction of 6S to IH .

3. If S is a generalized F -semigroup then any group G appearing in the definition

admits only the identity relation as a compatible partial order (by Theorem 3.1 and

Corollary 2.5). Hence the negative cone of G consists of the identity alone.

Our next aim is to show that the group in the definition of a generalized F -

semigroup is unique. We show even more:

Theorem 3.3. Let S be a generalized F -semigroup and % a corresponding group

congruence. Then % is the least group congruence on S. In particular, both the

congruence and the pivot of S are uniquely determined.

�! #"$"&%
. Let τ be any group congruence on S and let a, b ∈ S be such that a%b. If

c ∈ (a%)−1 = (b%)−1 then c% = (a%)−1 so that (c%) · (a%) = IH , the identity of S/RH

(H being the principal (unitary) anticone of S corresponding to % in Theorem 3.1).

Therefore, ca ∈ IH = H = (ξ] by Theorem 3.1, that is, ca 6S ξ. Similarly, cb 6S ξ.

If ψ denotes the natural homomorphism corresponding to τ , then it follows that

(cψ) · (aψ) = ξψ = (cψ) · (bψ) (see the beginning of Section 2). Therefore, aψ = bψ

(by cancellation), that is, aτb. �

Due to the definition, the knowledge of semigroups T containing a greatest element

is relevant to the study of generalized F -semigroups. A characterization of such

semigroups T was given in [18]. Here we provide an independent proof. For this

purpose, we first show
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Lemma 3.4. Let S be a semigroup with a greatest element, say, ξ. Then ξ3 = ξ2

and ξ2 ∈ ES .
�! #"$"&%

. By hypothesis ξ2 6S ξ. If ξ2 = ξ then ξ ∈ ES . If ξ
2 <S ξ then

ξ2 = xξ = ξy = xξ2 for some x, y ∈ S. Thus ξ3 = xξ2 = ξ2 and so ξ2 ∈ ES . �

Theorem 3.5 ([18]). A semigroup S admits a greatest element if and only if S

is one of the following types:

(i) S is a band with identity;

(ii) S = T∪{ξ}, where T is a band with identity e such that ξ2 = e and aξ = ξa = a

for every a ∈ T .
�! #"$"&%

. If S is a semigroup of type (i) then the identity e ∈ S is the greatest

element of S. On the other hand, if S is of type (ii) then aξ = ξa = a for every

a ∈ T implies that a 6 ξ (since a ∈ ES). Thus ξ is the greatest element of S.

Conversely, let S be a semigroup with greatest element ξ. Then a 6 ξ for every

a ∈ S. If ξ ∈ ES , it follows by [15], Lemma 2.1, that a ∈ ES . Hence S is a band

with identity ξ, i.e., S is of type (i). If ξ /∈ ES then we have the following results:

1. T = S \ {ξ} is a subsemigroup of S:

Let a, b ∈ T ; then a 6S ξ and so a = xξ = ξy = xa for some x, y ∈ S. Assume

that ab /∈ T . Then ab = ξ and

a = xξ = x · ab = xa · b = ab = ξ,

a contradiction. Thus ab ∈ T .

2. aξ = aξ2, ξa = ξ2a for every a ∈ S:

If a = ξ then by Lemma 3.4

aξ = ξ2 = ξ3 = ξ · ξ2 = aξ2

and similarly ξa = ξ2a.

If a 6= ξ then a <S ξ and so a = xξ = ξy = xa for some x, y ∈ S. It follows by

Lemma 3.4 that

aξ = xξ · ξ = xξ2 = xξ3 = xξ · ξ2 = aξ2

and similarly ξa = ξ2a.

3. ξ2 ∈ T is the identity of T :

Since ξ /∈ ES , we have ξ
2 ∈ S \ {ξ} = T . Let a ∈ T . Then a <S ξ and so

a = xξ = ξy = xa for some x, y ∈ S. Therefore, by 2,

aξ2 = aξ = xξ · ξ = xξ2 = xξ = a.

Similarly, ξ2a = a.
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4. T = S \ {ξ} is a band:

By 2 and Lemma 3.4, a <S ξ for every a ∈ T implies that a 6S ξ
2. Since ξ2 ∈ ES

by Lemma 3.4, it follows by [15], Lemma 2.1 that a ∈ ES . Hence by 1, T is a band.

