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CUT-NORM AND ENTROPY MINIMIZATION OVER WEAK* LIMITS

MARTIN DOLEŽAL AND JAN HLADKÝ

Abstract. We prove that the accumulation points of a sequence of graphs G1, G2, G3, . . . with
respect to the cut-distance are exactly the weak∗ limit points of subsequences of the adjacency
matrices (when all possible orders of the vertices are considered) that minimize the entropy over all
weak∗ limit points of the corresponding subsequence. In fact, the entropy can be replaced by any
map W 7→

∫∫
f(W (x, y)), where f is a continuous and strictly concave function. Our proofs are

elementary, and do not use the regularity lemma.
As a corollary, we obtain a self-contained proof of compactness of the cut-distance topology. In

particular, it avoids the regularity lemma machinery or ultraproduct techniques.

1. Introduction

The theory of limits of dense graphs was developed in [9, 4] and has revolutionized graph theory
since then. The key objects of the theory are so-called graphons. More precisely, a graphon is
a symmetric Lebesgue measurable function from I2 to [0, 1] where I = [0, 1] is the unit interval
(equipped by the Lebesgue measure λ). In the heart of the theory is then the following statement.

Theorem 1 (Informally). Suppose that G1, G2, G3, . . . is a sequence of graphs. Then there exists a
subsequence Gk1 , Gk2 , Gk3 , . . . and a graphon W : I2 → [0, 1] such that Gk1 , Gk2 , Gk3 , . . . converges
to W .

Roughly speaking, to obtain the graphon W one looks at the adjacency matrices of the graphs
(Gkn)n from distance. One possible way an analyst might attempt to make this statement formal
could be to take W as a weak∗ limit1 of adjacency matrices of the graphs (Gkn)n represented as
functions from I2 to {0, 1}. Such a version of Theorem 1 would be just an instance of the Banach–
Alaoglu Theorem. However, the weak∗ topology turns out to be too coarse to provide the favorable
properties that are available in the contemporary theory of graph limits.2 A good toy example is
the sequence of the complete balanced bipartite graphs (Kn,n)∞n=1. When considering adjacency
matrices of these graphs with vertices grouped into the two parts of the bipartite graphs, the
corresponding weak∗ limit is a 2× 2-chessboard function with values 0 and 1, which we denote by
Wbipartite. This turns out to be a desirable limit. On the other hand, one could consider adjacency

matrices ordered differently. Ordering the vertices randomly, we get the constant Wconst ≡ 1
2 as

the weak∗ limit (almost surely). We see that it is undesirable to get Wconst as the limit object as
the only information carried by such an object is that the overall edge densities of the graphs along
the sequence converge to 1

2 .
So, instead of the weak∗ topology one considers the so-called cut-norm topology, and this is also

the topology to which “converges to W” in Theorem 1 refers. The cut-norm ‖ · ‖� is a certain
uniformization of the weak∗ topology. Indeed, recall that given symmetric measurable functions

Jan Hladký was supported by the Alexander von Humboldt Foundation. Research of Martin Doležal was supported
by the GAČR project GA16-07378S, and by RVO:67985840.

1See the Appendix for basic information about the weak∗ topology.
2A primal example of such a favorable property is the continuity of subgraph densities.
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Γ : I2 → [0, 1] and Γ1,Γ2,Γ3, . . . : I2 → [0, 1], the two convergence notions compare as follows.

Γn
w∗−→ Γ ⇐⇒ sup

B⊂I

{
lim sup

n

∣∣∣∣∫
x∈B

∫
y∈B

Γn(x, y)− Γ(x, y)

∣∣∣∣} = 0 ,

Γn
‖·‖�−→ Γ ⇐⇒ lim sup

n

{
sup
B⊂I

∣∣∣∣∫
x∈B

∫
y∈B

Γn(x, y)− Γ(x, y)

∣∣∣∣} = 0 .

We shall state the formal version of Theorem 1 in a somewhat bigger generality for graphons. If
Γ,Γ′ : I2 → [0, 1] are two graphons then we say that they are versions of each other if they differ
only by some measure-preserving transformation of I (see Section 2 for a precise definition).

Then the formal statement of Theorem 1 reads as follows.

Theorem 2. Suppose that Γ1,Γ2,Γ3, . . . : I2 → [0, 1] is a sequence of graphons. Then there exists a
sequence k1 < k2 < k3 < · · · of natural numbers, versions Γ′k1 ,Γ

′
k2
,Γ′k3 , . . . of Γk1 ,Γk2 ,Γk3 , . . ., and

a graphon W : I2 → [0, 1] such that the sequence Γ′k1 ,Γ
′
k2
,Γ′k3 , . . . converges to W in the cut-norm.

Prior to our work, there were two approaches to proving Theorem 2. One, taken in [9] and
in [10], uses (variants of) the regularity lemma to group parts of I according to the structure of Γn.
This way, one approximates the graphons by step-functions, and the limit graphon W is a limit
of these step-functions. The other approach, taken in [6], relies on ultraproduct techniques. This
later approach is extremely technical, and was developed for the (more difficult) theory of limits of
hypergraphs, where for some time the regularity approach was not available.

