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A NONEXISTENCE RESULT FOR THE KURZWEIL INTEGRAL
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Abstract. It is shown that there exist a continuous function f and a regulated function
g defined on the interval [0, 1] such that g vanishes everywhere except for a countable set,
and the K∗-integral of f with respect to g does not exist. The problem was motivated by
extensions of evolution variational inequalities to the space of regulated functions.
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Introduction

The present paper has been motivated by an auxiliary problem which arose in

connection with the investigation of generalized evolution variational inequalities in

the space of regulated functions in [4]. It can be stated as follows: which notions of

the integral have the property that

(0.1)

∫ b

a

f(t) dg(t) = 0

for every pair of regulated functions f, g : [a, b] → � such that g(t) = 0 everywhere

except for a countable subset N ⊂ ]a, b[?

Recall that a function f : [a, b] → � is said to be regulated (cf. [1]) if finite one-
sided limits f(t−), f(t+) exist for every t ∈ [a, b] with the convention f(a−) = f(a),

f(b+) = f(b). A more systematic information about regulated functions can be

found e.g. in [2].

The identity (0.1) is obviously fulfilled if it is interpreted as the Young integral

in the form presented in [3]. The problem is more delicate for both versions of

* Supported by the grant No. 201/01/1199 of the Grant Agency of the Czech Republic.

571



the Kurzweil integral, the original one introduced in [5] (the K-integral), and its

generalization proposed in [7] (the so-called K∗-integral). In general, the above

statement holds only conditionally, that is,

(0.2) if

∫ b

a

f(t) dg(t) exists, then

∫ b

a

f(t) dg(t) = 0,

see Proposition 2.4 of [6]. On the other hand, (0.1) is true if at least one of the

functions f , g is of bounded variation, see Proposition 2.13 and Corollary 2.14 of [9].

The main result of this paper consists in giving a negative answer to the above

problem for the K∗-integral (and, a fortiori, for the K-integral). We construct ex-

plicitly a regulated function g : [0, 1] → � which vanishes everywhere except for a
countable set, and a continuous function f : [0, 1] → � such that (K∗)

∫ 1

0
f(t) dg(t)

does not exist, see Theorem 1.4 below. This means in particular that the Young

integral is not included in Kurzweil’s theory. An interested reader can find more

information about the Kurzweil integral and its relation to other types of integrals

e.g. in [6], [7], [8] or [9].

1. Statement of the main result

We first recall the definition of the Kurzweil integral. Consider a compact interval

[a, b] ⊂ � . The basic concept in the whole theory is that of a δ-fine partition. We

define the set

(1.1) Γ(a, b) := {δ : [a, b] → � ; δ(t) > 0 for every t ∈ [a, b]}.

An element δ ∈ Γ(a, b) is called a gauge.

Let a = t0 < t1 < . . . < tm = b be a division of [a, b] and let τ = {τ1, . . . , τm},

a 6 τ1 6 τ2 6 . . . 6 τm 6 b be a sequence such that τj ∈ [tj−1, tj ] for j = 1, . . . , m.

Then the system D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m} is called a partition. For

t ∈ [a, b] and δ ∈ Γ(a, b) we denote

(1.2) Iδ(t) := ]t − δ(t), t + δ(t)[.

Definition 1.1. Let δ ∈ Γ(a, b) be a gauge. A partitionD = {(τj , [tj−1, tj ]) ; j =

1, . . . , m} is said to be δ-fine if for every j = 1, . . . , m we have

(1.3) τj ∈ [tj−1, tj ] ⊂ Iδ(τj).

If moreover a δ-fine partition D satisfies the implications

(1.3∗) τj = tj−1 ⇒ j = 1, τj = tj ⇒ j = m,

then it is called a δ-fine* partition.
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The set of all δ-fine (δ-fine*) partitions is denoted by Fδ(a, b) (F∗

δ (a, b), respec-

tively).

