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INEQUALITIES INVOLVING HEAT POTENTIALS
AND GREEN FUNCTIONS

NEIL A. WATSON, Christchurch
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Abstract. We take some well-known inequalities for Green functions relative to Laplace’s
equation, and prove not only analogues of them relative to the heat equation, but general-
izations of those analogues to the heat potentials of nonnegative measures on an arbitrary
open set E whose supports are compact polar subsets of FZ. We then use the special case
where the measure associated to the potential has point support, in the following situation.
Given a nonnegative supertemperature on an open set E, we prove a formula for the asso-
ciated Riesz measure of any point of F in terms of a limit inferior of the quotient of the
supertemperature and the Green function for ' with a pole at that point.
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In his book, Doob [1], Theorem 1.VIIL.3, presented some inequalities, and their
consequences, pertaining to the Green function for Laplace’s equation on any open
set that possesses such a function. However, he did not give a corresponding result for
Green functions relative to the heat equation, but merely remarked [1], page 299, that
“We shall use the fact (cf. Theorem VII.3) that Gp(&,-) and Gp(-,n) are bounded
outside neighborhoods of their poles”. In this note, we will prove a generalization
of the analogue for the heat equation of [1], Theorem 1.VIL.3, and use it to prove
an analogue of [1], Theorem 1.VIII.10.

Notation and terminology will generally follow [2], but we also need the definition
of a coheat ball. Let

2
(4nt) /2 exp(—%) ift >0,
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Rn+1

denote the fundamental temperature on . For any point ¢y = (yo, o) € R7H

and any positive number ¢, the set

Q*(qo; ¢) = {(z,t) € R™™: W(z —yo,t — s0) > (4ne) ™%}
= {(x,t) € R"™: |z — yo|® < 2n(t — s0) log(c/(t — s0)), so <t < so +c}

is called the coheat ball with centre qo and radius c. It is the reflection of the heat
ball in the hyperplane R™ x {so}. In the sequel, we shall write 7(c) for (4rc)~"/2.

Given a point pg € E, we denote by A(po; E) the set of points p for which there is
a polygonal path in E that joins pg to p, along which the temporal variable is strictly
decreasing. By a polygonal path, we mean a path which is the union of finitely many
line segments. We also denote by A*(po; E) the set of points p for which there is
a polygonal path in F joining pg to p, along which the temporal variable is strictly
mcreasing.

Theorem 1. Let E be an open set, and let Ggp be the heat potential of a nonneg-
ative measure u whose support F is a compact polar subset of E. For any positive
number ¢ such that the closed coheat ball satisfies Q" (g;¢) CE for all g € F, we put

T="(Fc =] (0.

qeF

(a) If K is a compact subset of E such that T C K, and v is a nonnegative
supertemperature on E'\ K such that

(1) lim inf o(p) > Gpu(r)
for quasi-every point r € 0K, then v > Ggu on E \ K.

(b) If v is a nonnegative supertemperature on E such that v > Ggu quasi-
everywhere on Y, then v > Ggu on E.

(c) If L is a subset of E that contains T, then Rf_, = }A%éEu =GgponkE.

(d) If u is a nonnegative supertemperature on E that is positive on OY, then there
is a constant « such that Ggpu < au on E\ T.

(e) The heat potential Ggu is bounded on E\ Y.

(f) If Ggv is a heat potential, and v(A(q; E)) > 0 for every point q € F, then there
is a constant « such that Ggp < aGgv on E\ Y.

(g) Given any point r € () A(gq; E), there is a constant « such that Ggu <

qeEF
aGg(;r) on E\T.
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Proof. (a) We first suppose that condition (1) holds for all points » € K. We
define a nonnegative function w on E by putting

(Ggp) ANv on E\ K,
Ggu on K.