We present a third proof of Theorem 2. We believe that our approach is simpler, both on
the conceptual level and on the technical level. Another advantage is that our approach seems
to be more accessible to analysts. Last, but perhaps most importantly, our proof provides for
the first time a characterization of the cut-norm convergence in terms of the weak∗ convergence.
Namely, fixing any continuous and strictly concave function f : [0, 1] → R, we prove that there is
a subsequence Γk1 ,Γk2 ,Γk3 , . . . such that the map W 7→

∫∫
f(W (x, y)) attains its minimum on the

space of all weak∗ accumulation points of versions of graphons Γk1 ,Γk2 ,Γk3 , . . ., and that any such
minimizer is an accumulation point of a subsequence of Γ1,Γ2,Γ3, . . . in the cut-distance. This
result is consistent with our toy example above. Indeed, for any strictly concave function f we have∫∫

f (Wbipartite(x, y)) <
∫∫

f (Wconst(x, y)) by Jensen’s inequality. Jensen’s inequality underlies the
general proof of our result.

Note that every concave function defined on an open interval is continuous. Therefore the
additional assumption of the continuity of the concave function f : [0, 1]→ R which we work with
in this paper only means that f is continuous (from the appropriate sides) at 0 and at 1.

Let f : [0, 1] → R be an arbitrary continuous and strictly concave function. Given a graphon
Γ : I2 → [0, 1], we write INTf (Γ) :=

∫
x∈I
∫
y∈I f(Γ(x, y)). When f is the binary entropy, the

integration INTf (W ) appears also in the work on large deviations in random graphs, [5] (which
does not relate to the current work otherwise), and is called the entropy of the graphon W .

For a sequence Γ1,Γ2,Γ3, . . . : I2 → [0, 1] of graphons, we denote by ACCw∗(Γ1,Γ2,Γ3, . . .) the
set of all functions W : I2 → [0, 1] for which there exist versions Γ′1,Γ

′
2,Γ
′
3, . . . of Γ1,Γ2,Γ3, . . .

such that W is a weak∗ accumulation point of the sequence Γ′1,Γ
′
2,Γ
′
3, . . .. We also denote by

LIMw∗(Γ1,Γ2,Γ3, . . .) the set of all functions W : I2 → [0, 1] for which there exist versions
Γ′1,Γ

′
2,Γ
′
3, . . . of Γ1,Γ2,Γ3, . . . such that W is a weak∗ limit of the sequence Γ′1,Γ

′
2,Γ
′
3, . . .. We

have LIMw∗(Γ1,Γ2,Γ3, . . .) ⊂ ACCw∗(Γ1,Γ2,Γ3, . . .). Note that LIMw∗(Γ1,Γ2,Γ3, . . .) can be
empty but ACCw∗(Γ1,Γ2,Γ3, . . .) cannot be empty by the sequential Banach–Alaoglu Theorem
(see the Appendix for more details). Also, note that such weak∗ accumulation points (and thus
also limits) are necessarily symmetric, Lebesgue measurable, [0, 1]-valued, and thus graphons.

Our main result states that, given a sequence of graphons Γ1,Γ2,Γ3, . . ., there is a subse-
quence Γk1 ,Γk2 ,Γk3 , . . . such that the minimum of INTf (·) over the set ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)
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is attained, and the graphon attaining this minimum is an accumulation point of the sequence
Γ1,Γ2,Γ3, . . . in the cut-distance.

Theorem 3. Suppose that f : [0, 1]→ R is an arbitrary continuous and strictly concave function.
Suppose that Γ1,Γ2,Γ3, . . . : I2 → [0, 1] is a sequence of graphons.

(a) Suppose that W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .) and that W is not an accumulation point of the

sequence Γ1,Γ2,Γ3, . . . in the cut-norm. Then there exists W̃ ∈ ACCw∗(Γ1,Γ2,Γ3, . . .) such

that INTf (W̃ ) < INTf (W ).
(b) There exist a subsequence Γk1 ,Γk2 ,Γk3 , . . . and a graphon Wmin ∈ ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)

such that

INTf (Wmin) = inf {INTf (W ) : W ∈ ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)} .

Clearly, Theorem 3 implies Theorem 2.
The proof of Theorem 3 is given in Sections 4 and 5.
To complete the “characterization of the cut-norm convergence in terms of the weak∗ conver-

gence” advertised above, we prove that weak∗ limit points that do not minimize INTf (·) cannot be
limit points in the cut-norm.

Proposition 4. Suppose that f : [0, 1]→ R is an arbitrary continuous and strictly concave function.
Suppose that Γ1,Γ2,Γ3, . . . : I2 → [0, 1] is a sequence of graphons. If W ∈ LIMw∗(Γ1,Γ2,Γ3, . . .)
is a cut-norm limit of versions of Γ1,Γ2,Γ3, . . . then W is a minimizer of INTf (·) over the space
LIMw∗(Γ1,Γ2,Γ3, . . .).

In Section 4 we show that Proposition 4 is an easy consequence of a result of Borgs, Chayes, and
Lovász [3] on uniqueness of graph limits. In addition, we give a self-contained proof.

2. Notation and tools

For every function W : I2 → R, we define the cut-norm of W by

(1) ‖W‖� = sup
A

∣∣∣∣∫
A

∫
A
W (x, y)

∣∣∣∣ ,
where A ranges over all measurable subsets of I. Another slightly different formula is also often
used in the literature where one replaces the right-hand side of (1) by supA,B

∣∣∫
A

∫
BW (x, y)

∣∣ where
two sets A and B range over all measurable subsets of I. However, it is easy to see that for every
symmetric function W , we have

sup
A

∣∣∣∣∫
A

∫
A
W (x, y)

∣∣∣∣ ≤ 3

2
sup
A,B

∣∣∣∣∫
A

∫
B
W (x, y)

∣∣∣∣ ,
and so the notion of convergence of sequences of graphons (which are symmetric) in the cut-norm
is irrelevant to the choice between these two formulas.