We have indeed F∗

δ (a, b) ⊂ Fδ(a, b). The next lemma implies in particular that

these sets are nonempty for every δ ∈ Γ(a, b).

Lemma 1.2. Let δ ∈ Γ(a, b) and a dense subset Ω ⊂ ]a, b[ be given. Then there

exists D = {(τj , [tj−1, tj ]); j = 1, . . . , m} ∈ F∗

δ (a, b) such that tj ∈ Ω for every

j = 1, . . . , m − 1.

 "!$#%#'&
. We have [a, b] ⊂

⋃

t∈[a,b]

Iδ(t), hence there exists a finite covering

(1.4) [a, b] ⊂
m
⋃

j=1

Iδ(τj), a 6 τ1 6 . . . 6 τm 6 b.

The inclusion remains valid if we eliminate all intervals Iδ(τj) for which there exists

k 6= j, Iδ(τj) ⊂ Iδ(τk). We claim that then we have

(1.5) min{τj+1, τj + δ(τj)} > max{τj , τj+1 − δ(τj+1)}

for every j = 1, . . . , m − 1. Indeed, we obviously have τj+1 > τj , since otherwise

Iδ(τj+1) ⊂ Iδ(τj) or Iδ(τj) ⊂ Iδ(τj+1) according to whether δ(τj+1) 6 δ(τj) or

δ(τj+1) > δ(τj). Assume now that for some j we have

min{τj+1, τj + δ(τj)} 6 max{τj , τj+1 − δ(τj+1)}.

Then τj+1 > τj+1−δ(τj+1) > τj+δ(τj) > τj , hence the points τj+δ(τj), τj+1−δ(τj+1)

do not belong to Iδ(τj)∪Iδ(τj+1). Then there exists necessarily either k < j such that

τj + δ(τj) ∈ Iδ(τk), hence Iδ(τj) ⊂ Iδ(τk), or k > j + 1 such that τj+1 − δ(τj+1) ∈

Iδ(τk), hence Iδ(τj+1) ⊂ Iδ(τk), which is a contradiction. Inequality (1.5) is thus

verified and we may choose arbitrarily

tj ∈
]

max{τj , τj+1 − δ(τj+1)}, min{τj+1, τj + δ(τj)}
[

∩ Ω, j = 1, . . . , m − 1,

t0 := a, tm := b, and the assertion immediately follows. �

We are now ready to give a formal definition of both types of the Kurzweil inte-

gral. For given functions f, g : [a, b] → � and a partition D = {(τj , [tj−1, tj ]) ; j =

1, . . . , m} we define the integral sum SD(f∆g) by the formula

(1.6) SD(f∆g) =

m
∑

j=1

f(τj)(g(tj) − g(tj−1)).
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Definition 1.3. We say that J ∈ � (J∗ ∈ � ) is the K-integral (K∗-integral,

respectively) over [a, b] of f with respect to g and denote

(1.7) J = (K)

∫ b

a

f(t) dg(t),
(

J∗ = (K∗)

∫ b

a

f(t) dg(t), respectively
)

,

if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b) (D∗ ∈

F∗

δ (a, b), respectively) we have

(1.8) |J − SD(f∆g)| 6 ε, (|J∗ − SD∗(f∆g)| 6 ε, respectively).

Using the fact that the implication

(1.9) δ 6 min{δ1, δ2} ⇒

{

F∗

δ (a, b) ⊂ F∗

δ1
(a, b) ∩ F∗

δ2
(a, b),

Fδ(a, b) ⊂ Fδ1
(a, b) ∩ Fδ2

(a, b)

holds for every δ, δ1, δ2 ∈ Γ(a, b), we easily check that the values J , J∗ in Defini-

tion 1.3 are uniquely determined. Since F∗

δ (a, b) ⊂ Fδ(a, b) for every gauge δ, we

also see that if (K)
∫ b

a
f(t) dg(t) exists, then (K∗)

∫ b

a
f(t) dg(t) exists and both are

equal.

