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Abstract An inverse problem framework for constructing reaction systems with pre-
scribed properties is presented. Kinetic transformations are defined and analysed as a
part of the framework, allowing an arbitrary polynomial ordinary differential equation
to be mapped to the one that can be represented as a reaction network. The frame-
work is used for construction of specific two- and three-dimensional bistable reaction
systems undergoing a supercritical homoclinic bifurcation, and the topology of their
phase spaces is discussed.
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1 Introduction

Chemical reaction networks under the mass action kinetics are relevant for both pure
and appliedmathematics. The time evolution of the concentrations of chemical species
is described by kinetic equations which are a subset of first-order, autonomous, ordi-
nary differential equations (ODEs) with polynomial right-hand sides (RHSs). On the
one hand, the kinetic equations define a canonical form for a subset of ODEs, thus
being important for pure mathematics [1,2]. They can display not only the chemically
regular phenomenon of having a globally stable fixed point, but also the chemically
exotic phenomena (multistability, oscillations and chaos). It is then no surprise that
chemical reaction networks can perform the same computations as other types of phys-
ical networks, such as electronic and neural networks [3]. On the other hand, reaction
networks are a versatile modelling tool, decomposing processes from applications
into a set of simpler elementary steps (reactions). The exotic phenomena in systems
biology often execute specific biological functions, example being the correspondence
between limit cycles and biological clocks [4,5].

The construction of reaction networks displaying prescribed properties may be seen
as an inverse problem in formal reaction kinetics [6], where, given a set of properties,
a set of compatible reaction networks is searched for. Such constructions are useful in
many application areas, including systems biology (as caricature models), synthetic
biology (as blueprints), and numerical analysis (as test problems) [7–9]. In systems
biology, kinetic ODEs often have higher nonlinearity degree and higher dimension,
thus not being easily amenable to mathematical analysis. Having ODEs with lower
nonlinearity degree and lower dimension allows for a more detailed mathematical
analysis, and also adds to the set of test problems for numerical methods designed for
more challenging real-world problems. In synthetic biology, such constructed systems
may be used as a blueprint for engineering artificial networks [9,10].

A crucial property of the kinetic equations is a lack of so-called cross-negative
terms [11], corresponding to processes that involve consumption of a species when
its concentration is zero. Such terms are not directly describable by reactions, and
may lead to negative values of concentrations. The above mentioned issues with
cross-negative terms, together with the requirement that the dependent variables are
uniformly bounded in time, imply that not every nonnegative polynomial ODE system
is kinetic, and, thus, further constrain the possible dynamics. A trivial example of an
ODE with a cross-negative term is given by dx/dt = −k, for constant k > 0, where
the term −k, although a polynomial of degree zero, nevertheless cannot be directly
represented by a reaction, and results in x < 0.

In two dimensions, where the phase plane diagram allows for an intuitive reason-
ing, the exotic dynamics of ODE systems reduces to cycles and multistability. While
two-dimensional nonkinetic polynomial ODE systems exhibiting a variety of such
dynamics can be easily found in the literature, the same is not true for the more con-
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strained two-dimensional kinetic ODE systems [12] (see also Appendix 1). Motivated
by this, this paper consists of two main results: firstly, building upon the framework
from [6,11], an inverse problem framework suitable for constructing the reaction sys-
tems is presented in Sect. 3, with the focus on the so-called kinetic transformations,
allowing one tomap a nonkinetic into a kinetic system. Secondly, in Sect. 4, the frame-
work is used for construction of specific two- and three-dimensional bistable kinetic
systems undergoing a global bifurcation known as a supercritical homoclinic bifurca-
tion. The corresponding phase planes contain a stable limit cycle and a stable fixed
point, with a parameter controlling the distance between them, and their topology is
discussed. Definitions and basic results regarding reaction systems are presented in
Sect. 2. A summary of the paper is presented in Sect. 5.

2 Notation and definitions

The notation and definitions in this paper are inspired by [11,13,14].

Definition 2.1 Let R be the space of real numbers, R≥ the space of nonnegative real
numbers, R> the space of positive real numbers and N = {0, 1, 2, 3, . . .} the set of
natural numbers. Given a finite setS, with cardinality |S| = S, the real space of formal
sums c = ∑

s∈S css is denoted by R
S if cs ∈ R for all s ∈ S. It is denoted by R

S≥
if cs ∈ R≥ for all s ∈ S; by R

S
> if cs ∈ R> for all s ∈ S; and by N

S if cs ∈ N for
all s ∈ S; where the number cs is called the s-component of c for s ∈ S. Support of
c ∈ R

S is defined as supp(c) = {s ∈ S : cs �= 0}. Complement of a set M ⊂ S is
denoted by Mc, and given by Mc = S \ M.

The formal sum notation is introduced so that unnecessary ordering of elements of
a set can be avoided, such as when general frameworks involving sets are described,
and when objects under consideration are vector components with irrelevant ordering.
The usual vector notation is used when objects under consideration are equations in
matrix form, and is put into using starting with Eq. (9).

2.1 Reaction networks and reaction systems

Definition 2.2 A reaction network is a triple {S, C,R}, where
(i) S is a finite set, with elements s ∈ S called the species of the network.
(ii) C ⊂ N

S is a finite set, with elements c ∈ C, called the complexes of the network,
such that

⋃
c∈C supp(c) = S. Components of c are called the stoichiometric

coefficients.
(iii) R ⊂ C × C is a binary relation with elements r = (c, c′), denoted r = c → c′,

with the following properties:
(a) ∀c ∈ C (c → c) /∈ R;
(b) ∀c ∈ C ∃c′ ∈ C such that (c → c′) ∈ R or (c′ → c) ∈ R.
Elements r = c → c′ are called reactions of the network, and it is said that c
reacts to c′, with c being called the reactant complex, and c′ the product complex.
The order of reaction r is given by or = ∑

s∈S cs < ∞ for r = c → c′ ∈ R.
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Note that as set R implies sets S and C, reaction networks are denoted with R,
for brevity. Also, as it is unlikely that a reaction between more than three reactants
occurs [11], in this paper we consider reactions with or ≤ 3. To represent some of
the non-chemical processes as quasireactions, the zero complex is introduced, denoted
with ∅, with the property that supp(∅) = ∅, where ∅ is the empty set.

Definition 2.3 Let R be a reaction network and let κ : R
S≥ → R

R≥ be a continuous
function which maps x ∈ R

S≥ (called “species concentrations”) into κ(x) ∈ R
R≥

(called “reaction rates”). Then κ is said to be a kinetics for R provided that, for all
x ∈ R

S≥ and for all r = (c → c′) ∈ R, positivity κr (x) > 0 is satisfied if and only if
supp(c) ⊂ supp(x).

An interpretation of Definition 2.3 is that a reaction, to which a kinetics can be asso-
ciated, can occur if and only if all the reactant species concentrations are nonzero.

Definition 2.4 A reaction networkR augmented with a kinetics κ is called a reaction
system, and is denoted {R, κ}.
Definition 2.5 Given a reaction system {R, κ}, the induced kinetic function,K(·; R) :
R
S≥ → R

S , is given by K(x; R) = ∑
r∈R κr (x)(c′ − c) where r = c → c′. The

induced system of kinetic equations, describing the time evolution of species con-
centrations x ∈ R

S≥, takes the form of a system of autonomous first-order ordinary
differential equations (ODEs), and is given by

dx

dt
= K(x; R). (1)

Note that the kinetic function uniquely defines the system of kinetic equations, and
vice-versa. In this paper, the species concentrations satisfying equation (1) are required
to be finite, i.e. xs < ∞, for s ∈ S, and for t ≥ 0. Infinite-time blow-ups are allowed
for initial conditions located on a finite number of (S − z)-dimensional subspaces
of R

S≥, z ≥ 1. Finite-time blow-ups [15], being chemically more unrealistic, are not
allowed in this paper.

Definition 2.6 Kinetics κ is called the mass action kinetics if κr (x) = kr xc, for
r = (c → c′) ∈ R, where kr > 0 is the rate constant of reaction r , and xc = ∏

s∈S x
cs
s ,

with 00 = 1. A reaction systemwith themass action kinetics is denoted {R, k}, and the
corresponding kinetic function is denotedK(x; k) ≡ K(x; R) = ∑

r∈R kr (c′−c)xc,
where k ∈ R

R
> .

A review of the mass action kinetics can be found in [16]. In this paper, most of
the results are stated with kinetics fixed to the mass action kinetics. Let us note that
the results are also applicable to nonpolynomial ODEs that can be reduced to the
polynomial ones [1].

Example 1 Consider the following reaction network (consisting of one reaction) under
the mass action kinetics:

r1 : s1 + s2
k1−→ 2s2, (2)
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so that S = {s1, s2}, C = {s1 + s2, 2s2}, R = {s1 + s2 → 2s2} and k = {k1}.
Concentration x ∈ R

S≥ has two components. To simplify our notation, we write x1 =
xs1 , x2 = xs2 , and K1(x; k) = Ks1(x; R), K2(x; k) = Ks2(x; R). Then the induced
system of kinetic equations is given by

dx1
dt

= K1(x; k) = −k1x1x2, (3)

dx2
dt

= K2(x; k) = k1x1x2. (4)

2.2 Kinetic and nonkinetic functions

In this subsection, nonkinetic functions are defined, and further notation for kinetic
and nonkinetic functions taking the mass action form is presented.

Definition 2.7 Let f : R
S≥ → R

S be given by fs(x) = ∑
r∈R fsr (x), where fsr (x) ∈

R, for x ∈ R
S≥, s ∈ S and r ∈ R. If ∃s ∈ S, ∃r ∈ R and ∃x ∈ R

S≥ such that
s ∈ suppc(x) and fsr (x) < 0, then fsr (x) is called a cross-negative term, and function
f (x) and ODE system dx/dt = f (x) are said to be nonkinetic.

An interpretation of a cross-negative term is that the process corresponding to such a
term would consume at least one reactant even when its concentration is zero, so that
it cannot be represented as kinetic reactions.

Kinetic and nonkinetic functions taking the mass action kinetics form are central
to this paper. The related notation is introduced in the following definition.

