137 (2012) MATHEMATICA BOHEMICA No. 3, 259-274

MEROMORPHIC FUNCTIONS THAT SHARE
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Abstract. We study the uniqueness theorems of meromorphic functions concerning dif-
ferential polynomials sharing a nonzero polynomial IM, and obtain two theorems which will
supplement two recent results due to X. M. Li and L. Gao.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper, by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. We adopt the standard notation in the Nevanlinna
theory of meromorphic functions as explained in [7], [14] and [15]. For a nonconstant
meromorphic function h, we denote by T'(r, h) the Nevanlinna characteristic of h and
by S(r,h) any quantity satisfying S(r,h) = o{T'(r,h)} as r — oo possibly outside a
set of finite linear measure. A meromorphic function a(z) (# o) is called a small
function with respect to f provided that T'(r,a) = S(r, f).

Let f and g be two nonconstant meromorphic functions, and let a be a finite value.
We say that f and g share the value a CM provided that f — a and g — a have the
same zeros with the same multiplicities. Similarly, we say that f and g share a IM
provided that f —a and g —a have the same zeros ignoring multiplicities. In addition,
we say that f and g share co CM if 1/f and 1/g share 0 CM, and we say that f and
g share co IM if 1/f and 1/g share 0 IM (see [15]). Throughout this paper, we need
the following definition:

where a is a value in the extended complex plane.
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In 1959, W. K. Hayman proved the following theorem:

Theorem A (see [6, Corollary of Theorem 9]). Let f be a transcendental mero-
morphic function, and let n > 3 be an integer. Then f"f' = 1 has infinitely many
solutions.

In 1997, C. C. Yang and X. H. Hua proved the following result, which corresponded
to Theorem A.

Theorem B (see [13, Theorem 1]). Let f and g be two nonconstant meromorphic
functions, and let n > 11 be a positive integer. If f™f' and g"g' share 1 CM, then

—Cz

either f(z) = c1e%%, g(z) = cae™ %%, where c1, ¢o and c are three finite nonzero complex

numbers satisfying (cica)"t1c¢?> = —1, or f = tg for a finite complex number ¢ such

that t"*+1 = 1.

In 2000, M. L. Fang proved the following result:

Theorem C (see [4, Theorem 2]). Let f be a transcendental meromorphic func-
tion, and let n > 1 be a positive integer. Then f"f' — z = 0 has infinitely many
solutions.

In 2000, M. L. Fang and H. L. Qiu proved the following result, which corresponded
to Theorem C.

Theorem D (see [5, Theorem 1]). Let f and g be two nonconstant meromorphic
functions, and let n > 11 be a positive integer. If f*f' — z and g"g' — z share 0
CM, then either f(z) = 1 and g(z) = 26~ where ¢y, c; and ¢ are three
finite nonzero complex numbers satisfying 4(cic2)"t1e? = —1, or f = tg for a finite
complex number t such that t"T1 = 1.

In 2003, W. Bergweiler and X. C. Pang proved the following result:
Theorem E (see [3, Theorem 1.1]). Let f be a transcendental meromorphic func-

tion, and let R # 0 be a rational function. If all zeros and poles of f are multiple,
except possibly finitely many, then f’ — R = 0 has infinitely many solutions.

Now the following question arises:

Question 1. Similarly to Theorem B and Theorem D, does there exist a unicity
theorem corresponding to Theorem E?

Recently X.M.Li and L. Gao proved the following uniqueness theorems dealing
with Question 1.
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Theorem F (see [11, Theorem 1.1]). Let f and g be two transcendental mero-
morphic functions, let n > 11 be a positive mteger and let P #£ 0 be a po]ynonual
with its degree vp < 11. If f*f' — P and g"¢g' — P share 0 CM, then either [ =
for a complex number t satisfying t"T! =1, or f = ¢1e°? and g = cpe=°Q, where ¢;,
¢y and c are three nonzero complex numbers satisfying (cic2)"t1c? = —1, and Q is
a polynomial satisfying Q = [ P(n) dn.

Theorem G (see [11, Theorem 1.2]). Let f and g be two transcendental mero-

morphic functions, let n > 15 be a positive integer, and let P # 0 be a polynomial.
If (f"(f—1)) — P and (¢"(g— 1)) — P share 0 CM and ©(co, f) > 2/n, then f = g.

Naturally one may ask the following question which is the motivation of the present
paper.