We say that a graphon Γ: I2 → [0, 1] is a step-graphon with steps I1, I2, . . . , Ik ⊂ I if the sets
I1, I2, . . . , Ik are pairwise disjoint, I1 ∪ I2 ∪ . . . ∪ Ik = I and W|Ii×Ij is constant (up to a null set)
for every i, j = 1, 2, . . . , k.

We say that a measurable function γ : I → I is an almost-bijection if there exist conull sets
J1, J2 ⊂ I such that γ|J1 is a bijection from J1 onto J2. When we talk about the inverse of such a

function γ then we mean (γ|J1)−1 but we denote it only by γ−1. Note that this inverse γ−1 is not
unique but that does not cause any problems as any two inverses of γ differ only on a null set.

If Γ,Γ′ : I2 → [0, 1] are two graphons then we say that Γ′ is a version of Γ if there exists a
measure preserving almost-bijection γ : I → I such that Γ′(x, y) = Γ(γ−1(x), γ−1(y)) for almost
every (x, y) ∈ I2.
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Related to versions, we recall that the cut-distance and L1-distance between two graphonsW1,W2

are defined as δ�(W1,W2) = inf ‖U1 −W2‖� and δ1(W1,W2) = inf ‖U1 −W2‖1 where U1 ranges
over all versions of W1.

By an ordered partition of I, we mean a partition of I with a fixed order of the sets from the
partition. For an ordered partition J of I into finitely many sets C1, C2, . . . , Ck, we define mappings
αJ ,1, αJ ,2, . . . , αJ ,3 : I → I, and a mapping γJ : I → I by

αJ ,1(x) =

∫ x

0
1C1(y) d(y) ,

αJ ,2(x) = αJ ,1(1) +

∫ x

0
1C2(y) d(y) ,

...

αJ ,k(x) = αJ ,1(1) + αJ ,2(1) + . . .+ αJ ,k−1(1) +

∫ x

0
1Ck

(y) d(y) ,

γJ (x) = αJ ,i(x) if x ∈ Ci, i = 1, 2, . . . , k .

(2)

Informally, γJ is defined in such a way that it maps the set C1 to the left side of the interval I,
the set C2 next to it, and so on. Finally, the set Ck is mapped to the right side of the interval I.
Clearly, γJ is a measure preserving almost-bijection.

For a graphon W : I2 → [0, 1] and an ordered partition J of I into finitely many sets, we denote
by JW the version of W defined by JW (x, y) = W (γ−1

J (x), γ−1
J (y)) for every (x, y) ∈ I2.

2.1. Lebesgue points. Recall that whenever W : I2 → R is an integrable function then almost
every point (x, y) ∈ I2 is a Lebesgue point of W . This means that for every η > 0 there exists
δ0 > 0 such that for every δ ∈ (0, δ0] we have

(3)
1

4δ2

∫ x+δ

x−δ

∫ y+δ

y−δ
|W (x, y)−W (w, z) d(w) d(z)| < η .

Note that the integration in (3) is over the square [x − δ, x + δ] × [y − δ, y + δ] (with (x, y) in
the center), and it is not possible in general to extend this formula to integration over arbitrary
rectangles containing the point (x, y). However, easy (and well known) calculations show that one
can extend this formula to integration over all rectangles containing the point (x, y) such that the
ratio of the lengths of their sides lies in some interval with positive endpoints given in advance (e.g.
when no side of the rectangle is longer than double the length of the other side). Therefore for a.e.
(x, y) ∈ I2 and for every η > 0 there exists δ0 > 0 such that whenever [p1, p2] ⊂ I and [q1, q2] ⊂ I
are intervals such that the length of the intervals is smaller or equal to δ0, such that the ratio of the
lengths of these intervals is at least 1

2 and at most 2, and such that [p1, p2] contains x and [q1, q2]
contains y then

1

(p2 − p1)(q2 − q1)

∫ p2

p1

∫ q2

q1

|W (x, y)−W (w, z) d(w) d(z)| < η ,

which clearly implies that

(4)

∣∣∣∣W (x, y)− 1

(p2 − p1)(q2 − q1)

∫ p2

p1

∫ q2

q1

W (w, z) d(w) d(z)

∣∣∣∣ < η .

2.2. Averaged graphons. The next definition introduces graphons derived by averaging of a
given graphon W on a given partition of I. Here, we denote by λ⊕2 the two-dimensional Lebesgue
measure on I2.
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Definition 5. Suppose that Γ : I2 → [0, 1] is a graphon. For a partition I of the unit interval
into finitely many sets of positive measure, I = I1 t I2 t . . .t Ik, we define a graphon ΓonI which is
defined on each rectangle Ii × Ij to be the constant 1

λ⊕2(Ii×Ij)

∫
Ii

∫
Ij
W (x, y).

The next lemma shows that we can replace any graphon W by its averaged graphon (on some
partition of I) without changing the value of INTf (W ) too much.

Lemma 6. Let f : [0, 1]→ R be an arbitrary continuous and strictly concave function, and let J be
an arbitrary partition of I into finitely many intervals of positive measure. Suppose that W : I2 →
[0, 1] is a graphon, and let ε > 0. Then there exists a partition I of I into finitely many intervals
of positive measure such that I is a refinement of J and such that |INTf (W )− INTf (WonI)| < ε.