Definition 2.8 Let P(·; k) : R
S → R

S , k ∈ R
R, be a polynomial function with

polynomial degree deg(P(x; k)) ≤ m, m ∈ N, i.e. Ps(x; k) is a polynomial in
x ∈ R

S of degree at most m with coefficients k ∈ R
R, for all s ∈ S. Then, the set of

functions P(x; k) is denoted by Pm(RS ; R
S). If P(x; k) is a kinetic function, it is

denoted byK(x; k), k ∈ R
R
> , and the set of such functions is denoted byP

K
m (RS≥; R

S).
If P(x; k) is a nonkinetic function, it is denoted by N (x; k), k ∈ R

R, and the set of
such functions with domain R

S is denoted by P
N
m (RS ; R

S), while with domain R
S≥

by P
N
m (RS≥; R

S).

Note that a system {R, k}, corresponding to N (x; k) in Definition 2.8, has a well-
defined reaction network R (for r = c → c′, r ∈ R, we restrict c, c′ to positive
integers), but an ill-defined kinetics taking themass action form (we allow set k to have
elements that are negative). Thus, set k corresponding toN (x; k) cannot be interpreted
as a set of reaction rate constants, as opposed to set k corresponding to K(x; k) (see
also Example 2). Note also that Pm(RS≥; R

S) = P
K
m (RS≥; R

S) ∪ P
N
m (RS≥; R

S), with
P
K
m (RS≥; R

S) ∩ P
N
m (RS≥; R

S) = ∅.

2.3 Properties of kinetic functions

FromDefinition 2.3 it follows that a kinetic functionK(x; R) has a structural property:
cross-negative terms are absent. In this subsection, further properties of K(x; R) are
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defined: nonnegativity (absence of cross-negative effect), and a structural property
called x-factorability.

Definition 2.9 Let f : R
S≥ → R

S be given by fs(x) = ∑
r∈R fsr (x), where fsr (x) ∈

R, for x ∈ R
S≥, s ∈ S and r ∈ R. If ∀s ∈ S, ∀x ∈ R

S≥, s ∈ suppc(x) ⇒ fs(x) ≥
0, then f (x) and dx/dt = f (x) are said to be nonnegative. Otherwise, f (x) and
dx/dt = f (x) are said to be negative, and a cross-negative effect is said to exists
∀x ∈ R

S≥ for which ∃s ∈ S such that s ∈ suppc(x) and fs(x) < 0.

Note that the absence of cross-negative terms implies nonnegativity, but the converse
is not necessarily true [11,17], i.e. an ODE system may have cross-negative terms,
without having a cross-negative effect, as we will show in Example 2.

Cross-negative terms play an important role in mathematical constructions of reac-
tion systems, in the context of chaos in kinetic equations, and pattern formation via
Turing instabilities [18,19]. It has been proved that quadratic two-dimensional ODEs
without cross-negative terms, and of the form such that the induced reactions involve at
most two reactants and two products, cannot display limit cycle oscillations [12,20]. In
Appendix 1, by generalizing [12], we prove that the nonexistence of a cross-negative
effect in the ODEs of such form is a sufficient condition for nonexistence of limit
cycles.

Example 2 Consider the following ODE system with polynomial RHS:

dx1
dt

= P1(x; k) = 1 + x21 + 2kx2 + x22 , (5)

dx2
dt

= P2(x; k) = 1, (6)

where P(x; k) ∈ P2(R
S ; R

S), S = 2, k ∈ R and x = {x1, x2}. Considering x1 = 0
and x2 > 0, it follows that P1({0, x2}; k) = 1 + 2kx2 + x22 . Then:

(i) If k ≥ 0, then (5)–(6) contains no cross-negative terms, and so it is kinetic:
P(x; k) ∈ P

K
2 (RS≥; R

S).
(ii) If k < 0, then (5)–(6) contains one cross-negative term, 2kx2, and so it is nonki-

netic: P(x; k) ∈ P
N
2 (RS ; R

S).
(a) If −1 ≤ k < 0, then (5)–(6) contains no cross-negative effect, and so it is

nonnegative.
(b) If k < −1, then (5)–(6) contains a cross-negative effect for x = {0, x2}, where

x2 ∈ ( − k − √
k2 − 1,−k + √

k2 − 1
)
, and so it is negative.

System (5)–(6) induces a reaction system only in case (i). In particular, nonnegative
ODE system (5)–(6) with P(x; k) ∈ P

N
2 (RS≥; R

S) in part (ii)(a) does not induce a
reaction system (although, given a nonnegative initial condition, the solution of (5)–(6)
is nonnegative for all forward times).

Definition 2.10 Let f : R
S≥ → R

S be given by fs(x) = ∑
r∈R fsr (x), where

fsr (x) ∈ R, for x ∈ R
S≥, s ∈ S and r ∈ R. Then term fsr (x) is said to be xs-factorable

if fsr (x) = xs psr (x), where psr (x) is a polynomial function of x . If ∃s ∈ S, such that
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fs(x) = xs
∑

r∈R psr (x), then f (x) and ODE system dx/dt = f (x) are said to be
xs-factorable. If ∀s ∈ S it is true that fs(x) = xs

∑
r∈R psr (x), then f (x) and ODE

system dx/dt = f (x) are said to be x-factorable.

Example 3 System (3)–(4) is x-factorable, since K1(x; k) = x1(−k1x2) and
K2(x; k) = x2(k1x1).

X -factorable ODE systems are a subset of kinetic equations under the mass action
kinetics [21] (see also Sect. 3.2.2).

3 Inverse problem for reaction systems

In some applications, we are interested in the direct problem: we are given a reaction
network with kinetics, i.e. a reaction system {R, κ}, and we then analyse the induced
system of kinetic equations (1) in order to determine properties of the reaction system.
For example, an output of a direct problem might consist of verifying that the kinetic
equations undergo a bifurcation. In this paper, we are interested in the inverse problem:
we are given a property of an unknown reaction system, and we would then like to
construct a reaction system displaying the property. The inverse problem framework
described in this section is inspired by [6,11].

The first step in the inverse problem is, given a quantity that depends on a kinetic
function, to find a compatible kinetic function K(x; R), while the second step is
then to find a reaction system {R, κ} induced by the kinetic function. The second
step is discussed in more detail in Sect. 3.1, while the first step in Sect. 3.2. The
constructions of a reaction system {R, κ} often involve constraints defining simplicity
of the system (e.g. see [22]), and the simplicity can be related to the kinetic equations
(structure and dimension of the equations, and/or the phase space), and/or to reaction
networks (cardinality, conservability, reversibility, deficiency). How the simplicity
constraints are prioritized depends on the application area, with simplicity of the
kinetic equations being more important for mathematical analysis, while simplicity of
the reaction networks for synthetic biology.

3.1 The canonical reaction network

Let us assume that we are able to construct an ODE system of the form (1) where
its RHS is a kinetic function, K(x; R), and the system has the property required
by the inverse problem. Then, one can always find a reaction system induced by the
kinetic function [6,18].While, for a fixed kinetics, a reaction network induces a kinetic
function uniquely by definition (see Definition 2.5), the converse is not true—the
inverse mapping of the kinetic function to the reaction networks is not unique—a fact
known as the fundamental dogma of chemical kinetics [14,18,23,24]. For example,
in [24], for a fixed kinetic function and a fixed set of complexes (C fixed), mixed
integer programming is used for numerical computation of different induced reaction
networks with varying properties. On the other hand, a constructive proof that every
kinetic function induces a reaction system is given in [6,18], where C is generally
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not fixed (product complexes may be created), but the construction can be performed
analytically, and it uniquely defines an induced reaction system for a given kinetic
function under the mass action kinetics. The same procedure is used in this paper, so
it is now defined.

Definition 3.1 Let κ : R
S≥ → R

R≥ be a kinetics. Consider the kinetic function given
by K(x; R) = ∑

r∈R drκr (x), where x ∈ R
S≥ and dr ∈ R

S . Let us map K(x; R) to
a reaction system {RK−1 , κK−1} with complexes and kinetics given by:

(i) Reactant complexes, cr , are obtained from κr (x) for r ∈ R. The zero term in
K(x; R) is not allowed to induce reactant complexes. Then, the complexes are
uniquely obtainable in the case of the mass action kinetics.

(ii) Reaction cr → c′
rs is then constructed for each r ∈ R and s ∈ S, where new

product complexes are given by c′
rs = cr + sign(drs)s, with sign(·) being the sign

function.
(iii) The new kinetics is then defined as κK−1r ′(x) ≡ |drs |κr (x), for r ∈ R, s ∈ S,

where r ′ ∈ RK−1 .

The induced reaction system {RK−1, κK−1} is called the canonical reaction system,
withRK−1 being the canonical reaction network.

Note that the procedure inDefinition 3.1 creates a reaction for each term in each kinetic
equation. Note also that each reaction leads to a change in copy number of precisely
one chemical species, and the change in the copy number is equal to one. Thus, the
canonical reaction networks are simple in the sense that they can be constructed from a
kinetic function in a straightforward way, while they generally do not contain minimal
number of reactions, nor complexes.

Example 4 The canonical reaction network for system (3)–(4) is given by

r1 : s1 + s2
k1−→ s2,

r2 : s1 + s2
k2−→ s1 + 2s2,

(7)

so that S = {s1, s2}, C = {s1 + s2, s2, s1 + 2s2}, RK−1 = {s1 + s2 → s2, s1 + s2 →
s1 + 2s2} and kK−1 = {k1, k2}, k2 = k1. Note that the canonical reaction network (7)
contains more reactions than the original network (2).

3.2 Kinetic transformations

Firstly, mapping a solution-dependent quantity to the RHS of an ODE system is
much more likely to result in nonkinetic functions, N (x; R), on the RHS (see
Definition 2.7) [11]. However, only kinetic functions induce reaction networks, as
exemplified in Example 2. Secondly, even if mapping a solution-dependent quantity
results in a kinetic function, it may be necessary to modify the function in order to
satisfy given constraints, and this may change the kinetic function into a nonkinetic
function. For these two reasons, it is beneficial to study mappings that can transform
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arbitrary functions into kinetic functions. This motivates the following definition, for
the case of mass action kinetics, that relies on the notation introduced in Definition 2.8.

Definition 3.2 Let P(x; k) ∈ Pm(RS ; R
S), k ∈ R

R, i.e. P(x; k) is a polynomial
function. Consider the corresponding ODE system in the formal sum notation

dx

dt
= P(x; k), (8)

where x ≡ x(t) ∈ R
S . Then, a transformation Ψ is called a kinetic transformation if

the following conditions are satisfied:

(i) Ψ : Pm(RS ; R
S) → P

K
m̄ (RS̄≥; R

S̄), m̄ ≥ m, S̄ ≥ S, maps the polynomial function

P(x; k) into a kinetic functionK(x̄; k̄) ≡ (Ψ (P))(x̄; k̄) for x̄ ∈ R
S̄≥ and k̄ ∈ R

R̄
> .