Question 2. Can one obtain IM-analogues of Theorem F and Theorem G?

We will prove the following results, which deal with Question 2.

Theorem 1. Let f and g be two transcendental meromorphic functions, let
n (= 23) be a positive integer, and let P # 0 be a polynomial with its degree
vp < 23. If f*f' — P and g"g’ — P share 0 IM, then either f = tg for a complex
number t satisfying t"t' =1, or f = c1e°? and g = coe™?, where c1, ¢z and c are

n+162

three nonzero comp]ex numbers satisfying (cicz2) = —1, and Q is a polynomial

satisfying Q = [, P(n) dn.

Theorem 2. Let f and g be two transcendental meromorphic functions, let n, m
be two positive integers, and let P # 0 be a polynomial. If (f"(f —1)™) — P and
(¢"(g —1)™)" — P share 0 IM, then each of the following assertions hold:

(i) when m =1, n > 30 and O(oc0, f) + ©(c0,g) > 4/n, then f = g;
(ii) when m > 2 and n > 4m+ 26, then either f = g or f and g satisfy the algebraic
equation R(f,g) = 0, where

R(w1,we) = wi(wy — )™ — wh (wg — 1)™

We now explain some definitions and notations which are used in the paper.

Definition 1 [9]. For a € CU{oco} we denote by N(r, a; f |= 1) the counting func-
tions of simple a-points of f. For a positive integer p we denote by N (r,a; f |< p) the
counting function of those a-points of f (counted with proper multiplicities) whose
multiplicities are not greater than p. By N(r,a; f |< p) we denote the corresponding
reduced counting function. In an analogous manner we define N(r,a; f |> p) and
N(r,a; f [=p).
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Definition 2 [8]. Let k be a positive integer or infinity. We denote by Ni(r, a; f)
the counting function of a-points of f, where an a-point of multiplicity m is counted
m times if m < k and & times if m > k. Then

Ni(r,a; f) = N(r,a; f) + N(r,a; f |>2) + ...+ N(r,a; f |> k).

Clearly Ni(r,a; f) = N(r,a; f).

Definition 3. Let a be any value in the extended complex plane, and let k& be
an arbitrary nonnegative integer. We define

Or(a, f) =1 —limsupw.

r—00 T(T, f)

Remark 1. From the definitions of dx(a, f) and O(a, f), it is clear that
0 < dr(a, f) < 0k-1(a, f) < d01(a, f) < O(a, f) < 1.

Definition 4 [1], [2]. Let f and g be two nonconstant meromorphic functions
such that f and g share the value 1 IM. Let zy be a 1-point of f with multiplicity
p and also a 1-point of g with multiplicity g. We denote by N (r,1; f) the reduced
counting function of the 1-points of f and g with p > ¢, by Né) (r,1; f) the counting
function of the 1-points of f and ¢ with p = ¢ = 1, by Ng(r, 1; f) the reduced

counting function of the 1-points of f and g with p = ¢ > 2. In the same manner we
can define N (r,1;9), NB (r,1;g) and Ng(r, 1;9).

2. LEMMAS

Lemma 1 [12]. Let f be a transcendental meromorphic function, and let P, (f)
be a differential polynomial in f of the form

Po(f) = anf™(2) + an-1f" "1 (2) + ... + a1 f(2) + ao,
where a,, (#0), an_1,...,a1,a are complex numbers. Then

T(r, Pu(f)) = nT(r, f) + O(1).
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Lemma 2 [7]. Let f be a nonconstant meromorphic function, k a positive integer,
and let ¢ be a nonzero finite complex number. Then

(r,00; f) + N(r,0; f) + N(r,c; f®) — N(r,0; f&+D) + S(r, )
(r,00; f) + Nigs1(r, 05 f) + N(r,¢; f®) — No(r, 0; fETD) + S(r, f),

where Ny(r,0; f*+1)) denotes the counting function which counts only the points
such that f**+1 =0 but f(f* —¢) #0.

Lemma 3 [16]. Let f and g be two nonconstant meromorphic functions, and let
p, k be two positive integers. Then

Ny(r,0; f™) < Ny (r, 05 f) + kN (r, 005 f) + S(r, f).

Lemma 4 [7], [14]. Let f be a transcendental meromorphic function, and let
a1(z), az(z) be two distinct meromorphic functions such that T'(r,a;(z)) = S(r, f),
i =1,2. Then

T(va) gN(T,Oo;f)+N(’I‘,a1;f)+N(T,a2;f)+3(7“,f).