Proof. As f is continuous, there is η > 0 such that |f(x) − f(y)| < 1
2ε whenever x, y ∈ [0, 1] are

such that |x − y| < η. Also, as W is an integrable function, almost every point (x, y) ∈ I2 is a
Lebesgue point of W . This implies that for a.e. (x, y) ∈ I2 there is a natural number n(x, y) such
that whenever [p1, p2] ⊂ I and [q1, q2] ⊂ I are intervals of lengths smaller or equal to 2

n(x,y) such

that the ratio of the lengths is at least 1
2 and at most 2, and such that [p1, p2] contains x and [q1, q2]

contains y then the inequality (4) holds. Let us denote C := maxx∈[0,1] |f(x)|. We find a natural
number n0 large enough such that

(5) λ⊕2
({

(x, y) ∈ I2 : n(x, y) > n0

})
<

1

4C
ε ,

and such that 1
n0

is smaller than the length of all intervals from the partition J . Let us denote

B :=
{

(x, y) ∈ I2 : n(x, y) > n0

}
. Now let I be an arbitrary refinement of the partition J into

finitely many intervals I1, I2, . . . , Ik, such that the length of each of these intervals is at least 1
n0

and at most 2
n0

. For each i, j = 1, 2, . . . , k, we denote Ci,j = 1
λ⊕2(Ii×Ij)

∫
Ii

∫
Ij
W (x, y). Inequality (4)

then tells us that

|W (x, y)− Ci,j | < η for every (x, y) ∈ (Ii × Ij) \B, i, j = 1, 2, . . . , k ,

and so

(6) |f(W (x, y))− f(Ci,j)| < 1
2ε for every (x, y) ∈ (Ii × Ij) \B, i, j = 1, 2, . . . , k .

So we have ∣∣INTf (W )− INTf (WonI)
∣∣

≤
∫∫
B

∣∣f(W (x, y))− f(WonI(x, y))
∣∣+

k∑
i,j=1

∫∫
(Ii×Ij)\B

∣∣f(W (x, y))− f(WonI(x, y))
∣∣

(6)

≤2C · λ⊕2(B) +
1

2
ε

k∑
i,j=1

λ⊕2((Ij × Ij) \B)

(5)
<

1

2
ε+

1

2
ε = ε ,

as we wanted. �

The next lemma says that if a graphon is a weak∗ limit point then so is any graphon derived by
averaging of the original one on a given partition of I into intervals.

Lemma 7. Suppose that Γ1,Γ2,Γ3, . . . : I2 → [0, 1] is a sequence of graphons. Suppose that
W ∈ LIMw∗(Γ1,Γ2,Γ3, . . .) and that we have a partition I of I into finitely many intervals of
positive measure. Then WonI ∈ LIMw∗(Γ1,Γ2,Γ3, . . .).

5



Moreover, whenever Γ′1,Γ
′
2,Γ
′
3, . . . are versions of Γ1,Γ2,Γ3, . . . which converge to W in the weak∗

topology then the versions Γ′′1,Γ
′′
2,Γ
′′
3, . . . of Γ1,Γ2,Γ3, . . . weak∗ converging to WonI can be chosen

in such a way that for every natural number j and for every intervals K,L ∈ I it holds∫
K

∫
L

Γ′j(x, y) =

∫
K

∫
L

Γ′′j (x, y) .

The proof of Lemma 7 follows a relatively standard probabilistic argument. Suppose for simplicity
that Γ1,Γ2,Γ3, . . . weak∗ converges to W . Then, for each n, we consider a version Γ′n of Γn which is
obtained by splitting each interval A ∈ I into n subsets of the same measure and then permuting
these subsets of A at random. It can then be shown that Γ′1,Γ

′
2,Γ
′
3, . . . converge to WonI almost

surely. The next two definitions are needed to make precise the notion of randomly permuting
parts of the graphon within a given partition.

Definition 8. Given a set A ⊂ I of positive measure and a number s ∈ N, we can consider

a partition A = JAKs1 t JAKs2 t . . . t JAKss, where each set JAKsi has measure λ(A)
s and for each

1 ≤ i < j ≤ s, the set JAKsi is entirely to the left of JAKsj. These conditions define the partition

A = JAKs1t JAKs2t . . .t JAKss uniquely, up to null sets. For each i, j ∈ [s] there is a natural, uniquely

defined (up to null sets), measure preserving almost-bijection χA,si,j : JAKsi → JAKsj which preserves
the order on the real line.

Definition 9. Suppose that Γ : I2 → [0, 1] is a graphon. For a partition I of I into finitely many
sets of positive measure, I = I1 t I2 t . . . t Ik, and for s ∈ N, we define a discrete distribution
W(Γ, I, s) on graphons using the following procedure. We take π1, . . . , πk : [s] → [s] independent
uniformly random permutations. After these are fixed, we define a sample W ∼W(Γ, I, s) by

W (x, y) = W
(
χIi,sp,πi(p)

(x), χ
Ij ,s

q,πj(q)(y)
)

when x ∈ JIiKsp, y ∈ JIjKsq, i, j ∈ [k], p, q ∈ [s] .

This defines the sample W : I2 → [0, 1] uniquely up to null sets, and thus defines the whole
distribution W(Γ, I, s). Observe that W(Γ, I, s) is supported on (some) versions of Γ.

We call the sets JIjKsq stripes.

Proof of Lemma 7. By considering suitable versions of the graphons Γn, we can without loss of
generality assume that the sequence Γ1,Γ2,Γ3, . . . itself converges to W in the weak∗ topology. For
each n ∈ N, let us sample Un ∼ W(Γn, I, n). We claim that the sequence U1, U2, U3, . . . converges
to WonI in the weak∗ topology almost surely. As each Un is a version of Γn, this will prove the
lemma. So, let us now turn to proving the claim.