Let I be the interval [0, 1]. Consider the function Q : I → I given by the formula

(1.10) Q(t) :=

{

2−n if t = (2j − 1)2−n, j = 1, . . . , 2n−1, n ∈ ( ,

0 otherwise.

The main result of this paper reads as follows.

Theorem 1.4. Let α ∈ ]0, 1[ be given and for t ∈ I put g(t) := Qα(t). Then there

exists a continuous function f : I → � such that the integral (K∗)
∫ 1

0 f(t) dg(t) does

not exist.

A proof of Theorem 1.4 will be given in the next section. It makes substantial use

of the concept of outer measure µ(E) ∈ [0,∞] of an arbitrary set E ⊂ � . For the
reader’s convenience, we briefly recall here its basic properties that are used in the

sequel. By ‘meas’ we denote the Lebesgue measure in � .

Proposition 1.5.

(i) For every E ⊂ � we have µ(E) = inf{meas (V ) ; V open subset of � , E ⊂ V }.

(ii) If E is measurable, then µ(E) = meas (E).

(iii) For every E1 ⊂ E2 ⊂ � we have µ(E1) 6 µ(E2).

(iv) For every E1, E2 ⊂ � we have µ(E1 ∪ E2) 6 µ(E1) + µ(E2).
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(v) Let E1 ⊂ E2 ⊂ . . . ⊂ I be a sequence of sets such that I =
∞
⋃

n=1
En. Then we

have lim
n→∞

µ(En) = 1.

)%*,+.-0/21 #'& -213+54 !$#%#'&
. Statements (i)–(iv) belong to the standard course on

Lebesgue measure. To prove (v), we denote mn := µ(En) for n ∈ ( . The sequence
{mn} is nondecreasing, we can therefore put m := lim

n→∞

mn 6 1. Assume that

m < 1 and put η := (1 − m)/2. By definition, for every n ∈ ( there exists an
open set Vn ⊃ En such that meas (Vn) 6 1 − η. The sets An := I \ (

∞
⋂

k=n

Vk) are

measurable, meas (An) > η, An ∩ En = ∅ for every n ∈ ( , I ⊃ A1 ⊃ A2 ⊃ . . .. Put

A∞ :=
∞
⋂

n=1
An, Dn := An \ An+1 for n ∈ ( . Then An = A∞ ∪ (

∞
⋃

k=n

Dk) and the

union is disjoint, hence meas (An) = meas (A∞) +
∞
∑

k=n

meas (Dk). Letting n tend to

infinity we conclude that meas (A∞) > η, A∞ ∩ En = ∅ for every n ∈ ( , which is a
contradiction. �

2. Proof of Theorem 1.4

In order to construct the function f satisfying the conditions of Theorem 1.4, we

choose a decreasing sequence {sn ; n ∈ ( } of positive numbers such that

(2.1) σ :=
∞
∑

n=1

sn <
1

4
.

We introduce the intervals

(2.2)

{

Kn
i := ](i − 1 + sn)2−n, (i − sn)2−n[ , i = 1, . . . , 2n, n ∈ ( ,

Jn
i := [(i − sn)2−n, (i + sn)2−n] , i = 1, . . . , 2n − 1, n ∈ (

completed by Jn
0 := [0, sn2−n], Jn

2n := [1 − sn2−n, 1], see Fig. 1. We further denote

(2.3) Jn :=

2n

⋃

i=0

Jn
i , Kn :=

2n

⋃

i=1

Kn
i , K :=

∞
⋂

n=1

Kn.

Then Jn ∪ Kn = I and meas (Jn) = 2sn for every n ∈ ( , hence

(2.4) meas (I \ K) = meas
(

∞
⋃

n=1

Jn
)

6 2

∞
∑

n=1

sn = 2σ.
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The function f will be constructed in the following way. We fix some h > 0 such

that

(2.5) 2α−1 < h < 1

and for n ∈ ( and t ∈ I put

(2.6) fn(t) :=















hn if t ∈ Kn
i , i odd,

0 if t ∈ Kn
i , i even,

hn sn + (−1)i(2nt − i)

2sn

if t ∈ Jn
i , i = 0, . . . , 2n.