Lemma 5. Let f and g be two transcendental meromorphic functions such that
f*) — P and g'¥) — P share 0 IM, where k is a positive integer, P % 0 is a polynomial.
If

(2.1) Ay = (2k+4)0(o0, f) + (2k + 3)O(00,9) + O(0, f) + ©(0,9g)
43051 (0, ) + 26541 (0, g) > 4k + 13

(2.2) Ay = (2k+4)0(00,g) + (2k + 3)O (0, f) + O(0,9) + 6(0, f)
+ 30k+1(0, 9) + 20541 (0, f) > 4k + 13,

then either f(*gF) = P2 or f = g.

Proof. Since f and g are two transcendental meromorphic functions, f*) and

gt

are also two transcendental meromorphic functions. Let
(k) (k)
el a_9
P P
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and let

(2:3) H:(%—;—i)‘(%‘;(—;/l)'

Let 2o & {z: P(z) =0} be a common simple zero of f*) — P and ¢*) — P. Then z,
is a common simple zero of F' — 1 and G — 1. Substituting their Taylor series at zg
into (2.3), we see that zo is a zero of H. Thus we have

(2.4) N§(r,1; F) < N(r,0; H) < T'(r, H)+ O(1) < N(r,00; H) + S(r, F) + S(r, G).

Let z1 & {z: P(z) = 0} be a pole of H. Then z; possibly is a zero of f or of g,

possibly a pole of f or of g, possibly a common 1-point of F' and G which has different

multiplicities related to F' and G, or possibly a zero of F’ or of G’, which is neither

a zero of f(F — 1) nor a zero of g(G — 1). Hence we have

(2.5)  N(r,00; H) < N(r,00; f) + N(r,00; g) + N(r,0; f) + N(r,0;9) + Nr(r, 1; F)
+ Ni(r,1;G) + No(r,0; F') 4+ No(r,0; G') + O(log ),

where Ny(r,0; F') denotes the counting function of those zeros of F’ which are not

the zeros of f(F — 1), No(r,0;G’) is similarly defined. Since f is a transcendental
meromorphic functions we have

(2.6) T(r,P)=o{T(r, f)}.
By Lemma 2, we have
(2.7)  T(r,f) < N(r,00; f) + Niy1(r,0; f) + N(r,1; F) — No(r,0; F') + S(r, f).
Similarly,
(2.8)  T(r,g) < N(r,00;9) + N41(r, 0;9) + N(r, 1;G) — No(r,0; G') + S(r, ).
Since f(*) — P and g(*) — P share 0 IM, using (2.4) and (2.5) we obtain
(2.9) N(r,1; F) + N(r,1;G) = 2N} (r,1; F) + 2N (r, 1; F)
+2N1(r,1:G) + 2N (1, 13 F)
< NP (r. 1 F) + N(r.00: ) + N(r,00:)

+ N(r,0; f) +N(r,0;9) + 3N (r,1; F)

+3Nr(r,1;G) + No(r,0; F") + No(r,0;G")

L ONC (1 F) + S(r f) + S, g).

264



Obviously

(210)  NY(r1;F)+2Ne(r,1;F) + Np(r,1;F) + 2N (r, 1;G)
N(r,1;G)+ S(r, f)+ S(r,9)
(r,G)+ S(r, f)+ S(r,9)

<
<
<T(r,g) +kN(r,00;9) + S(r, f) + S(r,9).

T
T
Also, by Lemma 3 we have

(2.11) Ni(r,1;F) < N(r,1;F) — N(r,1; F)
F
<N(rooi )
F/
< N<7A7OO7F) +S(Tﬂf)

Similarly,
(2.12) Ni(r,1;G) < Niga(r,0:9) + (k+ 1)N(r, 005 9) + S(r, 9)-
From (2.7)—(2.12), we obtain

(2.13)  T(r,f) < (2k +4)N(r, 00; f) + (2k + 3)N(r, 005 9) + N(r,0; f) + N(r,0; g)
+ 3Nk+1(7",0; f) + 2Nk+1(ra0;g) + S(?", f) + S(T,g)

Similarly,

(2.14)  T(r,g9) < (2k +4)N(r,00; g) + (2k + 3)N(r, 00; f) + N(r,0;g) + N(r,0; f)
+ 3Ng41(7,0;9) + 2Ng1(r, 05 f) + S(r, f) + S(r, 9)-