Let i, j ∈ [k] be arbitrary. Further, let 0 ≤ p1 < p2 ≤ 1 and 0 ≤ r1 < r2 ≤ 1 be arbitrary rational
numbers such that the rectangle [p1, p2]× [r1, r2] is contained (modulo a null set) in Ii× Ij . Having
fixed i, j, p1, p2, r1, r2, let us write c for the value of WonI on Ii × Ij . For each n ∈ N, let En be the
event that ∣∣∣∣∣

∫∫
[p1,p2]×[r1,r2]

Und(λ⊕2)− c(p2 − p1)(r2 − r1)

∣∣∣∣∣ > 4
√

1/n+ 4
n .

Let us now bound the probability that En occurs. To this end, let Yn be the value of
∫∫

[p1,p2]×[r1,r2] Und(λ⊕2).

We clearly have E[Yn] = c(p2 − p1)(r2 − r1)± 4
n (the error ± 4

n comes from those products of pairs
of stripes that intersect both [p1, p2] × [r1, r2] and its complement). Therefore, if En occurs then

|Yn − E[Yn]| > 4
√

1/n. Suppose that we want to compute Yn. From the k random permutations
π1, π2, . . . , πk : [n]→ [n] used in Definition 9 to define Un, we only need to know the permutations
πi and πj . To generate these, we toss in i.i.d. points i1, i2, . . . , in, j1, j2, . . . , jn into the unit inter-
val I; the Euclidean order of the points i1, i2, . . . , in naturally defines πi and similarly the points
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j1, j2, . . . , jn naturally define πj .
3 So, we can view Yn as a random variable on the probability space

I2n. Observe that if s = (i1, i2, . . . , in, j1, j2, . . . , jn) and s′ = (i′1, i
′
2, . . . , i

′
n, j
′
1, j
′
2, . . . , j

′
n) are two

elements of I2n that differ in only one coordinate, then |Yn(s)− Yn(s′)| ≤ 2
n . Thus the Method of

Bounded Differences (see [12]) tells us that

P [En] ≤ P
[
|Yn − E[Yn]| > 4

√
1/n

]
≤ 2 exp

(
−

2( 4
√

1/n)2

2n ·
(

2
n

)2
)

= 2 exp
(
−
√
n/4

)
.

Because the sequence (2 exp (−
√
n/4))

∞
n=1 is summable, the Borel–Cantelli lemma allows to con-

clude that only finitely many events En occur, almost surely. Thus, almost surely, for any weak∗

accumulation point U of the sequence U1, U2, U3, . . ., we have

(7)

∫∫
[p1,p2]×[r1,r2]

Ud(λ⊕2) = c(p2 − p1)(r2 − r1) .

By applying the union bound, we obtain that (7) holds for all (countably many) choices of
i, j, p1, p2, r1, r2, almost surely. Since the elements of I are intervals, the above system of rectangles
[p1, p2] × [r1, r2] generates the Borel σ-algebra on I2. Consequently, we obtain that U ≡ WonI ,
almost surely.

The “moreover” part obviously follows from the proof. �

2.3. Jensen’s inequality and averaged graphons. Recall that one of the possible formulations
of Jensen’s inequality says that if (Ω, λ) is a measurable space with λ(Ω) > 0, g : Ω → R is a
measurable function and f : R→ R is a concave function then

(8) f

(
1

λ(Ω)

∫
Ω
g(x)

)
≥ 1

λ(Ω)

∫
Ω
f(g(x)) .

We use this formulation of Jensen’s inequality to prove the following simple lemma.

Lemma 10. Let f : [0, 1] → R be a continuous and strictly concave function. Let Γ: I2 → [0, 1]
be a step-graphon with steps I1, I2, . . . , Ik, and let W : I2 → [0, 1] be another graphon such that∫
Ii×Ij W =

∫
Ii×Ij Γ for every i, j = 1, 2, . . . , k. Then INTf (W ) ≤ INTf (Γ).

Proof. It clearly suffices to show that for every i, j = 1, 2, . . . , k it holds∫
Ii

∫
Ij

f(W (x, y)) ≤
∫
Ii

∫
Ij

f(Γ(x, y)) .

So let us fix i, j, and let Ci,j be the constant for which Γ|Ii×Ij = Ci,j almost everywhere. Then we
have ∫

Ii

∫
Ij

f(W (x, y))
(8)

≤ λ⊕2(Ii × Ij) · f

(
1

λ⊕2(Ii × Ij)

∫
Ii

∫
Ij

W (x, y)

)
= λ⊕2(Ii × Ij) · f (Ci,j)

=

∫
Ii

∫
Ij

f(Γ(x, y)) ,

as we wanted. �

3The exception being when some of the points i1, i2, . . . , in or of the points j1, j2, . . . , jn coincide, in which case
the order of these points does not determine a permutation. This event however happens almost never.
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Figure 1. The graphon U3 from Section 3.2. Value 0 is white, value 1
2 is gray, value

1 is black.