0 1
4

1
2

3
4

1 t

y

hn

Jn
0

Kn
1

Jn
1

Kn
2

Jn
2

Kn
3

Jn
3

Kn
4

Jn
4

y = fn(t)

Figure 1. Graph of the function y = fn(t) for n = 2.

Then fn are continuous, |fn|∞ = hn for every n ∈ ( , see Figure 1. We next fix an
integer r ∈ ( such that

(2.7) hr <
1

2
,

and for t ∈ I put

(2.8) f(t) :=

∞
∑

k=1

frk(t).

The series in (2.8) is uniformly convergent, hence the definition is meaningful and f

is continuous.

It remains to check that the integral (K∗)
∫ 1

0 f(t) dg(t) does not exist. To this

end, we consider an arbitrary gauge δ ∈ Γ(0, 1), and for n ∈ ( we define the sets

(2.9) En := {t ∈ I ; δ(t) > 2−n}.
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By Proposition 1.5 we have lim
n→∞

µ(En) = 1. We fix ν > 0 and ` ∈ ( such that

(2.10) 2σ < ν < 1
2 , µ(E`) > 1 − ν + 2σ.

For every n > ` we then have by (2.4) and Proposition 1.5 that

(2.11) µ(En ∩ K) > µ(E`) − meas (I \ K) > 1 − ν.

Let us define the sets of indices

(2.12)

{

Bn := {i ∈ {1, . . . , 2n} ; En ∩ K ∩ Kn
i 6= ∅},

Cn := {i ∈ {1, . . . , 2n} ; En ∩ K ∩ Kn
i = ∅}.

For every n ∈ ( we obviously have

(2.13) En ∩ K =
⋃

i∈Bn

(En ∩ K ∩ Kn
i ),

hence

(2.14) µ(En ∩ K) 6 (#Bn) max
i

{meas (Kn
i )} 6 2−n(#Bn),

where the symbol ‘#’ means ‘number of elements’. This and (2.11) yields for n > `

that

(2.15) #Bn > (1 − ν)2n, #Cn 6 ν2n.

We continue by introducing the sets

(2.16)

{

Xn := {j ∈ {1, . . . , 2n−1} ; 2j − 1 ∈ Cn or 2j ∈ Cn},

Yn := {j ∈ {1, . . . , 2n−1} ; 2j − 1 ∈ Bn and 2j ∈ Bn}.

Then #Xn + #Yn = 2n−1, #Xn 6 #Cn, hence

(2.17) #Yn >
(

1
2 − ν

)

2n ∀n > `.

We fix some n > ` of the form n = rp, p ∈ ( , and for every j ∈ Yrp we find

τ2j−1 ∈ Erp ∩ K ∩ Krp
2j−1, τ2j ∈ Erp ∩ K ∩ Krp

2j , and put t2j−1 := (2j − 1)2−rp.

The next step consists in constructing a suitable δ-fine* partition D with an ar-

bitrarily large integral sum SD(f∆g). We are able to control the contribution to

SD(f∆g) on points τ2j−1, τ2j and t2j−1 for j ∈ Yrp, while the gaps between the
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0 bM−1

τ2jM−1

t2jM−1

τ2jM

aM
t

y

bM

τ2jM+1−1

t2jM+1−1

τ2jM+1

aM+1

y = frp(t)

hrp

Figure 2. Illustration to the proof of Theorem 1.4.

points τ2j and τ2j′−1 for any two consecutive elements j, j ′ ∈ Yrp will be filled in by

δ-fine* partitions with zero contribution to SD(f∆g).