Suppose that there exists a subset I C R satisfying mes I = oo such that T'(r,g) <
T(r, f), r € I. Hence from (2.13) we have

Ay = (2k+4)0(o0, f) + (2k + 3)O(c0, g) + O(0, f) + 6(0, 9)
+ 35k+1(0, f) + 26k+1(0, g) < 4k + 13,

contradicting (2.1). Similarly, if there exists a subset I C R™ satisfying mes I = oo
such that T'(r, f) < T'(r,g), r € I, from (2.14) we obtain

Ag = (2k + 4)O(00, g) + (2k + 3)O(00, f) + O(0,9) + (0, f)
+30k41(0,9) + 20,41 (0, f) < 4k + 13,

265



contradicting (2.2). We now assume that H = 0. That is,
F” 2F G" 2G"
(F-7=7)- (G =)~
Integrating both sides of the above equality twice we get

1 A
2.1 —=—-+8
(2.15) F-1 G-1 "
where A (# 0) and B are finite complex constants. We now discuss the following
three cases.

Case 1. Let B#0and A = B. If B= —1, we obtain from (2.15) FG = 1, i.e.,
fR) gk = p2,
If B+# —1, from (2.15) we get

1 BG -1
F-axpa-1 ™ S=Fr-a+rmm)

So by Lemma 3 we obtain

— 1 — —
. < . < . .
N(r71 B,G)\N(T,O,F)\Nk+1(r,0,f)—|—kN(r,oo,f)

(2.16)
+ O(logr) + 5(r, f)
and
—( 1+B —
(2.17) N(r, B ;F) < N(r,00;9) + O(log 7).

Using Lemma 2, (2.16) and (2.17) we obtain
(2.18) T(r,g) < Nig41(r,0;9) —|—N(r ;G) + N(r,00;9)
) ) bl ) 1 + B’ ) )
— No(r,0;G") + S(r, 9)
< N]H—l(’l", ng) + Nk+1(r7 07 f) + kN(T7 e oH f)
+ N(r,0059) + S(r, ) + S(r, 9)

and

(219)  T(.0) < N (0 )+ N (r, 222 F) £ N, 001 f)

— No(r,0; F') + S(r, f)
< Nk+1(7',0;f) —l—N(r,oo,f) +N(7“,OO,Q) +S(7’, f)
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Suppose that there exists a subset I C R satisfying mes I = oo such that T'(r, f) <
T(r,g), r € I. So from (2.18) we obtain

k@(OO, f) + @(Oovg) + 6k+1(0a f) + 6k+1(079) Sk+ 27
which by (2.1) gives

a contradiction with Remark 1. If there exists a subset I C R™ satisfying mes I = oo
such that T'(r,g) < T(r, f), r € I, by the same argument we obtain a contradiction
from (2.1) and (2.19).

Case 2. Let B # 0 and A # B. If B = —1, from (2.15) we obtain F =
—A/(G - (a+1)).
If B # —1, from (2.15) we obtain F — (1+ B)/B = —A/B*(G+ (A — B)/B).

Using the same argument as in case 1 we obtain a contradiction in both the cases.

Case 3. Let B =0. Then from (2.15) we get
(2.20) g=Af+(1- AP,

where P; is a polynomial of degree vp, > k. If A # 1, by Lemma 4 and (2.20) we
get

(2:21) T(r,g) < N(r,0;9) N(r,(1 = A)Pi;9) + S(r,9)
N ,059 N

.
r (r,0; f) + 5(r, 9)-

NN

Since f and g are transcendental meromorphic functions, from (2.20) we have
T(r,f)=T(r,g) + O(logr).
So from (2.21) we obtain
0(0,f) +©(0,9) + 6(c0,9) < 2,
which by (2.1) gives
(2k +4)O(o0, f) + (2k + 2)O(00, 9) + 30k+1(0, f) + 265+1(0, g) > 4k + 11,

a contradiction with Remark 1. Thus A =1 and so f = ¢g. This proves the lemma.
O
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Lemma 6 [11]. Let f and g be two transcendental meromorphic functions, let
n > 2 be a positive integer, and let P be a nonconstant polynomial with its degree
vp < n. If frf'g"g’ = P2, then f and g are expressed as f = c1e°? and g =
coe~°? respectively, where c1, ¢ and ¢ are three nonzero complex numbers satisfying
(c1c9)"t1e? = —1, and Q is a polynomial satisfying Q = foz P(n)dn.