3. Summaries of proofs

3.1. Overview of proof of Theorem 3(a). Suppose for simplicity that the sequence Γ1,Γ2,Γ3, . . .
converges to W in the weak∗ topology. The key step to the proof of Theorem 3(a) is Lemma 11.
There we prove that whenever we fix a sequence (Bn)∞n=1 of measurable subsets of I and define a
new version Γ′n of Γn (for every n) by “shifting the set Bn to the left side of the interval I”, then any

weak∗ accumulation point W̃ of the sequence Γ′1,Γ
′
2,Γ
′
3, . . . satisfies INTf (W̃ ) ≤ INTf (W ). As this

result relies on Jensen’s inequality, we actually get INTf (W̃ ) < INTf (W ) when we choose the sets
Bn carefully. “Carefully” means that each the integrals

∫
Bn

∫
Bn

Γn(x, y) differs from the integral∫
Bn

∫
Bn
W (x, y) at least by some given ε > 0. But it is always possible to choose the sets Bn in

this way as the graphon W is not a cut-norm accumulation point of the sequence Γ1,Γ2,Γ3, . . ..

3.2. Overview of proof of Theorem 3(b). Let us begin with the most straightforward attempt
for a proof. For now, let us work with the simplifying assumption that all accumulation points are
actually limits. As we shall see later, this simplifying assumption is a major cheat for which an
extra patch will be needed. Then, let

m := inf {INTf (W ) : W ∈ LIMw∗(Γ1,Γ2,Γ3, . . .)} .

For each k ∈ N, let us fix a sequence Γk1,Γ
k
2,Γ

k
3, . . . of versions of Γ1,Γ2,Γ3, . . . which converges in

the weak∗ topology to a graphon W̃k with INTf (W̃k) < m + 1
k . Now, we might diagonalize and

hope that any weak∗ accumulation point (whose existence is guaranteed by the Banach–Alaoglu
Theorem) W ∗ of the sequence Γ1

1,Γ
2
2,Γ

3
3, . . . satisfies INTf (W ∗) ≤ m. The reason for this hope

being vain is the discontinuity of INTf (·) with respect to the weak∗ topology. As an example, let us

take a situation when each W̃k is a 2(k + 2)× 2(k + 2)-chessboard {0, 1}-valued function, with the

last two rows and columns having value 1
2 (see Figure 1). In other words, most of each graphon W̃k

corresponds to a complete balanced bipartite graphon, to which an additional artificial subdivision
to each of its parts to k subparts was introduced. These subparts were interlaced one after another,
except that the vertices of the last subpart of each part were mixed together. (These graphons were
clearly chosen nonoptimally in the sense that the mixing of the last two parts is undesired. We

chose these graphons in this example here to have richer features to study.) All the graphons W̃k

have small values of INTf (·). On the other hand, the weak∗ limit of the sequence is the graphon

Wconst ≡ 1
2 whose value INTf (·) is bigger. There is a lesson to learn from this example. While for

larger k, the versions in the sequence Γk1,Γ
k
2,Γ

k
3, . . . will be aligned on I in a more optimal way locally,

the global structure may get undesirably more convoluted as k →∞. To remedy this, we consider
a sequence of version of Γ1,Γ2,Γ3, . . . in which the structure of measure-preserving transformation

on a rough level is inherited from measure preserving transformations leading to W̃1. Within each

step corresponding to the step-graphon W̃1, the structure of the measure-preserving transformation
8



Figure 2. An example of reordering from Section 3.2. The top shows a graphon Γn,

versions of which are close to W̃1 and W̃2 in the weak∗ topology. The two measure
preserving transformations ψ1

n and ψ2
n which witness this closeness are shown with

colors. The graphon W̃ ∗2 emerges by taking the partition whose global structure

from W̃1 is refined according to the more local structure from W̃2. Iterating this

process would lead to a sequence of graphons (W̃ ∗k )k which has the property that

for any weak∗ accomulation point W ∗ we have INTf (W ∗) ≤ lim supn INTfW̃n.

is inherited from measure preserving transformations leading to W̃2, and so on. An example of this
procedure is given in Figure 2. It can be shown that any weak∗ accumulation point W ∗ of these

reordered graphons has the property that INTf (W ∗) ≤ lim supn INTfW̃n, as was needed.
Let us now explain why the assumption that all sequences converge weak∗ leaves a substantial

gap in the proof. Recall that the information how the partition J k of Uk interacts with the

measure preserving almost-bijections on graphons sk ⊂ (Γ1,Γ2,Γ3, . . .) that converge to W̃k gives
us crucial directions as how to reorder and refine the subsequence of graphons sk+1 that converges

to W̃k+1. Let us again stress that while the existence of the subsequences sj is guaranteed by weak∗

compactness, we have no control on their properties. So, it can be that sk is disjoint from sk+1.
In other words, we do not get the needed information how to reorder and refine the graphons in
sk+1. To remedy this problem, we prove a lemma (Lemma 13) which says that for every sequence
Γ1,Γ2,Γ3, . . . of graphons there exists a subsequence Γk1 ,Γk2 ,Γk3 , . . . such that

inf {INTf (W ) : W ∈ ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)} = inf {INTf (W ) : W ∈ LIMw∗(Γk1 ,Γk2 ,Γk3 , . . .)} .
Applying this lemma first, the arguments above become sound for the subsequence Γk1 ,Γk2 ,Γk3 , . . ..

4. Proof of Theorem 3(a)

The following key lemma (or its subsequent corollary) is used in both proofs of Theorem 3(a)
and Theorem 3(b).
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Lemma 11. Suppose that f : [0, 1] → R is an arbitrary continuous and strictly concave function.
Suppose that Γ1,Γ2,Γ3, . . . : I2 → [0, 1] is a sequence of graphons which converges to a graphon
W : I2 → [0, 1] in the weak∗ topology. Suppose that B1, B2, B3, . . . is an arbitrary sequence of
subsets of I. For each n, let Jn be the ordered partition of I into two sets Bn and I \ Bn (in this

order). Then every W̃ ∈ ACCw∗(J1Γ1, J2Γ2, J3Γ3, . . .) satisfies INTf (W̃ ) ≤ INTf (W ).