We have shown that S = T ∪ {ξ}, where T is a band with identity ξ2 such that

aξ = aξ2 = a and ξa = ξ2a = a for every a ∈ T . Therefore, S is of type (ii). �

Corollary 3.6. If S is a generalized F -semigroup with the pivot ξ then either

(ξ] = ES or (ξ] = ES ∪ {ξ} with ξ2 ∈ ES and eξ = ξe = e for all e ∈ ES .
�! #"$"&%

. By Theorem 3.1, H = (ξ] is a principal anticone of S, hence a subsemi-

group of S with the greatest element ξ (note that by Remark 2.2, the natural partial

order on H is the restriction of 6S to H). Therefore ξ
2 ∈ ES by Lemma 3.4. Since

eϕ = 1G for any e ∈ ES , ES ⊆ (ξ]. The assertion now follows from Theorem 3.5. �

This description of the identity class yields the following properties of a generalized

F -semigroup.

Proposition 3.7. Every generalized F -semigroup S with the pivot ξ is E-

inversive. Furthermore, ES is a subsemigroup of S with the greatest element ξ
2.

�! #"$"&%
. By Corollary 3.6, either (ξ] = ES or (ξ] = ES ∪ {ξ} where ξ2 is the

identity of ES . By the proof of Theorem 3.5, T = ES is a subsemigroup of S. It

follows that ES contains a greatest element: ξ
2. We show now that S is E-inversive.

Let a ∈ S and let ϕ : S → G = S/% be the surjective homomorphism satisfying

1Gϕ
−1 = (ξ]. Then we have

aϕ ∈ G =⇒ (aϕ)−1 = bϕ for some b ∈ S

=⇒ ab ∈ 1Gϕ
−1 = (ξ]

=⇒ ab ∈ ES or ab = ξ

=⇒ ab ∈ ES or a · bab = ξ2 ∈ ES .

Hence S is E-inversive. �

The two properties given in Proposition 3.7 are not sufficient for a semigroup to

be a generalized F -semigroup. For example, consider the multiplicative monoid S

of natural numbers together with 0; then S is E-inversive and ES = {0, 1} is a

subsemigroup with the greatest element 1. If S were a generalized F -semigroup with

pivot ξ then Proposition 3.7 would imply ξ2 = 1 and so ξ = 1. Hence (ξ] = {0, 1},

which is not unitary, a contradiction (see Theorem 3.1).

The next theorem establishes a characterization of a generalized F -semigroup in

terms of the idempotents of S.
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Theorem 3.8. Let S be a semigroup. Then S is a generalized F -semigroup with

the pivot ξ if and only if S is E-inversive, ξ is an upper bound of ES and ES ∪ {ξ}

is unitary.

�! #"$"&%
. Necessity follows by Proposition 3.7, Corollary 3.6 and Theorem 3.1.

Conversely, let S be E-inversive, let ξ be an upper bound of ES and let ES ∪ {ξ}

be unitary. Suppose first that ξ ∈ ES . Then S is an E-inversive and E-unitary

semigroup. It follows by Proposition 2.8 that H = ES is a (unitary) anticone with

the greatest element ξ. Thus by Theorem 3.1, S is a generalized F -semigroup with

the pivot ξ. Suppose now that ξ /∈ ES . We show that H = ES ∪ {ξ} is a principal

anticone of S.

1. H is a subsemigroup of S:

Let h, k ∈ H . Since S is E-inversive, there exists x ∈ S such that hkx ∈ ES ⊆ H .

Since H is unitary, we have successively kx ∈ H , x ∈ H and finally hk ∈ H .

2. H is reflexive:

Let a, b ∈ S be such that ab ∈ H . Consider first the case ab ∈ ES . Then

(ba)3 = b(ab)2a = (ba)2 =⇒ (ba)2 ∈ ES ⊆ H.

Since (ba)(ba)2 = (ba)2 ∈ H and since H is unitary, we have that ba ∈ H . Consider

next the case ab = ξ. By 1, H is a subsemigroup (with the greatest element ξ). Thus

by Lemma 3.4, ξ3 = ξ2,

(ba)4 = b(ab)3a = bξ3a = bξ2a = (ba)3

and so (ba)3 ∈ ES ⊆ H . Thus (ba)3(ba) = (ba)3 ∈ H ; since H is unitary, it follows

that ba ∈ H .

3. H is neat:

This follows from 2 and the fact that S is E-inversive and ES ⊆ H .

4. IH = H :

Since by 1, H is a subsemigroup of S, we have H ⊆ H : x for any x ∈ H . Also,

because H is unitary, H : x ⊆ H .Thus H = H : x for any x ∈ H . Thus H ⊆ IH .