(ii) Let x∗ be a fixed point of (8) that is mapped by Ψ to fixed point x̄∗ ∈ R
S̄≥

of the system of kinetic equations (1) with K(x̄; k̄) on its RHS. Let also the
eigenvalue of the Jacobian matrix of P(x; k), J (x∗; k), denoted by λn , be
mapped to the eigenvalue of Jacobian of K(x̄; k̄), JΨ (x̄∗; k̄), which is denoted
by λ̄n , for n = 1, 2, . . . , S. Then, for every such fixed point x∗, it must
be true that sign(Re(λn)) = sign(Re(λ̄n)) (preservation of the fixed point
stability), sign(Im(λn)) = sign(Im(λ̄n)) (preservation of the fixed point ori-
entability), n = 1, 2, . . . , S, and, if there are any additional eigenvalues λ̄n ,
n = S + 1, S + 2, . . . , S̄, they must satisfy sign(Re(λ̄n)) < 0 (stability of the
fixed point along the added dimensions), where Re(·) and Im(·) denote the real
and imaginary part of a function.

If any of the condition (i)–(ii) is not true, Ψ is called a nonkinetic transformation.

Put more simply, given an input polynomial function, a kinetic transformation must (i)
map the input polynomial function into an output kinetic function, and (ii) the output
function must be linearly locally topologically equivalent to the input function in the
neighbourhood of the corresponding fixed points, and the fixed points are asymptot-
ically stable along any additional dimensions of the output function (corresponding
to the additional species), preventing the state of the system from escaping the fixed
point neighbourhood along the added dimensions. Let us note that the output function
is defined only in the nonnegative orthant, so that the topological equivalence must
hold only near the fixed points of the input function that are mapped to the nonnegative
orthant under kinetic transformations.

Onemaywish to impose a set of constraints on an output function, such as requiring
that a predefined region of interest in the phase space of the input function is mapped
to the positive orthant of the corresponding output function. The subset of constraints
is now defined that can be formulated purely in terms of the reaction rate constants.

Definition 3.3 Let P(x; k) ∈ Pm(RS ; R
S), k ∈ R

R. Let also φ j : R
R → R be

a continuous function, mapping set k into φ j (k) ∈ R, j = 1, 2, . . . , J . Then, set
Φ ≡ {φ j (k) ≥ 0 : j = 1, 2, . . . , J } is called a set of constraints.
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There are two sets of kinetic transformations. The first, and the preferred, set of
possible kinetic transformations are affine transformations, which are discussed in
Sect. 3.2.1. Affine transformations may be used, not only as possible kinetic transfor-
mations, but also to satisfy a set of constraints. The second set, necessarily used when
affine transformations fail, are nonlinear transformations that replace cross-negative
terms, with x-factorable terms (see Definition 2.10), without introducing new cross-
negative terms, and two such transformations are discussed in Sects. 3.2.2 and 3.2.3.
In choosing a nonlinear transformation, one generally chooses between obtaining, on
the one hand, lower-dimensional kinetic functions with higher-degree of nonlinearity
[i.e. lower S̄/S and higher m̄/m in Definition 3.2(i)] and/or higher numbers of the
nonlinear terms, and, on the other hand, higher-dimensional kinetic functions with
lower degree of nonlinearity (i.e. higher S̄/S and lower m̄/m) and/or lower numbers
of the nonlinear terms.

Before describing the transformations in a greater detail, the usual vector notation is
introduced and related to the formal sum notation from Sect. 2. The vector notation is
used when ODE systems are considered in matrix form, while the formal sum notation
is used when ODE systems are considered component-wise.

Notation Let |S| = S, |C| = C and |R| = R, and suppose S, C and R are each
given a fixed ordering with indices being n = 1, 2, . . . , S, i = 1, 2, . . . ,C , and
l = 1, 2, . . . , R, respectively, i.e. one can identify the ordered components of formal
sums with components of Euclidean vectors. Let also the indices sn be denoted by n,
n = 1, 2, . . . , S, for brevity. Then, the kinetic equations under the mass action kinetics
in the formal sum notation are given by (1). In this section, we start with equations
which have more general polynomial, and not necessarily kinetic, functions on the
RHS, i.e. the ODE system is written in the formal sum notation as (8), while in the
usual vector notation by

dx
dt

= P(x; k), (9)

where P(x; k) ∈ Pm(RS; R
S), x ∈ R

S≥, and k ∈ R
R .

3.2.1 Affine transformation

Definition 3.4 Consider applying an arbitrary nonsingular matrix A ∈ R
S×S on

Eq. (9), resulting in:

dx̄
dt

= AP(A−1x̄; k̄) ≡ (ΨAP)(x̄; k̄), (10)

where x̄ = Ax, and k̄ is a vector of new rate constants obtained from k by rewriting the
polynomial on the RHS of (10) into the mass action form. Then ΨA : Pm(RS; R

S) →
Pm(RS; R

S), mappingP(x; k) to (ΨAP)(x̄; k̄), is called a centroaffine transforma-
tion (also known as a linear transformation). If A is an orthogonal matrix, then ΨA is
called an orthogonal transformation.
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Definition 3.5 Consider substituting x̄ = x + T in Eq. (9), where T ∈ R
S , which

results in:

dx̄
dt

= P(x̄ − T ; k̄) ≡ (ΨT P)(x̄; k̄), (11)

where k̄ is a vector of the new rate constants obtained from k by rewriting the poly-
nomial on the RHS of (11) into the mass action form. Then ΨT : Pm(RS; R

S) →
Pm(RS; R

S), mapping P(x; k) to (ΨT P)(x̄; k̄), is called a translation transforma-
tion.

A composition of a translation and a centroaffine transformation, ΨA,T = ΨA ◦ ΨT ,
i.e. an affine transformation, may be used as a possible kinetic transformation (see
Definition 3.2). Let us note that condition (ii) in Definition 3.2 is necessarily satisfied
for all affine transformation, i.e. affine transformations preserve the topology of the
phase space, as well as the polynomial degree of the functions being mapped [25]. For
these reasons, affine transformations are preferred over the alternative nonlinear trans-
formations, discussed in the next two sections. However, affine transformations do not
necessarily satisfy condition (i) in Definition 3.2, so that they are generally nonkinetic
transformations. However, despite being generally nonkinetic, affine transformations
map sets k into new sets k̄ [see Eqs. (10), (11)], so that they may be used for satisfying
a given set of constraints imposed on the output function (see Definition 3.3). This
motivates the following definition.

Definition 3.6 Let P(x; k) ∈ Pm(RS ; R
S). If there exist A ∈ R

S×S , T ∈ R
S ,

such that simultaneously (ΨA ◦ ΨT P)(x̄; k̄) is a kinetic function, and a given set of
constraintsΦ ≡ {φ j (k̄) ≥ 0 : j = 1, 2, . . . , J } is satisfied, then it is said thatP(x; k)
and the corresponding Eq. (8) are affinely kinetic, given the constraints. Otherwise,
they are said to be affinely nonkinetic, given the constraints.

If the set of constraints in Definition 3.3 is empty, affinely nonkinetic functions are
called essentially nonkinetic, while those that are affinely kinetic are called removably
nonkinetic. Such labels emphasize that, if a function is essentially nonkinetic, a kinetic
function that is globally topologically equivalent cannot be obtained,while if a function
is removably nonkinetic, a globally topologically equivalent kinetic function can be
obtained.

Explicit sufficient conditions for a polynomial function P(x; k) to be affinely
kinetic, or nonkinetic, are generally difficult to obtain. Even in the simpler case
P(x; k) ∈ P2(R

2; R
2), such conditions are complicated, and cannot be easily

generalized for higher-dimensional systems and/or systems with higher degree of
nonlinearity [25]. In [19], based on the polar and spectral decomposition theorems, it
has been argued that if no orthogonal transformation is kinetic, then no centroaffine
transformation is kinetic. The result is reproduced in this paper using the more con-
cise singular value decomposition theorem, and is generalized to the case when the set
of constraints is nonempty. Loosely speaking, the theorem states that “orthogonally
nonkinetic” functions are affinely nonkinetic as well, given certain constraints.
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Theorem 3.1 If P(x; k) ∈ Pm(RS ; R
S) is nonkinetic under ΨQ ◦ ΨT , given a set

of constraints Φ, for all orthogonal matrices Q ∈ R
S×S and for all T ∈ R

S, then
P(x; k) is also affinely nonkinetic, given Φ, provided the following condition holds:
sign(φ j (k)) = sign(φ j (k̄)), j = 1, 2, . . . , J , for all diagonal and positive definite
matrices Λ ∈ R

S×S, with ΨΛP = (ΨΛ P)(x̄; k̄).
Proof By the singular value decomposition theorem, nonsingular matrices A ∈ R

S×S

can bewritten as A = Q1ΛQ2, where Q1, Q2 ∈ R
S×S are orthogonal, andΛ ∈ R

S×S

diagonal and positive definite. Cross-negative terms are invariant under transformation
ΨΛ for all Λ [19]. If Φ from Definition 3.3 is such that functions sign(φ j (k)), j =
1, 2, . . . , J , are invariant under all positive definite diagonal matrices Λ ∈ R

S×S , the
statement of the theorem follows. ��

3.2.2 X-factorable transformation

Definition 3.7 Consider multipling the RHS of Eq. (9) by a diagonal matrix X (x) =
diag(x1, x2, . . . , xS), resulting in

dx
dt

= X (x)P(x; k) ≡ (ΨXP)(x; k). (12)

Then ΨX : Pm(RS; R
S) → Pm+1(R

S; R
S), mapping P(x; k) to (ΨXP)(x; k), is

called an x-factorable transformation. If X is diagonal and its nonzero elements are

Xss =
{
xs, if s ∈ S ′,
1, if s ∈ S \ S ′,

where S ′ ⊂ S, S ′ �= ∅, then the transformation is denoted ΨXS′ , and is said to be
xS ′ -factorable.

When X ∈ R
2 is x1-factorable, i.e. X (x1) = diag(x1, 1), we write ΨX1 ≡ ΨX{1} .

Theorem 3.2 (ΨXP)(x; k) from Defnition 3.7 is a kinetic function, i.e. (ΨXP)

(x; k) ∈ P
K
m+1(R

S≥; R
S).