Lemma 7. Let f and g be two transcendental meromorphic functions, let n, m
be two positive integers and let P be a nonconstant polynomial. If m =1, n > 6 or
ifm>2,n>m+3, then

(f*(f =1)™) (g™ (g — ™) # P2
Proof. On the contrary, assume

(2.22) (f*(f =)™ (g"(g —1)™) = P~
We discuss the following two cases.

Case 1. Let m > 2. Then from (2.22) we obtain
(2.23) =D ef = d) f'g T g = )™ eg — d)g' = P2,

where ¢c = n+m and d = n.

Let zo & {z: P(z) = 0} be a l-point of f with multiplicity po (> 1). Then from
(2.23) it follows that zg is a pole of g. Suppose that zg is a pole of g of order g
(= 1). Then we have mpgp—1 = (n+m)qo+1, i.e., mpg = (n+m)qo+2 = n+m+2,

and so
n+m-+2

m

WV

Do

Let z1 ¢ {z: P(z) = 0} be a zero of cf — d with multiplicity p; (> 1). Then from
(2.23) it follows that z; is a pole of g. Suppose that z; is a pole of g of order ¢y
(= 1). Then we have 2p; — 1 = (n+m)¢ + 1, and so

n+m-+2

>
b1 B

Let zo ¢ {z: P(z) = 0} be a zero of f with multiplicity p2 (> 1). Then it follows
from (2.23) that 25 is a pole of g. Suppose that 25 is a pole of g of order ¢ (= 1).
Then we have

(2.24) nps —1=(n+m)g + 1.
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From (2.24) we get mga +2 = n(p2 — q2) = n, i.e., g2 = (n — 2)/m. Thus from (2.24)
we obtain nps = (n +m)gz +2 > (n+m)(n — 2)/m + 2, and so

n+m—2
- .

WV

D2

Let z3 ¢ {z: P(z) =0} be a pole of f. Then it follows from (2.23) that z3 is a zero
of g(g — 1)(cg — d) or a zero of ¢’. So we have

_ _ _ —, d _
N(T,OO;f)SN(hO;g)+N(r,1;g)+N(nE;g)+No(r,0;g’)
+8(r, f)+S(r,9)
<( m+ 2 m

+
n+m+2 n+m-—2
+S(r, f) + 5(r, 9),

)T(r, g) + No(r,0;g")

where No(r,0;g’) denotes the reduced counting function of those zeros of g’ which
are not zeros of g(g — 1)(cg — d).
By the second fundamental theorem of Nevanlinna we get

(2.25) 2T(r, f) < N(r,0; f) + N(r,1; f) +N(h g; f) + N(r,00; f)

— No(r,0; f') + S(r, f)

m—+ 2 m
S (n+m+2+n+m—2>{T(r’f)+T(r’g)}

- NO(rv Oa fl) +N0(7“, Oag/) + S(T, f) + S(?", g)

Similarly,

(226) 29 < (s T )+ T )

+NO(T7 0; f/) - NO(Tv 0;9,) + S(’I“, f) + S(Tv g)'

Adding (2.25) and (2.26) we obtain

(1_ m—+ 2 m

ntm+2 n+m—2){T(r’f)+T(r’g)}<S(7"’f)+5(“9)’

contradicting the fact that n > m + 3.

Case 2. Let m = 1. Then from (2.22) we obtain
(2.27) i af =b)f'g" Hag — b)g' = P2,
where a =n+ 1 and b =n.
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Let z4 & {z: P(z) = 0} be a pole of f. Then it follows from (2.27) that z4 is a
zero of g(ag — b) or a zero of g’. Then proceeding in a manner similar to Case 1 we

obtain ) A
1— - ) T T < S(r, 9),
(1= 777~ 753 TN + Trg)} < S( £) + S(r.9)
which contradicts the fact that n > 6. This proves the lemma. O

Lemma 8. Let f and g be two nonconstant meromorphic functions such that
4
@(Oovf) + G(OOag) > ﬁa
where n(> 3) is an integer. Then

f"(af +b)=g"(ag +b)

implies f = g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out following the lines of
Lemma 6 [10]. O

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. We consider Fi(z) = f""1/(n+1) and Gi(z) =
g""1/(n+1). Then we see that F] — P and G} — P share the value 0 IM. Us-
ing Lemma 1, we have