Conversely, let a ∈ IH ; then H : a = H and h ∈ H = H : a =⇒ ah ∈ H =⇒ a ∈ H

(since H is unitary).

We have shown that H is an anticone. Since, by hypothesis, ξ ∈ H is an upper

bound of ES ⊆ ES ∪{ξ} = H , ξ is the greatest element of H . Sufficiency now follows

by Theorem 3.1. �

Notice that in Theorem 3.8 the attribute “with the pivot ξ” is essential. In fact,

consider the following example.
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3.9. Let T = {0, 1} be the two-element semilattice and let S =

{0, 1, a} with a0 = 0a = 0, a1 = 1a = 1, a2 = 1 (see Theorem 3.5). Then a ∈ S is

the greatest element of S and S satisfies the conditions of Theorem 3.8 with ξ = a.

Hence S is a generalized F -semigroup with the pivot ξ = a. Now, 1 is also an upper

bound of ES , but ES ∪ {1} = ES is not unitary in S since a · 1 = 1 ∈ ES , a /∈ ES .

This means that S is not a generalized F -semigroup with the pivot ξ = 1.

As an immediate consequence of Theorem 3.8, we give a characterization of those

elements of a semigroup S which may serve as the pivot of S. Notice that by

Theorem 3.3 there is at most one such element.

Corollary 3.10. Let S be a semigroup. Then S is a generalized F -semigroup

with the pivot ξ if and only if (i) ξ2 is the greatest idempotent of S and ξ2 6S ξ, (ii)

for any a ∈ S there exists a′ ∈ S such that aa′ 6S ξ
2, (iii) ES ∪ {ξ} is unitary in S.

Note that the conditions of Corollary 3.10 also characterize those order ideals of

a semigroup (S, ·,6S) which are (principal) anticones of S.

As a special case of Theorem 3.8, consider a semigroup S such that ES has a

greatest element. Then we obtain

Corollary 3.11. Let S be a semigroup containing a greatest idempotent, say e.

Then S is a generalized F -semigroup with the pivot e if and only if S is E-inversive

and E-unitary.

The condition imposed on S in Corollary 3.11 is certainly satisfied if S has an

identity. In this case it is easy to show that the identity, being a maximal element

of (S,6S), is the pivot of S. Thus, we obtain a characterization of generalized

F -monoids:

Corollary 3.12. Let S be a monoid. Then S is a generalized F -semigroup if and

only if S is E-inversive and E-unitary.

Next we study generalized F -semigroups which are regular. We begin with the

more general situation where only the pivot of S is regular. First we show

Proposition 3.13. For a generalized F -semigroup with the pivot ξ the following

conditions are equivalent:

(i) ξ is regular; (ii) ξ is (the greatest) idempotent; (iii) S is E-unitary.

�! #"$"&%
. By hypothesis, there exists a group G and a surjective homomorphism

ϕ : S → G such that 1Gϕ
−1 = (ξ].
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(i) =⇒ (ii). Let ξ′ ∈ S be such that ξ = ξξ′ξ. Since ξξ′ ∈ ES , we have that

(ξξ′)ϕ = 1G so that ξξ
′ ∈ (ξ]. Hence ξξ′ 6S ξ and so

ξξ′ = xξ = ξy = xξξ′

for some x, y ∈ S1. Thus ξ = xξ = ξξ′ ∈ ES . (It follows by Theorem 3.8 that ξ is

the greatest idempotent.)

(ii) =⇒ (iii). This follows from Corollary 3.10.

(iii) =⇒ (i). Since by Theorem 3.1, (ξ] is a semigroup with the greatest element

ξ, we have ξ3 = ξ2 ∈ ES by Lemma 3.4. Thus, by hypothesis, ξ
2ξ ∈ ES implies that

ξ ∈ ES . Hence ξ is regular. �

As a consequence of Proposition 3.13, the conditions of Corollary 3.11 characterize

the generalized F -semigroups with a regular pivot. Also they yield a characterization

of regular generalized F -semigroups:

Theorem 3.14. Let S be a regular semigroup. Then S is a generalized F -

semigroup if and only if S is an E-unitary monoid.

�! #"$"&%
. Let S be a regular semigroup. Then S is E-inversive. If S is an E-

unitary monoid it follows from Corollary 3.12 that S is a generalized F -semigroup.

