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RADICALS AND COMPLETE DISTRIBUTIVITY IN
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Abstract. Lattices in the class IRN of algebraic, distributive lattices whose compact
elements form relatively normal lattices are investigated. We deal mainly with the lattices
in IRN the greatest element of which is compact. The distributive radicals of algebraic
lattices are introduced and for the lattices in IRN with the sublattice of compact elements
satisfying the conditional join-infinite distributive law they are compared with two other
kinds of radicals. Connections between complete distributivity of algebraic lattices and the
distributive radicals are described. The general results can be applied e.g. to MV -algebras,
GMV -algebras and unital `-groups.
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1. Introduction

Let L be an algebraic lattice with least element 0 and greatest element 1, and let

its join-subsemilattice of compact elements be denoted by Com(L). If c ∈ Com(L),

then an element p ∈ L is called a value of c if p is maximal with respect to not

exceeding c. Let us denote by Val(c) the set of all values of c.

Let Val(L) be the set of all values of all compact elements in L. Recall that an

element p < 1 is called completely meet-irreducible if, whenever p =
∧

α∈Γ

xα, then

there is α0 ∈ Γ such that p = xα0
. By [20], p. 43, Val(L) is exactly the set of all

completely meet-irreducible elements in L. Since every element of an algebraic lattice

is the meet of a set of completely meet-irreducible elements, every element in L is

the meet of a set of values.
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If a ∈ L, let us set (a] = {x ∈ L ; x 6 a}. An element y ∈ (a] is called maximal

in (a] if y < a and if y 6 z ∈ (a] implies z = y or z = a. If L is any algebraic lattice

and c ∈ Com(L) then for any x ∈ (c], x 6= c, there is an element m maximal in (c]

such that x 6 m. (See [13], p. 248.)

This particularly means that, if the greatest element 1 of an algebraic lattice L is

compact, then L is dually atomic. In such a case let us denote by rad(L) the meet

of all dual atoms, i.e. the maximal elements in (1] = L. The element rad(L) will be

called the radical of the lattice L.

Another kind of a radical in L, which is in certain cases in connection with rad(L)

(e.g. in the theory of MV -algebras and GMV -algebras), has been introduced in [8].

Let us recall that if L is an algebraic, distributive lattice and a ∈ L then a is called

essential if there exists 0 6= x ∈ Com(L) such that sup Val(x) 6 a. Denote by r(L)

the meet of the set of essential elements in L.

A poset P is called a root-system provided the principal upper set [a) = {x ∈ P ;

a 6 x} is a chain for all a ∈ P . A lower-bounded distributive lattice is called relatively

normal (see e.g. [20]) provided the set of its prime ideals is a root-system under set-

inclusion. Recall (see also [20]) that the term “relatively normal” is suggested by

topological considerations. A bounded distributive lattice is called normal if each of

its prime ideals is contained in a unique maximal ideal. By [14], [15], a topological

space is normal if and only if the lattice of its open sets is normal. A lower-bounded

distributive lattice is relatively normal if and only if each of its closed subintervals is

a normal lattice. By [14], [15], a topological space is hereditarily normal if and only

if its open sets form a relatively normal lattice.

The class of all algebraic, distributive lattices whose compact elements form a

relatively normal lattice is denoted by IRN . By [20], Corollary 3.2, if L is an

algebraic, distributive lattice such that Com(L) is a sublattice (i.e., it is closed under

binary suprema and infima) of L, then L is a member of IRN if and only if the

(finitely) meet-prime elements of L form a root-system. (An element p < 1 is called

meet-prime if, whenever x∧y 6 p, then x 6 p or y 6 p. If arbitrary meets are allowed

in the definition then we have the notion of a completely meet-prime element.) The

structure properties of the lattices which belong to IRN have been studied in [20]

and subsequently in [8] and [12].

In this paper we deal with radicals of lattices in the class IRN in which the

greatest element 1 is compact. Further, we introduce the notion of a closed element

of an algebraic lattice L. This enables us to define the distributive radical of L and

we describe connections among three kinds of radicals of lattices in the class IRN

which have the sublattice of compact elements satisfying the conditional join-infinite

distributive law (CJIP). Connections between complete distributivity of algebraic
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lattices and distributive radicals of algebraic, distributive lattices satisfying (CJIP)

are found.

�����������
. Various important lattices belong to the class IRN . For instance, if

G is a lattice ordered group (an `-group) then the lattice C(G) of convex `-subgroups

of G is a member of IRN . Similarly for the lattice I(G) of `-ideals (i.e., kernels of

`-homomorphisms) of any `-group G which is a subdirect product of linearly ordered

groups. (See e.g. [1], [3], [11].) Furthermore, if A is an MV -algebra (see [5], [7])

or a GMV -algebra then the lattice I(A) of ideals of A is also a member of IRN .