Proof See [21]. ��
FunctionsP(x; k) and (ΨXP)(x; k) are not necessarily topologically equivalent due
to two overlapping artefacts thatΨX can produce, so thatΨX is generally a nonkinetic
transformation. Firstly, the fixed points of the former system can change the type
and/or stability under ΨX , and, secondly, the latter system has an additional finite
number of boundary fixed points. The following theorem specifies the details of the
artefacts for two-dimensional systems.

Theorem 3.3 Let us consider the ODE system (9) in two dimensions with RHS
P(x; k) = (P1(x; k),P2(x; k))�. The following statements are true for all the fixed
points x∗ of the two-dimensional system (9) in R

2
> under ΨXS′ , S ′ ⊆ S, S ′ �= ∅:
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(i) All the saddle fixed points are unconditionally invariant, i.e. saddle points of (9)
correspond to saddle points of (12).

(ii) A sufficient condition for stability of a fixed point x∗ to be invariant is:

∂P1(x; k)

∂x1

∣
∣
∣
∣x=x∗

∂P2(x; k)

∂x2

∣
∣
∣
∣
x=x∗

≥ 0.

(iii) A sufficient condition for the type of a fixed point x∗ to be invariant is:

∂P1(x; k)

∂x2

∣
∣
∣
∣x=x∗

∂P2(x; k)

∂x1

∣
∣
∣
∣
x=x∗

≥ 0.

Assume that the ODE system (9) does not have fixed points on the axes of the phase
space. Nevertheless, the two-dimensional system (12) can have additional fixed points
on the axes of the phase space, called boundary fixed points, denoted x∗

b ∈ R
2≥. The

boundary fixed points can be either nodes or saddles, and the following statements
are true:

(iv) If system (12) is x-factorable, then the origin is a fixed point, x∗
b = 0, with

eigenvalues λi = Pi (x∗
b; k) �= 0, i = 1, 2, and the corresponding eigenvectors

along the phase space axes.
(v) For x∗

b,i = 0, x∗
b, j �= 0, x∗

b ∈ R
2≥, i, j = 1, 2, i �= j , a boundary fixed point is a

node if and only if

Pi (x∗
b; k)

∂P j (x; k)

∂x j
|x=x∗

b
> 0,

with the node being stable if Pi (x∗
b; k) < 0, and unstable if Pi (x∗

b; k) > 0,
i, j = 1, 2, i �= j . Otherwise, the fixed point is a saddle.

Proof Without loss of generality, we consider two forms of the system (12) with
S = 2:

dx1
dt

= x1P1(x; k), (13)

dx2
dt

= x p
2 P2(x; k), (14)

where p ∈ {0, 1}, so that system (13)–(14) is x-factorable for p = 1, but only x1-
factorable for p = 0. The results derived for an x1-factorable system hold when
the system is x2-factorable, if the indices are swapped. By writing Pi (x; k) = Pi ,
i = 1, 2, the Jacobian of (13)–(14), JX , is for p ∈ {0, 1} given by

JX (x) =
(
P1 + x1

∂P1
∂x1

x1
∂P1
∂x2

x p
2

∂P2
∂x1

pP2 + x p
2

∂P2
∂x2

)

.

First, consider how fixed points of P(x; k) are affected by transformation ΨXS′ .
Denoting the Jacobian of two-dimensional system (9) by J , and assuming the fixed
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points are not on the axes of the phase space (i.e. x∗ ∈ R
2
>), the Jacobians evaluated

at x∗ are given by:

J (x∗) =
(

∂P1
∂x1

∂P1
∂x2

∂P2
∂x1

∂P2
∂x2

)
∣
∣
∣
x=x∗ , JX (x∗) =

(
x1

∂P1
∂x1

x1
∂P1
∂x2

x p
2

∂P2
∂x1

x p
2

∂P2
∂x2

)
∣
∣
∣
x=x∗ .

Comparing the trace, determinant and discriminant of J (x∗) and JX (x∗), we deduce
(i)–(iii).

To prove (iv)–(v), we evaluate JX at the boundary fixed points of the form x∗
b =

(0, x∗
b,2) to get

JX (x∗
b) =

( P1 0
x p
2

∂P2
∂x1

pP2 + x p
2

∂P2
∂x2

) ∣
∣
∣
x=x∗

b

. (15)

If p = 1, then one of the boundary fixed points is x∗
b = 0, and the Jacobian becomes

a diagonal matrix, so that condition (iv) holds. If x∗
b,2 �= 0, then P2(0, x∗

b,2; k) = 0
in (15), and comparing the trace, determinant and discriminant of J (x∗) and JX (x∗

b),
we deduce (v). ��
Theorem 3.3 can be used to find conditions that an x-factorable transformation given
byΨX : Pm(R2; R

2) → Pm+1(R
2; R

2) is a kinetic transformation.While conditions
(ii)–(iii) in Theorem 3.3 may be violated when ΨX is used, so that ΨX is a nonki-
netic transformation, a composition of an affine transformation and an x-factorable
transformation, i.e. ΨX ,A,T = ΨX ◦ ΨA ◦ ΨT , may be kinetic. Furthermore, such a
composite transformation may also be used to control the boundary fixed points intro-
duced by ΨX . Finding an appropriate A and T to ensure the topological equivalence
near the fixed points typically means that the region of interest in the phase space
has to be positioned at a sufficient distance from the axes. However, since the intro-
duced boundary fixed points may be saddles, this implies that the phase curves may
be significantly globally changed, regardless of how far away from the axes they are.
The most desirable outcome of controlling the boundary fixed points is to eliminate
them, or shift them outside of the nonnegative orthant. The former can be attempted
by ensuring that the nullclines of the original ODE system (9) do not intersect the axes
of the phase space, while the latter by using the Routh–Hurwitz theorem [26].

An alternative transformation, which is always kinetic, that also does not change the
dimension of an ODE system is the time-parametrization transformation [27]. How-
ever, while ΨX increases the polynomial degree by one, and introduces only a finite
number of boundary fixed points which are given as solutions of suitable polynomials,
the time-parameterization transformation generally increases the nonlinearity degree
more than ΨX , and introduces infinitely many boundary fixed points.

3.2.3 The quasi-steady state transformation

The quasi-steady state assumption (QSSA) is a popular constructivemethod for reduc-
ing the dimension of ODE systems by assuming that, at a given time-scale, some of
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the species reach a quasi-steady state, so that they can be described by algebraic,
rather than differential equations. The QSSA is based on Tikhonov’s theorem [28,29]
that specifies conditions ensuring that the solutions of the reduced system are asymp-
totically equivalent to the solutions of the original system. The original system is
referred to as the total system, and it consists of the reduced subsystem, referred to
as the degenerate system, and the remaining subsystem, called the adjoined system,
so that the QSSA consists of replacing the total system with the degenerate one, by
eliminating the adjoined system. Korzukhin’s theorem [28,29] is an existence result
ensuring that, given any polynomial degenerate system, there exists a corresponding
total system that is kinetic.

Thus, Tikhonov’s theoremcanbe seen as a constructive direct asymptotic dimension
reduction procedure, while Korzukhin’s theorem as an inverse asymptotic dimension
expansion existence result. Korzukhin’s theorem has an important implication that an
application of the QSSA can result in a degenerate system that is structurally different
than the corresponding total system. In this paper, the QSSA is assumed to necessar-
ily be compatible with Tikhonov’s theorem. If this is not the case, then it has been
demonstrated in [27,30] that application of a QSSA can create dynamical artefacts, i.e.
it can result in degenerate systems, not only structurally different, but also dynamically
different from the total systems. The artefacts commonly occur due to the asymptotic
parameters in Tikhonov’s theorem not being sufficiently small. For example, it has
been shown that exotic phenomena such as multistability and oscillations can exist in
a degenerate system, while not existing in the corresponding total system [27,30].

Using Korzukhin’s and Tikhonov’s theorems, a family of kinetic total systems for
an arbitrary nonkinetic polynomial degenerate system can be constructed, as is now
shown. For simplicity, we denote xc = ∏

s∈S x
cs
s , for any x ∈ R

S and c ∈ N
S .

Definition 3.8 Consider Eq. (8), and assume that the reaction set is partitioned,R =
R1 ∪R2,R1 ∩R2 = ∅, so that (8), together with the initial conditions, can be written
as

dxs
dt

=
∑

r∈R1

asr x
αsr −

∑

r∈R2

bsr x
βsr , for s ∈ S, (16)

xs(t0) = x0s , x0s ≥ 0, (17)

where x ∈ R
S , αsr ∈ N

S , βsr ∈ N
S , αsr �= βsr , asr ∈ R≥ and bsr ∈ R≥ for all

s ∈ S and r ∈ R. Assume further that the species set is partitioned, S = S1 ∪ S2,
S1 ∩ S2 = ∅, so that equations for species s ∈ S1 are kinetic, while those for species
s ∈ S2 are nonkinetic. Consider the following total system, consisting of a degenerate
system given by

dxs
dt

=
∑

r∈R1

asr x
αsr −

∑

r∈R2

bsr x
βsr , for s ∈ S1, (18)

dxs
dt

=
∑

r∈R1

asr x
αsr − ω−1

s xs ps(x)ys
∑

r∈R2

bsr x
βsr , for s ∈ S2, (19)
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which satisfies the initial condition (17) with x0s > 0 for s ∈ S2, and an adjoined
system given by

μ
dys
dt

= ωs − xs ps(x)ys, for s ∈ S2, (20)

ys(t0) = y0s , y0s ≥ 0, for s ∈ S2, (21)

where μ > 0, ωs > 0 are parameters, and p(x) is a polynomial function of x
satisfying p(x) ∈ Pm0(R

S≥; R
S2
> ) for m0 ∈ N. Then ΨQSSA : Pm(RS ; R

S) →
Pm̄(R

S+S2≥ ; R
S+S2), mapping the RHS of differential equations in system (16)–(17),

denoted P(x; k), to the RHS of differential equations of system (18)–(21), denoted
(ΨQSSAP)({x, y}; k̄), with the constraint that xs > 0 for s ∈ S2, is called a quasi-
steady state transformation. Here, m̄ ≤ m +m0 + 2, and k̄ is a vector of the new rate
constants obtained from k by rewriting the polynomial (ΨQSSAP)({x, y}; k̄) into the
mass action form.