. N(T,O;Fl)
Nl F)=1-1 _—
(3.1) 0(0, Fy) 17{Ilsgp 0o )
: N(r,0; f)
=1-1 — 7
P DT )
. T(r, f)
>1-1 _ s
Y DT )
n
> .
n+1
Similarly,
(3.2) 0(0,Gy) > —
. ) 1) = n + 1 .
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N(T, 003 Fl)

. Fi)=1-1
(3.3) O(o0, F1) im sup T )
, N(r,00; f)
=1-limsup —————
e’ (n+ DT(r, )
: T(r, f)
>1-1 —_—
T e DT )
n
> .
n+1
Similarly,
(3.4) 0(c0,G1) = —
. y I1) = n+ 1
. Na(r,0; F1)
. 6 Fi)=1-1 _—
(3.5) 2(0, Fy) 1712501? T )
. NQ(T7 07 fn)
—1-1 W)
R DT f)
: 27(r, f)
>1-1 —_—
T e+ DT )
n—1
“n+1
Similarly,
(3.6) 52(0,Gy) > 1
. 2\YU, 1) = n+ 1
Using (2.1), (2.2) and (3.1)—(3.6) we obtain
AL > 18n —5 and Ay > 18n—5.
n+1 n+1

Since n > 23, we get Ay > 17 and Ay > 17. So by Lemma 5 we obtain either
F/G} = P? or F; = (. Suppose that F{G} = P?, ie., f"f'g"g’ = P2. Hence by
Lemma 6 we obtain f = ¢;e°@ and g = e °?, where c1, ¢y and ¢ are three nonzero
complex numbers satisfying (cico)"T'c? = —1, and Q is a polynomial satisfying

Q= [y P(n)dn.

If '} = Gy, then f = tg for a complex number t such that t"*! = 1. This
completes the proof of Theorem 1. O
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Proof of Theorem 2. Let Fy(z) = f"(f —1)™ and G2(z) = ¢"(g — 1)™. Then
share the value 0 IM. Using Lemma 1, we obtain

F} — P and G} —
N(r,0; F»)

©(0, F3) =1 — limsup T 5)
— T T T )
: 27(r, f)
> 1—limsup (nt m)T(r, f)

=
T—00

(3.7)

S n+m—2.
n+m

Similarly,
n+m-—2
3.8 0(0,Ga) 2 ——.
(38) 0,G2) > H
N(T,OO;FQ)

O(o0, F3) =1 — limsu
( 2) 7-—>oop T(T‘, FQ)

(3.9)
B ‘ N(r,00; f)
=1 - limsup (n+m)T(r, f)
. T(r, f)
> 1=l sup o T )

T — 00
S n—l—m—l.
n—+m

Similarly,
n+m-—1
1 >z — .
(3.10) O(00,Ga) "
o . NQ(T,O;FQ)
(3.11) 92(0, F) =1 hills()lip T F)
: Na(r, 05 f"(f —1)™)
=1-1
P m+mﬁm>
: (m +2)T(r, f)
> 1 — limsup
r—oo (n+m)T(r, f)
n—2
“n+m’
Similarly,
n—2
12 1) > .
(3.12) 2(0,G2) >
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Using (2.1), (2.2) and (3.7)—(3.12) we obtain

18n + 13m — 25 18n + 13m — 25
Ao IImM T 4 A, s oM T2

n—+m n—+m

Since n > 4m + 26, we get Ay > 17 and Ay > 17. In view of Lemma 5 and Lemma
7 we conclude that Fy = Go, i.e.,

(3.13) =" =g"g-1"
Let m = 1. Then from (3.13) we get
f"(f=1=g"(g-1),

which gives f = g, together with Lemma 8.

Let m > 2. Then from (3.13) we obtain

(3.14) U™+ (D) L+ ()™
=g" g™+ ..+ (1) "Cig™ T L+ (-1)™].

Let h = f/g. If h is a constant, then substituting f = gh in (3.14) we obtain

gn+m(hn+m _ 1) N (_1)1 mcign—i-m—i(hn+m—i _ 1)
+...+ (=)™ (k" =1) =0,
which implies h = 1. Hence f = g.

If h is not a constant, then from (3.14) we see that f and g satisfy the algebraic
equation R(f,g) = 0, where

R(w1,we) = wi(wy — 1)™ — wh (wg — 1)™.

This completes the proof of Theorem 2. ([
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