(GMV -algebras have been introduced recently by the author in [17] and, indepen-

dently, under the name pseudo MV -algebras, by G. Georgescu and A. Iorgulescu in

[9] and [10], as a non-commutative generalization of MV -algebras which have been

defined by Chang in [4] as an algebraic counterpart of the  Lukasiewicz infinite valued

propositional logic.)

Hence many important structure results of these theories are special instances of

those for members of IRN which are formulated in purely lattice-theoric terms.

2. Radicals in lattices with compact greatest elements

In this section we will describe connections between radicals rad(L) and r(L) in

lattices L with 1 compact which belong to the class IRN .

�����������
. Recall that if G = (G, +,∨,∧) is an `-group and 0 < u ∈ G, then u

is called a strong unit of G provided the principal convex `-subgroup generated by

u is equal to G. An `-group G is called unital if G contains a strong unit. Since the

compact elements in the lattice C(G) are exactly the principal convex `-subgroups,

each unital `-group G is a compact element in C(G). Analogously, if A is an MV -

algebra or a GMV -algebra, then A is a compact element in the lattice I(A).

Theorem 1. If L ∈ IRN , 1 ∈ Com(L) and L has a finite number of dual atoms,

then r(L) 6 rad(L).

������� �
. Since L is an algebraic lattice and, by assumption, 1 ∈ Com(L), every

element in L different from 1 is less than or equal to some maximal element of L.

Moreover, L ∈ IRN , and hence by [20], Lemma 3.5, for any c ∈ Com(L) we have

that Val(c) is finite if and only if every value of c is a completely meet-prime element.

Therefore in our case every maximal element in L is completely meet-prime.

By [20], p. 43, for any completely meet-prime element p there is 0 6= c ∈ Com(L)

such that Val(c) = {p}, and thus p is essential. Hence under our assumption every

maximal element in L is essential. From this we get r(L) 6 rad(L). �
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Let us recall that an algebraic lattice is called finite-valued if Val(x) is finite for

each x ∈ Com(L).

Corollary 2. If L ∈ IRN , 1 ∈ Com(L) and L is finite-valued, then r(L) 6

rad(L).

An algebraic lattice L is said to be archimedean if for each compact element c ∈ L

the meet of the elements which are maximal below c is 0. (See [13].)

Theorem 3. If L ∈ IRN , 1 ∈ Com(L), L has a finite number of dual atoms and

L is archimedean, then r(L) = rad(L).

������� �
. From the assumption it follows that the meet of the set of maximal

elements in L is 0. Hence r(L) 6 rad(L) = 0, and so r(L) = rad(L). �

3. Closed elements and complete distributivity

Now, we will introduce the notion of a closed element of an algebraic lattice L. Let

a be an element in L. Then a is called a closed element of L if it satisfies the following

condition: If B ⊆ (a] ∩ Com(L) and supCom(L)B exists then supCom(L)B ∈ (a].

Lemma 4. The meet of any set of closed elements of L is a closed element of L.

If a ∈ L, denote by a the meet of the set of closed elements of L exceeding a. The

element a will be called the closure of a.

As is known, if L is an algebraic, distributive lattice, then L satisfies the join-

infinite distributive law (JID)

a ∧
∨

α∈Γ

bα =
∨

α∈Γ

(a ∧ bα).

Hence L is a Heyting lattice (see e.g. [2]), that means, for any elements a and b in

L, the set {x ∈ L ; a ∧ x 6 b} has a greatest element a → b (called the relative

pseudo-complement of a with respect to b). In particular, the element a∗ = a → 0 is

called the pseudo-complement of a in L.
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Lemma 5. If L is a Heyting lattice and z, xα ∈ L, α ∈ Γ, then

(

∨

α∈Γ

xα

)

→ z =
∧

α∈Γ

(xα → z)

provided both sides of the above equality exist.

������� �
. xβ 6

∨

α∈Γ

xα, thus
(

∨

α∈Γ

xα

)

→ z 6 xβ → z for any β ∈ Γ, and hence

(

∨

α∈Γ

xα

)

→ z 6
∧

α∈Γ

(xα → z).

On the other side,

(

∨

α∈Γ

xα

)

∧

(

∧

β∈Γ

(xβ → z)

)

=
∨

α∈Γ

(

xα∧

(

∧

β∈Γ

(xβ → z)

))

6
∨

α∈Γ

(xα∧(xα → z)) 6 z,

therefore
∧

α∈Γ

(xα → z) 6

(

∨

α∈Γ

xα

)

→ z.