Moreover, let θ : I → I be defined by θ(x) =
∫ x

0 ψ(y) d(y) where ψ : I → [0, 1] is some accu-
mulation point of the sequence 1B1 ,1B2 ,1B3 , . . . in the weak∗ topology. If the equality W (x, y) =

W̃ (θ(x), θ(y)) does not hold on a set of full measure then INTf (W̃ ) < INTf (W ).

Proof. Let us fix W̃ ∈ ACCw∗(J1Γ1, J2Γ2, J3Γ3, . . .). By passing to a subsequence, we may assume

that the sequence J1Γ1, J2Γ2, J3Γ3, . . . is convergent to W̃ in the weak∗ topology, and that the
sequence 1B1 ,1B2 ,1B3 , . . . converges in the weak∗ topology to ψ : I → [0, 1] (which can be chosen
to be any accumulation point of the original sequence). We define ξ : I → I by ξ(x) = θ(1)+

∫ x
0 (1−

ψ(y)) d(y).

Claim 1. For every two intervals [p1, p2], [q1, q2] ⊂ I we have

(9)

∫ p2

p1

∫ q2

q1

W (x, y) =

∫ p2

p1

∫ q2

q1

W̃ (θ(x), θ(y))ψ(x)ψ(y)

+

∫ p2

p1

∫ q2

q1

W̃ (θ(x), ξ(y))ψ(x)(1− ψ(y))

+

∫ p2

p1

∫ q2

q1

W̃ (ξ(x), θ(y))(1− ψ(x))ψ(y)

+

∫ p2

p1

∫ q2

q1

W̃ (ξ(x), ξ(y))(1− ψ(x))(1− ψ(y)) .

Proof of Claim 1. By using the fact that Γn
w∗→ W together with the identity ab+ a(1− b) + (1−

a)b+ (1− a)(1− b) = 1 we get that

(10)

∫ p2

p1

∫ q2

q1

W (x, y) = lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)

= lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)1Bn(x)1Bn(y)

+ lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)1Bn(x)(1− 1Bn(y))

+ lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)(1− 1Bn(x))1Bn(y)

+ lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)(1− 1Bn(x))(1− 1Bn(y)) .

Next we rewrite the integral following the first limit on the right-hand side of (10). To this end,
we use the notation from (2) together with the obvious differentiation formula

(11) (αJn,1)′(x) = 1Bn(x) for a.e. x ∈ I
10



(and also, we use the fact that αJn,1|Bn
is an almost-bijection fromBn onto the interval [0,

∫ 1
0 1Bn(y)],

and so it makes sense to talk about its inverse). We have

(12)

∫ p2

p1

∫ q2

q1

Γn(x, y)1Bn(x)1Bn(y)

integration by substitution =

∫ αJn,1(p2)

αJn,1(p1)

∫ αJn,1(q2)

αJn,1(q1)
Γn(α−1

Jn,1(x), α−1
Jn,1(y))

γJn (x) = αJn,1(x) for every x ∈ Bn =

∫ αJn,1(p2)

αJn,1(p1)

∫ αJn,1(q2)

αJn,1(q1)
Γn(γ−1

Jn (x), γ−1
Jn (y))

=

∫ αJn,1(p2)

αJn,1(p1)

∫ αJn,1(q2)

αJn,1(q1)
JnΓn(x, y) .

Therefore, we have

(13)

∣∣∣∣∣
∫ p2

p1

∫ q2

q1

Γn(x, y)1Bn(x)1Bn(y)−
∫ θ(p2)

θ(p1)

∫ θ(q2)

θ(q1)
JnΓn(x, y)

∣∣∣∣∣
(12)
=

∣∣∣∣∣
∫ αJn,1(p2)

αJn,1(p1)

∫ αJn,1(q2)

αJn,1(q1)
JnΓn(x, y)−

∫ θ(p2)

θ(p1)

∫ θ(q2)

θ(q1)
JnΓn(x, y)

∣∣∣∣∣
≤ |αJn,1(p1)− θ(p1)|+ |αJn,1(p2)− θ(p2)|+ |αJn,1(q1)− θ(q1)|+ |αJn,1(q2)− θ(q2)| .

The fact that 1Bn

w∗→ ψ immediately implies that αJn,1(x) → θ(x) for every x ∈ I, and so we
conclude that the right-hand side, and thus also the left-hand side, of (13), tends to 0. Therefore

(note that the following limits exist as Γn
w∗→W )

(14)

lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)1Bn(x)1Bn(y) = lim
n→∞

∫ θ(p2)

θ(p1)

∫ θ(q2)

θ(q1)
JnΓn(x, y)

JnΓn
w∗→ W̃ =

∫ θ(p2)

θ(p1)

∫ θ(q2)

θ(q1)
W̃ (x, y)

integration by substitution =

∫ p2

p1

∫ q2

q1

W̃ (θ(x), θ(y))ψ(x)ψ(y) .

In a very analogous way as we derived (14), one can verify that

lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)1Bn(x)(1− 1Bn(y)) =

∫ p2

p1

∫ q2

q1

W̃ (θ(x), ξ(y))ψ(x)(1− ψ(y)) ,(15)

lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)(1− 1Bn(x))1Bn(y) =

∫ p2

p1

∫ q2

q1

W̃ (ξ(x), θ(y))(1− ψ(x))ψ(y) ,(16)

lim
n→∞

∫ p2

p1

∫ q2

q1

Γn(x, y)(1− 1Bn(x))(1− 1Bn(y)) =

∫ p2

p1

∫ q2

q1

W̃ (ξ(x), ξ(y))(1− ψ(x))(1− ψ(y)) .