Theorem 3.4 Solutions of systems (16)–(17) and (18)–(21), corresponding toP(x; k)
and (ΨQSSAP)({x, y}; k̄), are asymptotically equivalent in the limit μ → 0, and
(ΨQSSAP)({x, y}; k̄) is a kinetic function.

Proof Fixed points of system (20) satisfy y∗
s = ωs(xs ps(x))−1. The fixed points are

isolated, and, since (from Definition 3.8) xs > 0 and ps(x) > 0, ∀x ∈ R
S≥, ∀s ∈ S2,

it follows that the fixed points are globally stable. Thus, the conditions of Tikhonov’s
theorem [28] are satisfied by the total system (18)–(21). Then, by applying the theorem,
i.e. substituting y∗

s into (19), one recovers the corresponding degenerate system given
by (16)–(17). Finally, the total system (18)–(21) is kinetic, as can be verified by using
Definition 2.7. ��

Corollary 3.1 The quasi-steady state transformation ΨQSSA, defined in Defini-
tion 3.8, is a kinetic transformation in the limit μ → 0.

An alternative transformation, for which condition (i) in Definition 3.2 is also always
satisfied, and that also expands the dimension of an ODE system, is an incomplete
Carleman embedding [2,31]. However, condition (ii) in Definition 3.2 is satisfied
for the incomplete Carleman embedding only provided initial conditions for the
adjoined system are appropriately constrained, and, furthermore, the transformation
generally results in an adjoined system with a higher nonlinearity degree when com-
pared to ΨQSSA. In fact, Theorem 3.4 can be seen as an asymptotic alternative to
the incomplete Carleman embedding, i.e. instead of requiring adjoined variables to
satisfy ys(t) = ωs x−1

s (t) p−1
s (x(t)), one requires them to satify limμ→0 ys(t) =

ωs x−1
s (t) p−1

s (x(t)). The theorem can also be seen as an extension of using the QSSA
to represent reactions of more than two molecules as a limiting case of bimolecular
reactions [32] to the case of using the QSSA to represent cross-negative terms as a
limiting case of kinetic ones.
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4 Construction of reaction systems undergoing a supercritical
homoclinic bifurcation

In this section, a brief review of a general bifurcation theory, and a more specific
homoclinic bifurcation, is presented. This is followed by applying the framework
developed in Sect. 3 to construct specific reaction systems displaying the homoclinic
bifurcation.

Variations of parameters in a parameter dependent ODE system may change topol-
ogy of the phase space, e.g. a change may occur in the number of invariant sets or
their stability, shape of their region of attraction or their relative position. At values of
the bifurcation parameters at which the system becomes topologically nonequivalent
it is said that a bifurcation occurs, and the bifurcation is characterized by two sets
of conditions: bifurcation conditions defining the type of bifurcation, and genericity
conditions ensuring that the system is generic, i.e. can be simplified near the bifurca-
tion to a normal form [33]. If it is sufficient to analyse a small neighbourhood of an
invariant set to detect a bifurcation, the bifurcation is said to be local. Otherwise, it is
called global, and the analysis becomes more challenging. Bifurcations are common
in kinetic equations, where, in the case of the mass action kinetics, the rate constants
play the role of bifurcation parameters [4,5,7,34,35]. In this paper, focus is placed on
a global bifurcation giving rise to stable oscillations, called a supercritical homoclinic
bifurcation [4,33,36].

Definition 4.1 Suppose x∗ is a fixed point of system (9). An orbit γ ∗ starting at a
point x is called homoclinic to the fixed point x∗ if its α-limiting and ω-limiting sets
are both equal to x∗.

Put more simply, a homoclinic orbit connects a fixed point to itself. An example of a
homoclinic orbit to a saddle fixed point can be seen in Fig. 1b on page 20, where the
homoclinic orbit is shown as the purple loop, while the saddle as the blue dot at the
origin.

If a homoclinic orbit to a hyperbolic fixed point is present in an ODE system,
then the system is structurally unstable, i.e. small perturbations to the equations can
destroy the homoclinic orbit and change the structure of the phase space, so that a
bifurcation can occur. For two-dimensional systems, the bifurcation and genericity
conditions are completely specified by the Andronov-Leontovich theorem [33] given
in Appendix 2. In summary, the theorem demands that the sum of the eigenvalues
corresponding to the saddle at the bifurcation point, called the saddle quantity, must
be nonzero (nondegeneracy condition), and that the so-called Melnikov integral at the
bifurcation point evaluated along the homoclinic orbit must be nonzero (transversality
condition).

4.1 The inverse problem formulation

Construction of reaction systems with prescribed properties is an inverse problem
which we will solve by applying kinetic transformations described in Sect. 3. Our
goal is to find a reaction system with the mass action kinetics (see Definition 2.6)

123



J Math Chem (2016) 54:1884–1915 1901

1. Construction of a polynomial function P(x; k):
Find anODE system (8)which satisfies the assumptions ofAndronov-Leontovich theorem inAppendix
2.

2. Construction of a kinetic function K(x̄; k̄):
Find a transformation so that the following conditions are satisfied:
(i) The transformation is kinetic (see Definition 3.2), mapping the polynomial functionP(x; k) into

a kinetic function K(x̄; k̄) ≡ (
P)(x̄; k̄).
(ii) The set of constraints (see Definition 3.3) ensuring that the homoclinic orbit is inR2≥ are satisfied

for K(x̄; k̄).
To determine the choice of
, if possible, use Theorem 3.1 to deduce thatP(x; k) is affinely nonkinetic
(see Definition 3.6), given the constraints.
(a) If P(x; k) is not affinely nonkinetic, attempt to find an affine transformation 
 = 
A such that

(i)–(ii) are satisfied.
(b) If P(x; k) is affinely nonkinetic, or if application of Theorem 3.1 is computationally too compli-

cated, then choose kinetic transformation 
 satisfying (i)–(ii) as an appropriate composition of

A , 
X and 
QSSA, where 
X is an x-factorable transformation (see Sect. 3.2.2) and 
QSSA
is a quasi-steady state transformation (see Sect. 3.2.3, in particular Corollary 3.1).

3. Construction of a reaction network:
Use Definition 3.1 to construct the canonical reaction network RK−1 .

Algorithm 1 Three steps of the solution to the inverse problem of finding reaction systems undergoing a
supercritical homoclinic bifurcation.

such that the kinetic equations satisfy assumptions of Andronov-Leontovich theorem
in Appendix 2, i.e. they must contain a homoclinic orbit defined on a two-dimensional
manifold in the nonnegative orthant, and undergo the homoclinic bifurcation in a
generic way. The output of this inverse problem will be a canonical reaction net-
work which corresponds to the constructed ODE system. Thus the inverse problem is
solved in three steps given in Algorithm 1. The first step is solved by using results of
Sandstede [36] which leads to a set of polynomial functions satisfying the first three
conditions of Andronov-Leontovich theorem in Appendix 2. An additional transfor-
mation is then performed ensuring that the final condition of Andronov-Leontovich
theorem is satisfied. In this paper, nonlinear kinetic transformations are applied on the
resulting polynomial function (using Step (2), case (b), in Algorithm 1).

4.2 Step (1): construction of polynomial function P(x; k)

Definition 4.2 A version of a plane algebraic curve called Tschirnhausen cubic (also
known as Catalan’s trisectrix, and l’Hospital’s cubic) [37] given by:

H(x1, x2) = −x21 + x22 (1 + x2) = 0, (22)

is referred to as the alpha curve. The part of the curve with x2 < 0 is called the alpha
loop, while the part with x2 > 0 is called the alpha branches, with the branch for
x1 < 0 being the negative alpha branch, and for x1 > 0 being the positive alpha
branch. Solutions x1 of Eq. (22) are denoted x±

1 = ±x2
√
1 + x2.

The α curve is shown in Fig. 1a, with x−
1 plotted as the solid purple curve, and x+

1 as
the dashed green curve. It can be seen that the curve consists of the tear-shaped alpha
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Fig. 1 a The alpha curve (22), with branch x−
1 plotted as the solid purple curve, and branch x+

1 as the
dashed green curve. b Phase plane diagram of system (23)–(24) for a = −0.8, with the stable node, the
saddle, and the unstable spiral represented as the green, blue and red dots, respectively. The alpha curve is
shown in purple, while the vector field as gray arrows (Color figure online)

loop located in region [−2
√
3/9, 2

√
3/9] × [−1, 0], and the positive and negative

alpha branches in the first and second quadrant, respectively. As is done in [36], the
alpha curve is mapped into a system of polynomial ODEs.

Lemma 4.1 The two-dimensional polynomial ODE system

dx1
dt

= P1(x; a) = ax1 + x2 + 3

2
ax1x2 + 3

2
x22 , (23)

dx2
dt

= P2(x; a) = x1 + ax2 + ax22 , (24)

contains the alpha curve (22)as phase plane orbits, with the alpha loopas a homoclinic
orbit to the fixed point x∗ = 0, provided a2 < 1. If a ∈ (−1, 0), the alpha loop is
stable from the inside, and system (23)–(24) has three fixed points: a saddle at the
origin, an unstable spiral inside the alpha loop, and a stable node on the positive
alpha branch.

Proof Setting P(x; k) = (P1(x; k),P2(x; k)) in system (9) to be a polynomial
function of x = (x1, x2)with undetermined coefficients k, and requiringP ·∇H = 0,
one obtains system (23)–(24), as was done in [36]. As there is only one free parameter,
denoted a, we write: P(x; k) = P(x; a). System (23)–(24) has three fixed points:(
0, 0

)
,
(
2a/9,−2/3

)
, and

(
a−1(1− a−2), −1+ a−2

)
. The condition a2 < 1 ensures

that fixed points
(
2a/9,−2/3

)
and

(
a−1(1 − a−2), −1 + a−2

)
are not on the alpha

loop. The Jacobian J = ∇P(x; a) is given by

J =
(
a + 3

2ax2 1 + 3
2ax1 + 3x2

1 a + 2ax2

)

. (25)
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Let the determinant and trace of J be denoted by det(J ) and tr(J ), respectively.
Fixed point

(
0, 0

)
is a saddle, since det(J ) = a2 − 1 < 0. The saddle quantity

from Andronov-Leontovich theorem in Appendix 2 is given by σ0 = λ1 + λ2 =
(a − 1) + (a + 1) = 2a, were λ1 and λ2 are the saddle eigenvalues. The alpha loop
is stable from the inside provided σ0 < 0, implying a < 0. It then follows that(
2/9a,−2/3

)
is an unstable spiral, and

(
a−1(1 − a−2), −1 + a−2

)
a stable node. ��

Arepresentative phase plane diagramof system (23)–(24) is shown in Fig. 1b.Note that
a part of the positive alpha branch x+

1 is a heteroclinic orbit connecting the saddle and
the node. The distance between the saddle and the node is given by d(a) = a−3(a2 −
1)

√
1 + a2, so that lima→0 d(a) = +∞ and lima→−1 d(a) = 0, i.e. increasing a

increases length of the heteroclinic orbit by sliding the node along x+
1 .