In view of condition (1) and [2], Lemma 7.20, w is a supertemperature on F. Since F'
is compact we have p(F) < oo, and so Gu is a heat potential on R™*!, by [2],
Theorem 6.18. We denote by h the greatest thermic minorant of Gu on E. By [2],
Theorem 6.31, the Riesz measure associated with Gu is p itself, and so the Riesz
Decomposition Theorem [2], Theorem 6.34, shows that Gu = Ggu+h on E. We put
u = Gu—won E\F. Since G is a temperature on R"**\ F by [2], Theorem 6.25, the
function u is a subtemperature on E\ F, and on K \ F' we have u = Gu— Ggu = h.
Since h is bounded on K, u is bounded on K \ F'. Furthermore, whenever p € E\ K
and ¢ € F we have G(p; q) < 7(c) because *(¢;¢) C T C K, and hence

u(p) < Gu(p) = /FG(p; q)du(q) < T(c)u(F) < oo

for all p € E\ K. Thus u is upper bounded on E \ K, and hence on F \ F.
Since F is closed and polar, it follows from [2], Theorem 7.14, that u can be extended
to a subtemperature w on FE. Since u < Gu on E \ F, and F is Lebesgue null,
we have Gu —w > 0 almost everywhere on E. Both sides of this last inequality
are supertemperatures on F, and so the inequality holds everywhere on E by [2],
Theorem 3.59. Thus @ < Gu on E, which implies that @ < h on E, in view of [2],
Definition 3.65. On E \ K we therefore have

Gu— ((Gep) ANv) < Gu— Ggp,

so that v > Ggu as required.

We now counsider the general case, where (1) holds only for every r € 0K \ Z,
where Z is a polar set. We choose a heat potential vy on E such that vg = oo on Z.
Then for each € > 0, the function v + vy is a nonnegative supertemperature on
E\ K such that 1i£ﬂ_>ivrnlf(v + evg)(p) = Gru(r) for every point r € OK. Therefore

v+evyg = Gepu on E\ K by the case proved above. Making ¢ — 0+, we see that
v > GEu except, possibly, on the polar subset of E'\ K where vy = co. Since polar
sets are Lebesgue null, it follows from [2], Theorem 3.59, that v > Ggu everywhere
on B\ K.

(b) Since liminf _wv(p) = v(r) = Ggu(r) for quasi-every point r € 97, it follows
p—r, pEE\T

from part (a) with K = T that v > Ggpuon E\T. Thus v > Ggu almost everywhere
on FE, and hence everywhere on F by [2], Theorem 3.59.
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(c) Since ﬁéEu < RéEH < Ggp on E, it suffices to prove that the smoothed
reduction majorizes Ggp on E. The smoothed reduction is a nonnegative supertem-
perature on E, and equal to Ggu on the open subset T = Y(F,c¢) of L. There-
fore, for any d < ¢ we have ﬁéEﬂ > Ggp on EJFQ* (¢;d) \ F. We now show that

q

U Q (¢;d) = Y(F,d), and because
qEF

Y(F,d) < |J 9 (a:d) € T(F,d),
qeEF

it suffices to show that |J QO (¢; d) is a closed set. Let {p;} be a convergent sequence
q€F
of points in that union, with limit p’ = (2’,t'). For each j, we choose a point ¢; € F

such that p; € [0 (gj;d). Since F' is compact, the sequence {¢;} has a subsequence
{gj, } which converges to a point ¢’ = (v,s’) € F. If p;, = ¢;, for infinitely many
values of k, then p' = ¢’ € Q' (¢/;d). On the other hand, if Dj, = ¢, for only finitely
many values of k, then we choose a number £y such that p;, # g;, whenever k£ > kg.
Putting p;, = (zx,tx) and gj, = (yx, k), we have

d
|z — yi|? < 2n(ty — Sk)log( )
ty — Sk

whenever k > ko. If ty — sy — 0 as k — oo, then zp — yx — 0 as well, and so
p=q € ﬁ*(q’; d). Otherwise, making k — oo we obtain

d
|2’ — |2 < 2n(t' — &) 1og(m),

so that again p’ € 2% (¢';d). Thus the union in question is a closed set, and hence
is equal to Y(F,d). It follows that RG o = Ggu on T(F d) \ F, and hence quasi-
everywhere on Y (F, d) because F is polar. Therefore RG on = Gepon E, by part (b).