Conversely, if S is a regular generalized F -semigroup with the pivot ξ then by

Proposition 3.13, ξ is the greatest idempotent of S and S is E-unitary. Following

the proof of Proposition 7.1.3 in [10], we show that ξ is the identity of S. Let a ∈ S

and a′ ∈ S be such that a = aa′a. Since aa′, a′a ∈ ES we have by Corollary 3.6 that

aa′, a′a 6S ξ and so a
′aξ = a′a and ξaa′ = aa′. Hence, aξ = ξa = a and so ξ is the

identity of S. �

/ 01,�*32546(
3.15. Let B be a band with an identity 1B , let G be a group with

the identity 1G and let S = B × G be their direct product. Then S is a regular

monoid with identity (1B , 1G) and ES = {(e, 1G) ∈ S ; e ∈ B}. Simple calculations

show that S is E-unitary. Thus S is a generalized F -semigroup. The corresponding

group is the given group G and (1B , 1G) is the greatest element of its identity class

since ϕ : S → G, (e, a)ϕ = a, is a surjective homomorphism.

A construction of all regular generalized F -semigroups is given in [8].
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4. Examples

In this section we characterize in several classes of semigroups those members

which are generalized F -semigroups. Moreover, two types of constructions are inves-

tigated with the aim to produce generalized F -semigroups: inflations of semigroups

and strong semilattices of monoids. The proofs concerning the last two cases are not

given because they consist of extensive calculations.

1. Every group G is a (generalized) F -semigroup (the identity relation on G is the

desired group congruence).

2. Every semigroup S with a greatest element is a generalized F -semigroup (the

universal relation on S is the corresponding group congruence).

3. A band B is a generalized F -semigroup if and only if B has an identity (this is

a consequence of 2 and of Theorem 3.5).

In the class of all monoids the generalized F -semigroups were characterized by

Corollary 3.12. For a much bigger class of semigroups, we have

4. Let S be a semigroup containing a maximal element m, which is idempotent.

Then S is a generalized F -semigroup if and only if S is E-inversive, E-unitary and

has a greatest idempotent (this follows from Theorem 3.8 and Corollary 3.11).

5. Let S be a trivially ordered semigroup (i.e., the natural partial order of S is the

identity relation). Then S is a generalized F -semigroup if and only if S is a group.

(Necessity: Since by Theorem 3.8, S is E-inversive and ES = {ξ}, S is regular by

[14], Proposition 3; hence S is a group by [16], Lemma II.2.10.)

Examples of trivially ordered semigroups S (without zero) are provided by weakly

cancellative semigroups, right-(left-) simple semigroups, right-(left-) stratified semi-

groups, in particular, completely simple semigroups (see [7]).

6. Let S be a semigroup with zero. Then S is a generalized F -semigroup if and

only if S has a greatest element (that is, S is of type (i) or (ii) in Theorem 3.5).

In the class of all regular semigroups, the generalized F -semigroups were charac-

terized by Theorem 3.14 as the E-unitary monoids. The inverse case deserves to be

mentioned separately. Note that every E-unitary inverse semigroup is isomorphic

to a McAlister P -semigroup P , and that P has an identity if and only if Y has a

greatest element (see [10] Theorem 7.1.1). Thus we obtain

7. Let S be an inverse semigroup. Then S is a generalized F -semigroup if and only

if S is isomorphic to a P -semigroup P (Y,G;X) such that Y has a greatest element

with respect to 6X .

')(+*-,� #.
4.1. This result provides a method for the construction of all general-

ized F -inverse semigroups. Take a lower directed partially ordered set X (see [16],

Lemma VII.1.3), a principal order ideal Y of X , which is also a subsemilattice, and
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a group G acting on the left by order-automorphisms on X such that G · Y = X ;

then S = P (Y,G;X) is a generalized F -inverse semigroup. Conversely, every such

semigroup can be constructed in this way. It is worthwhile to note the difference

of this construction from that of all F -inverse semigroups: by [11], Theorem 2.8, a

semigroup S is F -inverse if and only if S is isomorphic to P (Y,G;X) constructed as

above with X a semilattice instead of a lower directed partially ordered set (see also

[16], Proposition VII.5.11).

In the following, for two constructions necessary and sufficient conditions on the

ingredients are given, which allow to produce further examples of generalized F -

semigroups.

8. Inflations of semigroups.

Let T be a semigroup; for every α ∈ T let Tα be a set such that Tα∩Tβ = ∅ for all

α 6= β in T and Tα∩T = {α} for any α ∈ T . On S =
⋃

α∈T

Tα there is a multiplication

defined by

a · b = αβ if a ∈ Tα, b ∈ Tβ.