System (23)–(24) satisfies the first three conditions of Andronov-Leontovich the-
orem in Appendix 2. In order to satisfy the final condition, a set of perturbations
must be found that destroy the alpha loop in a generic way, and this is ensured by
the Melnikov condition (43). The bifurcation parameter controlling the existence of
the alpha loop is denoted as α ∈ R. Note that P(x; a) perturbed by a function of the
form α∇H(x1, x2) = α(−2x1, 2x2 + 3x22 ) satisfies the Melnikov condition [36], but
P(x; a) + α∇H(x1, x2) has three terms dependent on α. In the following theorem,
a simpler set of perturbations is found, introducing only one α dependent term in
system (23)–(24).

Theorem 4.1 If a perturbation of the form (α f (x1), 0)T , where α ∈ R, is added to
the RHS of system (23)–(24), and if f (x1) is an odd function, f (−x1) = − f (x1), and
f (x1) �= 0, ∀x1 ∈ [−2

√
3/9, 0), then the perturbed system undergoes a supercritical

homoclinic bifurcation in a generic way as α is varied in the neighbourhood of zero.

Proof Consider the perturbed version of system (23)–(24):

dx1
dt

= P1(x; a, α) = ax1 + x2 + 3

2
ax1x2 + 3

2
x22 + α f (x1), (26)

dx2
dt

= P2(x; a) = x1 + ax2 + ax22 . (27)

Melnikov integral (43) for system (26)–(27) is given by

M(0) = −
∫ +∞

−∞
ϕ(t) f (x1)P2(x1, x2; a) dt.

Using (27), we have P2(x1, x2; a)dt = dx2. Thus we can express M(0) in terms of
x2 as follow:

M(0) = −
∫ 0

−∞
ϕ(t) f (x1)P2(x1, x2; a) dt −

∫ +∞

0
ϕ(t) f (x1)P2(x1, x2; a) dt

=
∫ 0

−1
ϕ
(
t+(x2)

)
f
(
x2

√
1 + x2

)
dx2 −

∫ 0

−1
ϕ
(
t−(x2)

)
f
( − x2

√
1 + x2) dx2,
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where t+(x2) (resp. t−(x2)) is the dependence of time t on x2 along the positive (resp.
negative) alpha branch for the trajectory which is at point (x1, x2) = (0,−1) at time
t = 0 (for α = 0). Since f is odd and ϕ(t±) > 0, we deduce

M(0) =
∫ 0

−1

[
ϕ
(
t+(x2)

) + ϕ
(
t−(x2)

)]
f
(
x2

√
1 + x2

)
dx2 �= 0.

��
For further simplicity of (26)–(27), function f (x1) is set to f (x1) = x1 in the rest of
this paper.

4.3 Step (2): construction of kinetic function K(x̄; k̄)

The RHS of system (26)–(27), P(x; a, α), is a kinetic function. However, the alpha
loop, which is the region of interest, is not located in the nonnegative orthant. In order
to position the loop into the positive orthant, we will apply affine transformations.
First, we show that system (26)–(27) with the homoclinic orbit in nonnegative orthant
is nonkinetic under all translation transformations for a ∈ (−1, 0), α ∈ R.

Lemma 4.2 FunctionP(x; a, α), given by theRHS of (26)–(27), is nonkinetic under
all translation transformations ΨT , for a ∈ (−1, 0) and α ∈ R, given the condition
that the homoclinic orbit is mapped into R

2
>.

Proof Let us apply the translation transformation ΨT (see Definition 3.5), T =
(T1, T2) ∈ R

2, on function P(x; a, α), given by the RHS of (26)–(27), resulting
in:

(ΨT P1)(x̄; k̄) = k̄10 + k̄11 x̄1 + k̄12 x̄2 + k̄112 x̄1 x̄2 + k̄122(x̄2)
2,

(ΨT P2)(x̄; k̄) = k̄20 + k̄21 x̄1 + k̄22 x̄2 + k̄222(x̄2)
2, (28)

with x̄ = x + T , and coefficients k̄ = k̄(a, α,T ) given by

k̄10 = 1

2

(
3
(
T2 − 2

3

)
(aT1 + T2) − 2αT1

)
,

k̄20 = −T1 + aT2(T2 − 1),

k̄11 = −3

2
a
(
T2 − 2

3

) + α, k̄21 = 1,

k̄12 = 1 − 3

2
(aT1 + 2T2), k̄22 = −2a

(
T2 − 1

2

)
,

k̄112 = 3

2
a, k̄122 = 3

2
, k̄222 = a. (29)

Consider the point x0 = (0,−1), which is on the alpha loop. It is mapped by ΨT to
the point x̄0 = (T1,−1+ T2). Requiring that the alpha loop is mapped to R

2
> implies
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that wemust have x̄0 ∈ R
2
>, so that the following set of constraints (see Definition 3.3)

must be satisfied:

Φ = {T1 > 0, T1 > 1}. (30)

Using the fact that a ∈ (−1, 0) and the constraints (30), it follows that k̄20 from (29)
is negative, k̄20 < 0. Thus, (ΨT P)(x̄; k̄) has a cross-negative term, and the statement
of the theorem follows. ��
One can also readily prove that P(x; a, α) is nonkinetic under all affine transforma-
tions for |a| � 1, and |α| � 1. Thus, in the next two sections, we follow Step (2), case
(b), in Algorithm 1, applying transformations ΨX and ΨQSSA on the kinetic function
(ΨT P)(x̄; k̄) given by (28). We require the following conditions to be satisfied:

a ∈ (−1, 0), |α| � 1,

Φ =
{

T1 >
2
√
3

9
, T2 > 1

}

, (31)

with the set of constraints Φ ensuring that the homoclinic orbit is in R
2
>. The reason

for requiring |α| � 1 is that then the following results are more readily derived, and
the condition is sufficient for studying system (28) near the bifurcation point α = 0. A
representative phase plane diagram corresponding to the ODE system with RHS (28)
is shown in Fig. 2a, with fixed points, the alpha curve, and the vector field denoted
as in Fig. 1b, and with the red segments on the axes corresponding to the phase plane
regions where the cross-negative effect exists (see Definition 2.9).

4.3.1 X-factorable transformation

Let us apply the x-factorable transformation ΨX on system (28). Letting ΨX ,T ≡
ΨX ◦ ΨT , the resulting kinetic function KX ,T (x̄; k̄) ≡ (ΨX ,T P)(x̄; k̄) is given by

K1,X ,T (x̄; k̄) = x̄1(k̄
1
0 + k̄11 x̄1 + k̄12 x̄2 + k̄112 x̄1 x̄2 + k̄122(x̄2)

2),

K2,X ,T (x̄; k̄) = x̄2(k̄
2
0 + k̄21 x̄1 + k̄22 x̄2 + k̄222(x̄2)

2). (32)

Theorem 4.2 ODE systems with RHSs (28) and (32) are topologically equivalent in
the neighbourhood of the fixed points in R

2
>, with the homoclinic orbit in R

2
>, and a

saddle at the origin being the only boundary fixed point in R
2≥, if:

a ∈ (−1, 0), |α| � 1,

Φ =
{

T1 >
2
√
3

9
, T2 ∈

(

max(1,−aT1),
2

3
+ 8

3
a−2(3 − a2)(a + 4T1)

)}

. (33)

Proof Let us assume α = 0.
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Fig. 2 Phase plane diagrams of a ODE system with RHS (28); b ODE system with RHS (32); and c ODE
system with RHS (37). The stable node, the saddle, and the unstable spiral are represented as the green,
blue and red dot, respectively. The alpha curve is shown in purple, and the vector field as gray arrows.
On each plot it is indicated which kinetic transformation is applied to system (26)–(27). Red segments of
the phase plane axes in (a) denote the regions where the cross-negative effect exists. In b and c, boundary
fixed points are represented as the black dots, purple curves with a coarser dashing represent the saddle
manifolds that asymptotically approach an axis, while with a finer dashing those that are outside of R2≥.
d Phase plane diagram of a system for which x-factorable transformation significantly globally influences
the phase curves in such a way that a pure translation cannot resolve the artefacts. For more details, see the
text. The parameters are fixed to a = −0.8, α = 0, T1 = 2, T2 = 2 (Color figure online)

From statement (i) of Theorem 3.3 it follows that the saddle fixed point of (28) is
preserved under ΨX . Denoting the node and spiral fixed points of (28) by x̄∗

nd and x̄∗
sp,

respectively, one finds that the Jacobian is given by:
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JT |x̄=x̄∗
nd

=
(
a + 3

2a
−1(1 − a2) 1

2a
−2(3 − a2)

1 a−1(2 − a2)

)

�⇒ sign(JT |x̄=x̄∗
nd

) =
( − +

+ −
)

,

JT |x̄=x̄∗
sp

=
(
0 − 1

3 (3 − a2)
1 − 1

3a

)

�⇒ sign(JT |x̄=x̄∗
sp

) =
(
0 −
+ +

)

.

(34)

Conditions (ii) and (iii) of Theorem 3.3 are both satisfied for the node, but only
condition (ii) is satisfied for the spiral. The condition for the spiral to remain invariant
is obtained by demanding disc(JX ,T |x̄=x̄∗

sp
) < 0, where JX ,T is the Jacobian of (32),

and, taking into consideration (31), this leads to

T2 <
2

3
+ 8

3
a−2(3 − a2)(a + 4T1). (35)

Boundary fixed points are given by (0, 0), (T1 + a−1T2, 0) and (0, 1/2(1 ±√
1 + 4a−1T1) + T2). The second fixed point can be removed from the nonnega-

tive quadrant by demanding T2 > −aT1, while the pair of the last ones always has
nonzero imaginary part due to (31). Statement (iv) of Theorem 3.3 implies that the
eigenvalues at the origin are given by λ1 = k10 = 3/2(T2 − 2/3)(aT1 + T2) > 0 and
λ2 = k20 = −T1 + aT2(T2 − 1) < 0, so origin is a saddle fixed point.