�

Now, we will generalize the condition (JID) to any lattice (which need not be

complete). Let A be a lattice. We say that A satisfies the conditional join-infinite

distributive law (CJID) if the following condition holds: If y, xα ∈ A, α ∈ Γ, and if
∨

α∈Γ

xα in A exists, then also
∨

α∈Γ

(y ∧ xα) exists and

y ∧
∨

α∈Γ

xα =
∨

α∈Γ

(y ∧ xα).

(For example, the underlying lattice of any non-trivial `-group satisfies the condi-

tion (CJID) but not (JID).)

Proposition 6. Let L be an algebraic, distributive lattice, let Com(L) be a

sublattice of L and let the lattice Com(L) satisfy (CJID). Then a → c is closed for

each a ∈ L and c ∈ Com(L).

������� �
. a) Let first a ∈ Com(L) and c ∈ Com(L). Let bα ∈ (a → c] ∩ Com(L),

α ∈ Γ, and let b =
∨

Com(L){bα ; α ∈ Γ} exist. Then

a ∧ b = a ∧
∨

Com(L)
{bα ; α ∈ Γ} =

∨

Com(L)
{a ∧ bα ; α ∈ Γ}.
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Since a∧ bα 6 a∧ (a → c) 6 c for each α ∈ Γ, we have a∧ b 6 c, hence b 6 a → c.

b) Now, let a ∈ L be arbitrary and c ∈ Com(L). The lattice L is algebraic, thus

a =
∨

L{e ; e ∈ (a] ∩ Com(L)}. Therefore by Lemma 5,

a → c =
(

∨

L
{e ; e ∈ (a] ∩ Com(L)}

)

→ c =
∧

L
{e → c ; e ∈ (a] ∩ Com(L)},

and so, by Lemma 4, a → c ∈ Com(L). �

Corollary 7. If L is an algebraic, distributive lattice such that Com(L) is a

sublattice of L and Com(L) satisfies (CJID), then the pseudo-complement a∗ is a

closed element for any a ∈ L.

Theorem 8. Let L be an algebraic, distributive lattice such that Com(L) is a

sublattice of L satisfying (CJID). If a ∈ L then its closure a is equal to the join in L

of all elements from Com(L) which are joins in Com(L) of sets of elements belonging

to (a] ∩ Com(L).

������� �
. Let a ∈ L and let a be its closure. Let

{

xα ; xα =
∨

Com(L)
{xαβ ; xαβ ∈ (a] ∩ Com(L), α ∈ Γ, β ∈ ∆α}

}

be the set of existing joins in Com(L) of elements of (a] ∩Com(L). Denote by b the

join of this set in L . Since xα 6 a for any α ∈ Γ, b 6 a.

Let yγ ∈ (b] ∩ Com(L), γ ∈ Σ, and let
∨

Com(L){yγ ; γ ∈ Σ} exist. Then

yγ 6 b =
∨

L

{

xα ; xα =
∨

Com(L)
xαβ ; xαβ ∈ (a] ∩ Com(L)

}

,

and thus there are α1, . . . , αn ∈ Γ (n ∈ ! ) such that

yγ 6 xα1
∨L . . . ∨L xαn

= xα1
∨Com(L) . . . ∨Com(L) xαn

= xγ .

Hence xγ is the join in Com(L) of elements from (a] ∩ Com(L).

Let xγ =
∨

Com(L){xγδ ; δ ∈ Ω}, where xγδ ∈ (a] ∩ Com(L) for each δ ∈ Ω. Then

yγ = yγ ∧ xγ = yγ ∧
∨

Com(L)
{xγδ ; δ ∈ Ω} =

∨

Com(L)
{yγ ∧ xγδ ; δ ∈ Ω},

where yγ ∧ xγδ ∈ (a] ∩ Com(L).

Hence
∨

Com(L){yγ ; γ ∈ Σ} 6 b, thus b is a closed element for which a 6 b.

Therefore b = a. �

Let us denote by rx the join of the set Val(x) for any 0 6= x ∈ Com(L).
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Proposition 9. Let L ∈ IRN and let Com(L) be a sublattice of L satisfying

(CJIP). If an element a ∈ L is essential and if y 66 a holds for every y ∈ Com(L)

such that ry 6 a, then a is a closed element.

������� �
. Let a ∈ L be an essential element and let 0 6= x ∈ Com(L) be such that

rx 6 a. If 0 6= z ∈ Com(L) and z 66 x∗, then 0 6= x ∧ z 6 x, thus rx∧z 6 rx 6 a.

Therefore by assumption x ∧ z 66 a, so z 66 a, and hence a 6 x∗.

Conversely, a is essential, and since (by [20], Corollary 3.2) elements exceeding

prime elements are prime, a is also prime. We assume x 66 a, so we get x∗ 6 a.