(d) Whenever p € E\ T and ¢q € F, we have G(p; q) < 7(c¢) because Q*(¢;¢) C T,
and hence

Gin(p /GEp, ) dug /Gp, )dug) < r()u(F) < oo

for all p € E\ Y. Furthermore, because u > 0 and u is lower semicontinuous on 97,
it has a positive minimum over Y. We can therefore find a positive constant a such
that Ggpp < au on OY. Hence

a liminf u(p) > au(r) = Geu(r)
p—r, pEE\T
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for all points r € Y. Now part (a), with K = Y, shows that au > Ggp on E\ T,
and hence on £\ Y.

(e) This follows from part (d) by taking u = 1.

(f) By [2], Theorem 6.11, Gg(g;p) > 0 if and only if p € A(g; F). Therefore the
condition v(A(g; E')) > 0 implies that

/ Gr(g;p) dv(p) > 0.
AMgE)

Thus Ggrv > 0 on F, so that the set D = {p € E: Ggv(p) > 0} is an open superset
of F' because Ggv is lower semicontinuous on E. If we choose d < ¢ such that
Y(F,d) C D, then part (d) implies that there is a constant o such that Ggu < aGrv
on E\Y(F,d) D E\Y(F,c).

(g) If v is a point mass at 7, then v(A(q; E)) = v({r}) > 0 for all ¢ € F, so that
the result follows from part (f). O

Example. Let w be a nonnegative Borel measure on R"™ whose support is
a Lebesgue null compact set K. Then the Gauss-Weierstrass integral w of w exists
and is a temperature on the set D = R™ x |0, oo[. If we put E = R™ and

w on D,
u =
0 on R" x]—o00,0],

then w is the heat potential of a measure supported by the set F' = K x {0}, in view
of [2], Example 6.14. Moreover, [2], Theorem 7.55, shows that the thermal capacity
of F is zero, so that F is polar by [2], Theorem 7.46. Hence Theorem 1 can be used
to show that:

(a) The temperature w is bounded on D\ Y.
(b) If Gv is a heat potential, and v(R" x |]—00,0[) > 0, then there is a constant «
such that w < aGv on D\ T.

(c¢) Given any point r € R™ x ]—o0, 0], there is a constant « such that w < aG(-;r)
on D\ T.

The special case of Theorem 1 where F' is a singleton is analogous to a result for
classical superharmonic functions given by Doob in [1], Theorem 1.VIIL.3. Using this
special case, we now prove a result analogous to [1], Theorem 1.VIII.10. The first
part was given in [1], page 307.
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Theorem 2. If v is a nonnegative supertemperature on an open set E, and v is
its associated Riesz measure, then for each point ¢ € E we have

. v . . v
A*I{clsz) Ge(ia) v({a}) and 05%1+(93&f;c> GE(~;q)> =viah)
Proof. We put D = A*(q; E), and note that D = {p € E: Gg(p;q) > 0} by [2],
Theorem 6.7. We also put
—inf—b
“T Gr(ia)
The function v — aGE(+; q) is a supertemperature on F \ {g} which is nonnegative
on D by the definition of a, and hence is nonnegative everywhere on E \ {¢q}. It
therefore follows from [2], Theorem 7.14, that v — aGg(+; ¢) has a unique extension
to a supertemperature v on E. Then v = aGg(-;q) + uw on E \ {¢}, and hence on F
because both sides are supertemperatures on E. This implies that v({q}) > a. If
v({q}) = 8 > a, then v > BGE(:;q) on E, so that

v S 6>

> o

Ge(:q)
on D, contrary to the definition of a. Hence v({q}) = a.
We now put
v
= lim ( inf 7)
77 A oo Gr(q)

The part just proved shows that v > v({q}). If v > v({q}), we choose § such
that v > 0 > v({q}). Then there is d > 0 such that v > dGg(-;q) on Q*(¢q;d). If
0 < e<d,then ﬁ*(q;e) C Fandv > 6Gg(;q) onﬁ*(q;e)\{q}, sothat v > 6GE(-;q)
on E, by the case F' = {q} of Theorem 1 (b). So

infL>5

D Gp(iq) ~ 7
and hence v({q}) > ¢ by the first part of this result. This contradicts our choice
of 4. O
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