As α can be chosen arbitrarily close to zero, and as KX ,T (x̄; k̄) is a continuous
function of α, the theorem holds for sufficiently small |α| �= 0, as well. ��

A representative phase plane diagram corresponding to theODE systemwithRHS (32)
is shown in Fig. 2b, where the saddle fixed point at the origin is shown as the black dot.
It can be seen that one of the stable manifolds of the nonboundary saddle, represented
as a dashed purple curve, approaches x2-axis asymptotically, instead of crossing it as
in Fig. 2a.

The homoclinic orbit of theODEsystemwithRHS (32) is positioned below the node
in the phase plane. Suppose the relative position of the stable sets is reversed by, say,
applying an improper orthogonal matrix with the angle fixed to 3π/2, ΨQ3π/2− , with
a representative phase plane shown in Fig. 2d. In this case, one can straightforwardly
show that the boundary fixed point given by

(
T1 + 1/2(1+√

1 − 4a−1T2), 0
)
, shown

as the black dot in Fig. 2d, cannot be removed from R
2≥, and is always a saddle. The

same conclusions are true for other similar configurations of the stable sets obtained by
rotations only. This demonstrates that x-factorable transformation can produce bound-
ary artefacts that have a significant global influence on the phase curves, that cannot
be eliminated by simply translating a region of interest sufficiently far away from the
axes. In order to eliminate the particular boundary artefact, a shear transformation
may be applied. Consider applying ΨX ,T ,Q3π/2−,S2 = ΨX ◦ ΨT ◦ ΨQ3π/2− ◦ ΨS2

on (26)–(27), where

S2 =
(

1 0
−a 1

)

, (36)
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and T1 = T2 ≡ T ∈ R, for simplicity, leading to

Kn,X ,T ,Q3π/2−,S2(x̄; k̄) = x̄n(k̄
n
0 + k̄n1 x̄1 + k̄n2 x̄2

+ k̄n11(x̄1)
2 + k̄n12 x̄1 x̄2 + k̄n22(x̄2)

2), n = 1, 2, (37)

where the coefficients k̄ = k̄(a, α,T ) are given by:

k̄10 = 1

2
T

( − 2 + a(2α + T + a(2 + 5T ) + 4T a2)
)
,

k̄20 = −1

2
T

(
2 + 2α + 3T + a(4 + 9T + 6T a)

)
,

k̄11 = −1

2
T a(2 + 5a), k̄21 = 1 + 9

2
T (

2

3
+ a),

k̄12 = 1 − 1

2
a
(
2α + a(2 + 5T + 8T a)

)
, k̄22 = α + a

(
2 + 9

2
T + 6T a

)
,

k̄111 = 1

2
a, k̄211 = −3

2
, k̄112 = 5

2
a2, k̄212 = −9

2
a, k̄122 = 2a3, k̄222 = −3a2,

(38)

together with a ∈ (−1, 0), |α| � 1 and Φ = {T > 1}.
Theorem 4.3 ODE systems with RHSs (26)–(27) and (37) are topologically equiva-
lent in the neighbourhood of the fixed points in R

2
>, with the homoclinic orbit in R

2
>,

and a saddle at the origin and a saddle with coordinates (0, 1/2T a−1(1+ 2a)) being
the only boundary fixed points in R

2≥, if:

a ∈
(

−1,−1

2

)

, |α| � 1, and

Φ = {T > max(1, 2a−2(1 − a2)), T < 2a−1(1 + 4a)−1(1 − a)}. (39)

Proof Following the same procedure as in the proof of Theorem 4.2, and noting
that the saddle, node and spiral fixed points are given by

(
T , T

)
,
(
T − 2a−2(1 −

a2), T +a−3(1−a2)
)
, and

(
T +2/9(3+a2), T −2/9a

)
, respectively, while the five

boundary fixed points are (0, 0), (T + 1/2
(
5T a ± √

T (8a−1(1 − a2) + 9T a2)
)
, 0),

(0, 1/2T a−1(1 + 2a)), (0, a−1
(
2/3 + T (1 + a)

)
), one finds (39). ��

Note that as α → − 1
2 , the only boundary fixed point in R

2≥ is a saddle at the origin,
and it is connected via a heteroclinic orbit to the saddle in R

2
>. A representative phase

plane diagram corresponding to the ODE system with RHS (37) is shown in Fig. 2c.
While systems (32) and (37) contain specific variations of the specific homoclinic

orbit given by (22), they, nevertheless, indicate possible phase plane topologies of
the kinetic equations containing homoclinic orbits of shapes similar to (22). With
a fixed shape and orientation of a homoclinic loop which is similar to (22), three
possible orientations of a corresponding saddle manifold in R

2
> are: it may extend

in R
2
> without asymptotically approaching a phase plane axis, it may asymptotically
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approach an axis, or it may cross an axis at a fixed point. In Fig. 2b, a combination
of the first and second orientation is displayed, while in Fig. 2c of the first and third
orientation.

4.3.2 The quasi-steady state transformation

InLemma4.2, itwas demonstrated that system (26)–(27) has at least one cross-negative
term under translation transformations. It can be readily shown that system (26)–(27)
in fact has minimally two cross-negative terms under translation transformations,
k̄12 < 0 and k̄20 < 0, and this is the case when a ∈ (−1, 0), Φ = {T1 ∈
(2

√
3/9,−T2a), T2 > 1}. Let us apply a quasi-steady state transformation ΨQSSA

on system (28) that eliminates the two cross-negative terms, i.e. two new variables are
introduced, ȳ1, ȳ2 ∈ R

2
>, and we take p1(x̄) = p2(x̄) = 1, in Definition 3.8. Letting

ΨQSSA,T ≡ ΨQSSA ◦ ΨT , the resulting kinetic function KQSSA,T ({x̄, ȳ}; k̄, ω, μ) ≡(
ΨQSSA,T P)({x̄, ȳ}; k̄, ω, μ) is given by

Kx1,QSSA,T ({x̄1, x̄2, ȳ1}; k̄, ω1) = k̄10 + k̄11 x̄1 + k̄12ω
−1
1 x̄1 x̄2 ȳ1 + k̄112 x̄1 x̄2 + k̄122(x̄2)

2,

Kx2,QSSA,T ({x̄1, x̄2, ȳ2}; k̄, ω2) = k̄20ω
−1
2 x̄2 ȳ2 + k̄21 x̄1 + k̄22 x̄2 + k̄222(x̄2)

2,

Ky1,QSSA,T ({x̄1, ȳ1}; ω1, μ) = μ−1(ω1 − x̄1 ȳ1),

Ky2,QSSA,T ({x̄2, ȳ2}; ω2, μ) = μ−1(ω2 − x̄2 ȳ2), (40)

with x̄n(0) > 0, ωn > 0, n = 1, 2, and μ → 0.
In (40), limxn→0 limμ→0 yn = +∞, n = 1, 2, and a geometrical implication is

that, say, the saddle manifold crossing the x2-axis in Fig. 2a, instead asymptotically
approaches the y1-axis. The asymptotic behavior of the saddle manifolds is achieved
by the additional (boundary) fixed points in (32) displayed in Fig. 2b, and by additional
phase space dimensions in (40).

Note that a composition an x-factorable and a quasi-steady state transformation
may be used to make (28) kinetic. For example, one may eliminate the cross-negative
term k̄12 in (28) by using the x1-factorable transformation ΨX1 , and the cross-negative
term k̄20 by using an appropriate ΨQSSA. An example of a kinetic function obtained by
a transformation of the form ΨQSSA,X1,T is given by

Kx1,QSSA,X1,T (x̄; k̄) = x̄1
(
k̄10 + k̄11 x̄1 + k̄12 x̄2 + k̄112 x̄1 x̄2 + k̄122(x̄2)

2),

Kx2,QSSA,X1,T ({x̄, ȳ}; k̄, ω) = k̄20ω
−1 x̄2 ȳ + k̄21 x̄1 + k̄22 x̄2 + k̄222(x̄2)

2,

Ky,QSSA,X1,T ({x̄2, ȳ}; ω,μ) = μ−1(ω − x̄2 ȳ), (41)

with x̄2(0) > 0, ω > 0, and μ → 0. Note that the chosen ΨQSSA,X1,T does not
introduce any additional fixed points when applied to system (28).
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4.4 Step (3): construction of the canonical reaction network RK−1

Definition 3.1 can be used to map the kinetic functions (32), (37), (40), and (41) to the
canonical reaction networks RK−1 . This is illustrated for (32) in this section, and for
(37) and (41) in Appendix 3. For clarity, both the induced kinetic equations and the
induced canonical reaction networks are presented. Note that the reaction networks are
assumed to be taking place in an open reactor, and are not necessarily purely chemical
in nature. Nevertheless, the non-chemical processes present in kinetic equations are
represented as quasi-chemical reactions. Such reactions take form of input/output of
chemical species, as well as containing quasi-species that are time-independent on
a relevant time scale, so that their constant concentration is absorbed into a quasi-
kinetics, leading to conservation laws not necessarily holding [13].

Writing x ≡ x̄, the induced kinetic equations for (32) are given by

dx1
dt

= k1x1 + k3x
2
1 − k5x1x2 − k7x

2
1 x2 + k8x1x

2
2 ,

dx2
dt

= −k2x2 + k4x1x2 + k6x
2
2 − k9x

3
2 ,

while the induced canonical reaction network:

r1 : s1
k1−→ 2s1, r2 : s2

k2−→ ∅,

r3 : 2s1
k3−→ 3s1, r4 : s1 + s2

k4−→ s1 + 2s2,

r5 : s1 + s2
k5−→ s2, r6 : 2s2

k6−→ 3s2,

r7 : 2s1 + s2
k7−→ s1 + s2, r8 : s1 + 2s2

k8−→ 2s1 + 2s2,

r9 : 3s2
k9−→ 2s2,

where k1 = |k̄10 |, k2 = |k̄20 |, k3 = |k̄11 |, k4 = |k̄21 |, k5 = |k̄12 |, k6 = |k̄22 |, k7 = |k̄112|,
k8 = |k̄122|, k9 = |k̄222|, with the coefficients k̄ given by (29), and the conditions given
by (33).