Let 1 6 j1 < j2 < . . . < jN 6 2rp−1 be all elements of Yrp, N = #Yrp. We denote

a0 := 0, bN := 1, and

aM := (2jM − srp)2
−rp for M = 1, . . . , N,

bM := (2jM+1 − 2 + srp)2
−rp for M = 0, . . . , N − 1,

see Fig. 2. In each interval [aM , bM ] we use Lemma 1.2 for Ω = I \ 6 (by 6 we
denote the set of rational numbers) and find a partition DM = {(τM

i , [tMi−1, t
M
i ]) ; i =

1, . . . , mM} ∈ F∗

δ (aM , bM ) such that tMi ∈ Ω for every i = 1, . . . , mM − 1, tM0 = aM ,

tMmM
= bM . We now choose arbitrarily

t̂M0 ∈ Iδ(τ
M
1 ) ∩ ]τ2jM

, aM [ ∩ Ω for M = 1, . . . , N,

t̂MmM
∈ Iδ(τ

M
mM

) ∩ ]bM , τ2jM+1−1[ ∩ Ω for M = 0, . . . , N − 1,

and put t̂Mi = tMi otherwise. Then

D :=

N
⋃

M=0

{(τM
i , [t̂Mi−1, t̂

M
i ]) ; i = 1, . . . , mM}(2.18)

∪
N
⋃

M=1

{(τ2jM−1, [t̂
M−1
mM−1

, t2jM−1]), (τ2jM
, [t2jM−1, t̂

M
0 ])}

is a δ-fine* partition of I and using the fact that g(t̂Mi ) = 0 for every i = 1, . . . , mM ,

M = 0, . . . , N , we obtain

(2.19) SD(f∆g) =
∑

j∈Yrp

g(t2j−1)(f(τ2j−1) − f(τ2j)).
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Let us now evaluate separately the three terms on the right-hand side of the

identity

f(τ2j−1) − f(τ2j) =

p−1
∑

k=1

(frk(τ2j−1) − frk(τ2j)) + frp(τ2j−1) − frp(τ2j)(2.20)

+

∞
∑

k=p+1

(frk(τ2j−1) − frk(τ2j)).

By construction we have |frk(τ2j−1) − frk(τ2j)| 6 hrk for every k, hence

(2.21)

∣

∣

∣

∣

∞
∑

k=p+1

(frk(τ2j−1) − frk(τ2j))

∣

∣

∣

∣

6 hrp hr

1 − hr
,

and, due to the choice of τ2j−1, τ2j (see Figure 2), we obtain that

(2.22) frp(τ2j−1) − frp(τ2j) = hrp.

From the inclusion Krp
2j−1 ∪ Krp

2j ⊂ ](j − 1)21−rp, j21−rp[ it follows for k < p that

K ∩
(

Krp
2j−1 ∪ Krp

2j

)

⊂ Krk ∩ ](j − 1)21−rp, j 21−rp[(2.23)

⊂ Krk ∩ ](m − 1)2−rk, m 2−rk[ = Krk
m ,

where m is the integer part of the rational number 1 + (j − 1)21−r(p−k). Since frk is

constant on Krk
m , we obtain from (2.23) that

(2.24) frk(τ2j−1) − frk(τ2j) = 0 for k < p.

Combining (2.20) with (2.21), (2.22) and (2.24) yields

(2.25) f(τ2j−1) − f(τ2j) > hrp 1 − 2hr

1 − hr

for every j ∈ Yrp. We moreover have g(t2j−1) > 2−αrp for every j ∈ Yrp, and from

(2.17), (2.19) we conclude that

(2.26) SD(f∆g) > (#Yrp)(2
−αh)rp 1 − 2hr

1 − hr
> (21−αh)rp

(1

2
− ν

)1 − 2hr

1 − hr
.

Since p can be chosen arbitrarily large and 21−αh > 1, we see that (K∗)
∫ 1

0 f(t) dg(t)

does not exist and Theorem 1.4 is proved.
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