Then S is a semigroup called an inflation of T . If T satisfies the condition that for

every α ∈ T there exist β, γ ∈ T such that α = βα = αγ (for example, if T has an

identity or if T is regular), the natural partial order on S was characterized in [7]:

a 6S b (a ∈ Tα, b ∈ Tβ) if and only if a = b or a = α 6T β.

In particular, if a, b ∈ Tα then a 6S b if and only if a = α.

As can be expected, the structure of S depends heavily on that of T , in particular,

the property to be a generalized F -semigroup.

Theorem 4.2. Let S =
⋃

α∈T

Tα be an inflation of the semigroup T such that

for every α ∈ T there exist β, γ ∈ T with α = βα = αγ. Then S is a generalized

F -semigroup if and only if

(i) T is a generalized F -semigroup with the pivot ξ,

(ii) |Tα| = 1 for every α ∈ T with α <T ξ;

(iii) |Tξ| 6 2.

A particular case of inflations should be mentioned.
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Corollary 4.3. Let G be a group and let S =
⋃

g∈G

Tg be an inflation of G. Then

S is a generalized F -semigroup if and only if |T1G
| 6 2.

9. Strong semilattices of monoids.

Let Y be a semilattice and for every α ∈ Y let Sα be a monoid (whose identity

is 1α) such that Sα ∩ Sβ = ∅ for all α 6= β in Y . For any α, β ∈ Y with β 6Y α,

let ϕα,β : Sα → Sβ be a homomorphism such that ϕα,α = idSα
for every α ∈ Y and

ϕα,β ◦ ϕβ,γ = ϕα,γ for γ 6Y β 6Y α in Y . On S =
⋃

α∈Y

Sα there is a multiplication

defined by

a · b = (aϕα,αβ)(bϕβ,αβ) if a ∈ Sα, b ∈ Sβ ,

where αβ = inf{α, β} in Y . The semigroup S is called a strong semilattice of

monoids and is denoted by S = [Y ;Sα, ϕα,β ]. By [15], the natural partial order on

S is characterized by

a 6S b (a ∈ Sα, b ∈ Sβ) if and only if α 6Y β, a 6α bϕβ,α,

where 6α denotes the natural partial order on Sα (α ∈ Y ).

Proposition 4.4. Let S be a strong semilattice of monoids. Then S is a gener-

alized F -semigroup if and only if S is an E-inversive, E-unitary monoid.

Theorem 4.5. Let S = [Y ;Sα, ϕα,β ] be a strong semilattice of monoids. Then S

is a generalized F -semigroup if and only if

(i) Y has a greatest element ω and for every α ∈ Y, ϕω,α is a monoid-homo-

morphism;

(ii) Sα is E-unitary for any α ∈ Y and ϕα,β is idempotent pure for all β 6Y α in

Y ; i. e., if aϕα,β ∈ ESα
then A ∈ ESα

;

(iii) For every α ∈ Y and a ∈ Sα there exist β 6Y α in Y and x ∈ Sβ such that

(aϕα,β)x ∈ ESβ
.

')(+*-,� #.
4.6. Concerning condition (iii) notice that it is possible that no com-

ponent Sα of S is E-inversive but that S is so. For example, let Y be a chain,

unbounded from below, let Sα = ( 7 , ·) (0 /∈ 7 ), let ϕα,α = idSα
for every α ∈ Y, and

for all β <Y α, a ∈ Sα, let aϕα,β = 1β (the identity of Sβ). Then for any a ∈ S, say

a ∈ Sα, we have a1β = 1β ∈ ES whenever β <Y α.

Two particular cases of this construction should be mentioned.
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Corollary 4.7. Let S = [Y ;Sα, ϕα,β ] be a strong semilattice of unipotent monoids

(i.e., ESα
= {1α} for every α ∈ Y ). Then S is a generalized F -semigroup if and only

if

(i) Y has a greatest element;

(ii) ϕα,β is idempotent pure for all β 6Y α in Y ;

(iii) for every α ∈ Y and a ∈ Sα there exists β 6Y α in Y and x ∈ Sβ such that

(aϕα,β)x ∈ ESβ
.

The other particular case is a specialization of Corollary 4.7, supposing that every

Sα (α ∈ Y ) is a group, that is, S is a Clifford semigroup.

Corollary 4.8. Let S = [Y ;Gα, ϕα,β ] be a strong semilattice of groups. Then

S is a generalized F -semigroup if and only if Y has a greatest element and ϕα,β is

injective for all β 6Y α in Y.
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