5 Summary

In the first part of the paper, a framework for constructing reaction systems having
prescribed properties has been formulated as an inverse problem and presented in
Sect. 3, relying on definitions introduced in Sect. 2. As a part of the framework,
in Sect. 3.2, kinetic transformations have been defined that enable one to map an
arbitrary polynomial ODE system with a set of constraints, possibly containing the
cross-negative terms, into a kinetic one. Augmented with the results from [1], such
transformations can be applied to some nonpolynomial systems as well. Systems for
which no affine transformation is kinetic have been defined as affinely nonkinetic
in Sect. 3.2.1, to emphasize the fact that significant changes to their solutions are
required. X-factorable transformation [21], that does not change the dimension of the
systems being transformed, but introduces a higher number of nonlinear terms and
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leads to autocatalytic reaction networks, has been defined in Sect. 3.2.2, and its prop-
erties when applied to two-dimensional systems have been derived in Theorem 3.3.
The quasi-steady state transformation, that increases the dimension of the systems
being transformed, but generally introduces a lower number of nonlinear terms, has
been presented in Sect. 3.2.3, and justified using Tikhonov’s and Korzukhin’s the-
orems [28]. As the focus of the paper has been more placed on the construction of
kinetic equations, and less on constructions of reaction networks, in Sect. 3.1 an ana-
lytical and algorithmic method for obtaining the so-called canonical networks has
been presented [6]. The framework may be used for constructing lower-dimensional
reaction systems displaying exotic phenomena, with Algorithm 1 exemplifying the
construction process.

In the second part of the paper, the inverse problem framework has been applied
to a case study of constructing bistable reaction systems undergoing a supercritical
homoclinic bifurcation, with a parameter controlling the stable sets separation, with
an overview of the procedure presented in Sect. 4.1. In Sect. 4.2, a polynomial ODE
system having a homoclinic orbit in the phase plane has been constructed using the
results from [36], and perturbed in such away that the sufficient conditions for the exis-
tence of the homoclinic bifurcation are fulfilled, as required by Andronov-Leontovich
Theorem [33]. In Sect. 4.3, the kinetic transformations from Sect. 3 have been used
in order to map the polynomial system to a kinetic one with the homoclinic orbit in
the positive quadrant. The topological phase space effects produced by the kinetic
transformations on the constructed systems have been discussed. In Sect. 4.4 and
Appendix 3, the canonical reaction networks induced by some of the kinetic equations
have been presented.

In this paper, we have constructed chemical reaction networks inducing two-
dimensional cubic kinetic functions with the deterministic ODEs (kinetic equations)
undergoing a supercritical homoclinic bifurcation. In a future publication, we will
report our results on the stochastic analysis of the constructed systems, consisting of
examining the quasi-stability of the limit cycle, and stochastic switching between the
stable sets, as a function of the bifurcation parameter and the parameter controlling the
stable set separation.Amotivation for such a study is the fact that stochastic effects play
an important role in systems biology due to the inherently small reactors [5,7,34,35],
and one might even say that systems biology has initiated a renaissance of the sto-
chastic reaction kinetics [38].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Oscillations in a subset of two-dimensional second-order
reaction systems with cross-negative terms

Theorem 5.1 Consider a two-dimensional ODE system with a quadratic polynomial
RHS, P(x; k) ∈ P2(R

2; R
2), k ∈ R

12:
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dx1
dt

= P1(x; k) = k10 + k11x1 + k12x2 + k111x
2
1 + k112x1x2 + k122x

2
2 ,

dx2
dt

= P2(x; k) = k20 + k21x1 + k22x2 + k211x
2
1 + k212x1x2 + k222x

2
2 , (42)

If k111 ≤ 0 and k222 ≤ 0, and if system (42) is nonnegative, then the system has no limit
cycles.

Proof Considering x1, x2 > 0, writing P(x; k) = (
P1(x1, x2; k),P2(x1, x2; k)

)
,

and letting the Dulac function to be given by B(x1, x2) = (x1x2)−1, it follows that

D(x1, x2; k) = ∂

∂x1

(
B(x1, x2)P1(x1, x2; k)

) + ∂

∂x2

(
B(x1, x2)P2(x1, x2; k)

)

= −
(

k10
x21 x2

+ k12
x21

+ k122x2
x21

)

+ k111
x2

−
(

k20
x1x22

+ k21
x22

+ k211x1
x22

)

+ k222
x1

.

Multiplying by −(x1x2)2, and defining a new function D̄(x1, x2; k) = −(x1x2)2

D(x1, x2; k), results in

D̄(x1, x2; k) = x2
[
P1(0, x2) − k111x

2
1

]
+ x1

[
P2(x1, 0) − k222x

2
2

]
.

If k111 ≤ 0 and k222 ≤ 0, and if system (42) is nonnegative, so that P1(0, x2) ≥ 0 and
P2(x1, 0) ≥ 0, then D̄ ≥ 0. The only case when a limit cycle may exist is if D̄ = 0
for all x1, x2 > 0, and in [12] it is shown that no limit cycles exist in this case. ��

In [12], it was shown that the absence of cross-negative terms in P(x; k) ∈
P2(R

2; R
2), with k111 ≤ 0 and k222 ≤ 0, implies the absence of limit cycles, i.e.

one requires the more restrictive condition P(x; k) ∈ P
K
2 (R2≥; R

2). Theorem 5.1
shows that, in fact, absence of the cross-negative effect in P(x; k) ∈ P2(R

2; R
2),

with k111 ≤ 0 and k222 ≤ 0, implies the absence of limit cycles, i.e. one requires the
less restrictive condition P(x; k) ∈ P2(R

2≥; R
2).

Appendix 2: Andronov-Leontovich theorem

Andronov-Leontovich theorem [33]: Consider system (9) with P(x; k, α) ∈
Pm(R2; R

2), m ∈ N, where α ∈ R is a bifurcation parameter. Let λ1(α) and λ2(α)

be eigenvalues of the Jacobian corresponding to the two-dimensional system (9),
J = ∇P(x; k, α), and suppose that at α = 0, the following homoclinic bifurcation
conditions (i)–(ii) are satisfied, and that (9) is generic, i.e. the following homoclinic
genericity conditions (iii)–(iv) are satisfied:

(i) System has a saddle fixed point x∗ = 0 with eigenvalues λ1(0) < 0 < λ2(0).
(ii) System has a homoclinic orbit γ ∗ to the saddle fixed point x∗.
(iii) Nondegeneracity condition: σ0 = λ1(0) + λ2(0) �= 0, where σ0 ∈ R is called

the saddle quantity.
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(iv) Transversality condition: Melnikov integral, M(α), along the homoclinic orbit,
and evaluated at α = 0, satisfies:

M(0) =
∫ +∞

−∞
ϕ(t)

(

P(x; k, 0) × ∂P(x; k, α)

∂α

∣
∣
∣
∣
α=0

)

dt �= 0, (43)

where ϕ(t) = exp
(
− ∫ t

0 (∇ · P(x; k, 0)dτ
)
. This is equivalent to splitting of

the homoclinic orbit at the bifurcation with a nonzero speed.

Then, for all sufficiently small |α|, there exists a neighbourhood of the saddle fixed
point and the homoclinic orbit such that a unique limit cycle bifurcates from γ ∗. If
σ0 < 0, the homoclinic bifurcation is supercritical, giving rise to a unique stable limit
cycle, while if σ0 > 0, the homoclinic bifurcation is subcritical, giving rise to a unique
unstable limit cycle.

Appendix 3: The canonical reaction networks induced by (37) and (41)

Writing x ≡ x̄, the induced kinetic equations for (37) are given by

dx1
dt

= −k1x1 − k3x
2
1 + k5x1x2 − k7x

3
1 + k9x

2
1 x2 − k11x1x

2
2 ,

dx2
dt

= k2x2 + k4x1x2 − k6x
2
2 − k8x

2
1 x2 + k10x1x

2
2 − k12x

3
2 ,

while the canonical reaction network:

r1 : s1
k1−→ ∅, r2 : s2

k2−→ 2s2,

r3 : 2s1
k3−→ s1, r4 : s1 + s2

k4−→ s1+s2+sign(k̄21)s2,

r5 : s1 + s2
k5−→ 2s1 + s2, r6 : 2s2

k6−→ s2,

r7 : 3s1
k7−→ 2s1, r8 : 2s1 + s2

k8−→ 2s1,

r9 : 2s1 + s2
k9−→ 3s1 + s2, r10 : s1 + 2s2

k10−→ s1 + 3s2,

r11 : s1 + 2s2
k11−→ 2s2, r12 : 3s2

k12−→ 2s2,

where k1 = |k̄10 |, k2 = |k̄20 |, k3 = |k̄11 |, k4 = |k̄21 |, k5 = |k̄12 |, k6 = |k̄22 |, k7 = |k̄111|, k8 =
|k̄211|, k9 = |k̄112|, k10 = |k̄212|, k11 = |k̄122|, k12 = |k̄222|, with the coefficients k̄ given
by (38), and the conditions given by (39). Note that by taking a ∈ (− 8

9 ,
1
5 (2−√

34)
)

and T = − 2
3 (2 + 3a)−1, it follows that k4 = 0.
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Writing x ≡ x̄, the induced kinetic equations for (41) are given by

dx1
dt

= k1x1 + k3x
2
1 − k5x1x2 − k7x

2
1 x2 + k8x1x

2
2 ,

dx2
dt

= −k2x2x3 + k4x1 + k6x2 − k9x
2
2 ,

dx3
dt

= k10 − k11x2x3,

while the canonical reaction network:

r1 : s1
k1−→ s1 + sign(k̄10)s1, r2 : s2 + s3

k2−→ s3,

r3 : 2s1
k3−→ 3s1, r4 : s1

k4−→ s1 + s2,

r5 : s1 + s2
k5−→ s2, r6 : s2

k6−→ 2s2,

r7 : 2s1 + s2
k7−→ s1 + s2, r8 : s1 + 2s2

k8−→ 2s1 + 2s2,

r9 : 2s2
k9−→ s2, r10 : ∅

k10−→ s3,

r11 : s2 + s3
k11−→ s2,

with k1 = |k̄10 |, k2 = |k̄20 |, k3 = |k̄11 |, k4 = |k̄21 |, k5 = |k̄12 |, k6 = |k̄22 |, k7 = |k̄112|,
k8 = |k̄122|, k9 = |k̄222|, k10 = μω, k11 = μ, the coefficients k̄ given by (29), ω > 0,
μ → 0, and conditions given by (33), with the lower bound on T2 being 1. Note that
by taking T1 = −T2a−1, it follows that k1 = 0.
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