Hence a = x∗ and that means by Corollary 7 that a is a closed element of L. �

If L is an algebraic lattice, denote by d(L) the meet of all closed prime elements

in L. Then d(L) will be called the distributive radical of the lattice L.

�����������
. The notion of distributive radical of an algebraic lattice is a general-

ization of that of an `-group (see e.g. [1], [3], [11]), of an MV -algebra ([6]) and of a

GMV -algebra ([18], [19]).

Theorem 10. Let L ∈ IRN and let Com(L) be a sublattice of L satisfying

(CJIP). Let L satisfy the following condition: If a is an essential element in L for

which there exists 0 6= y ∈ Com(L) such that y 6 a and ry 6 a, then a is closed.

a) Then d(L) 6 r(L).

b) If, moreover, 1 ∈ Com(L), then d(L) 6 r(L) 6 rad(L).

������� �
. The assertions of the theorem are immediate consequences of Proposi-

tion 9 and Corollary 2. �

"#��$%�
. In [8], Proposition 2.7, it is proved that if L ∈ IRN and L is finite-valued,

then r(L) = {0}. Hence, if L satisfies, moreover, the assumptions of Theorem 10,

then d(L) = {0}.

Let us recall that a lattice A is called completely distributive if for any aαβ ∈ A

(α ∈ Γ, β ∈ ∆),
∧

α∈Γ

∨

β∈∆

aαβ =
∨

f∈∆Γ

∧

α∈Γ

aαf(α),

whenever all joins and meets on both sides exist.

Now, we will study connections between the complete distributivity of the lattices

Com(L) and the distributive radicals of algebraic lattices L.

Let L be an algebraic lattice, 0 6= c ∈ Com(L). Then an element c′ ∈ Com(L) is

said to be subordinate to c if c =
∨

Com(L){cα ; α ∈ Γ} implies the existence of β ∈ Γ

such that c′ 6 cβ . Denote by S(c) the set of elements in Com(L) subordinate to c.
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Note that for complete lattices the relation totally below (notation <<<) has been

defined as follows (see e.g. [16]): If P is a complete lattice and x, y ∈ P then

x <<< y :⇔ ∀A ⊆ P
(

y 6
∨

A ⇒ ∃a ∈ A; x 6 a
)

.

One can introduce a generalization of the relation totally below for any poset if one

supposes validity of the implication in the definition for all existing
∨

A. Hence in

our case, c′ is subordinate to c if and only if c′ <<< c and S(c) = {x; x <<< c} in

Com(L).

Proposition 11. Let L be an algebraic, distributive lattice such that Com(L) is

a sublattice of L satisfying (CJIP). If c ∈ (d(L)] ∩ Com(L), then S(c) = {0}.

������� �
. Suppose that 0 6= c ∈ (d(L)] ∩ Com(L) and that there is 0 6= c′ ∈ S(c).

Let a ∈ Val(c′). Obviously d(L) 6 a (because a is a closed prime element in L), thus

c 6 a. Hence by Theorem 8, c =
∨

Com(L){dα ; α ∈ Γ}, where dα ∈ (a] ∩ Com(L)

for each α ∈ Γ. Therefore there exists β ∈ Γ such that c′ 6 dβ , so c′ 6 a, a

contradiction. �

Proposition 12. Let P be a completely distributive lattice with a least element 0.

Then for any nonzero element c ∈ P there is a nonzero element c′ ∈ P such that

c′ <<< c.

������� �
. Consider 0 6= c ∈ P . Let {dαβ ; β ∈ ∆α} (α ∈ Γ) be exactly all subsets

of P satisfying c =
∨

{dαβ ; β ∈ ∆α}. We can suppose that ∆α = ∆ for each α ∈ Γ.

Hence c =
∨

{dαβ ; β ∈ ∆} for any α ∈ Γ. If
∧

{dαf(α) ; α ∈ Γ} = 0 for every

f ∈ ∆Γ, then we get

c =
∧

α∈Γ

∨

β∈∆

dαβ =
∨

f∈∆Γ

∧

α∈Γ

dαf(α) = 0,

a contradiction.

Therefore there is f ∈ ∆Γ such that 0 is not the meet of the set {dαf(α) ; α ∈ Γ}.

Hence there exists c′ ∈ P with 0 < c′ 6 dαf(α) for any α ∈ Γ, that means c′ <<< c.

�

The following theorem is now an immediate consequence of Propositions 11 and 12.
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Theorem 13. Let L be an algebraic, distributive lattice such that Com(L) is a

sublattice of L satisfying (CJIP). If Com(L) is completely distributive then d(L) = 0.

&(' ��)*�,+.-/�,021 �3��)�$
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