(17)

By putting (10), (14), (15), (16) and (17) together, we get (9). �

Since the sets of the form [p1, p2]× [q1, q2] generate the Borel σ-algebra on I2, we conclude from
Claim 1 that for almost every (x, y) ∈ I2 we have that

(18)
W (x, y) =W̃ (θ(x), θ(y))ψ(x)ψ(y) + W̃ (θ(x), ξ(y))ψ(x)(1− ψ(y))

+ W̃ (ξ(x), θ(y))(1− ψ(x))ψ(y) + W̃ (ξ(x), ξ(y))(1− ψ(x))(1− ψ(y)) .
11



Note that the right-hand side of (18) is a convex combination of the four terms

(19) W̃ (θ(x), θ(y)) , W̃ (θ(x), ξ(y)) , W̃ (ξ(x), θ(y)) , W̃ (ξ(x), ξ(y)) .

Therefore we have

(20)

INTf (W ) =

∫ 1

0

∫ 1

0
f(W (x, y))

f is concave

(18)

≥
∫ 1

0

∫ 1

0
f
(
W̃ (θ(x), θ(y))

)
ψ(x)ψ(y)

+

∫ 1

0

∫ 1

0
f
(
W̃ (θ(x), ξ(y))

)
ψ(x)(1− ψ(y))

+

∫ 1

0

∫ 1

0
f
(
W̃ (ξ(x), θ(y))

)
(1− ψ(x))ψ(y)

+

∫ 1

0

∫ 1

0
f
(
W̃ (ξ(x), ξ(y))

)
(1− ψ(x))(1− ψ(y))

integration by substitution =

∫ θ(1)

0

∫ θ(1)

0
f
(
W̃ (x, y)

)
+

∫ θ(1)

0

∫ 1

θ(1)
f
(
W̃ (x, y)

)
+

∫ 1

θ(1)

∫ θ(1)

0
f
(
W̃ (x, y)

)
+

∫ 1

θ(1)

∫ 1

θ(1)
f
(
W̃ (x, y)

)
=

∫ 1

0

∫ 1

0
f
(
W̃ (x, y)

)
= INTf (W̃ ) .

To prove the “moreover” part, suppose that the equality W (x, y) = W̃ (θ(x), θ(y)) does not hold
on a set of full measure. Then the convex combination (18) is not trivial on a set of positive measure.
This is all we need as then we have a sharp inequality in (20) because f is strictly concave. �

We do not use the next corollary right now but we will need it in Section 6.

Corollary 12. Suppose that f : [0, 1]→ R is an arbitrary continuous and strictly concave function.
Suppose that Γ1,Γ2,Γ3, . . . : I2 → [0, 1] is a sequence of graphons which converges to a graphon W :
I2 → [0, 1] in the weak∗ topology. Suppose that ` is a fixed natural number and that for every n, Jn is

an ordered partition of I into ` sets Bn
1 , B

n
2 , . . . , B

n
` . Then every W̃ ∈ ACCw∗(J1Γ1, J2Γ2, J3Γ3, . . .)

satisfies INTf (W̃ ) ≤ INTf (W ).

Proof. For every natural number n and every i ∈ {1, . . . , `}, we denote by J in the ordered partition

of I consisting of the sets Bn
`−i+1, B

n
`−i+2, . . . , B

n
` and I \

⋃`
j=`−i+1B

n
j (in this order). Consider

these `+ 1 sequences of graphons:

S0 : Γ1,Γ2,Γ3, . . .

S1 : J 1
1

Γ1, J 1
2

Γ2, J 1
3

Γ3, . . .

S2 : J 2
1

Γ1, J 2
2

Γ2, J 2
3

Γ3, . . .

...

S` : J `
1
Γ1, J `

2
Γ2, J `

3
Γ3, . . . ,

so that the sequence S` is precisely J1Γ1, J2Γ2, J3Γ3, . . .. Let us fix W̃ ∈ ACCw∗(S`). By passing
to a subsequence, we may assume that the sequence Si converges to some graphon Wi in the weak∗

topology for every i = 1, 2, . . . , ` − 1. It remains to apply Lemma 11 `-times in a row. First,
12



we apply it on the sequence S0 of graphons and on the sequence B1
` , B

2
` , B

3
` , . . . of subsets of I to

conclude that INTf (W1) ≤ INTf (W ). Next, we apply it on the sequence S1 of graphons and on the
sequence B1

`−1, B
2
`−1, B

3
`−1, . . . of subsets of I to conclude that INTf (W2) ≤ INTf (W1) ≤ INTf (W ).

In the last step, we apply it on the sequence S`−1 of graphons and on the sequence B1
1 , B

2
1 , B

3
1 , . . .

of subsets of I to conclude that INTf (W̃ ) ≤ INTf (W`−1) ≤ . . . ≤ INTf (W1) ≤ INTf (W ). �

Now we can prove Theorem 3(a).
By passing to a subsequence, we may assume that the sequence Γ1,Γ2,Γ3, . . . converges to W

in the weak∗ topology. As W is not an accumulation point of the sequence Γ1,Γ2,Γ3, . . . in the
cut-norm, there is ε > 0 and a natural number n0 such that ‖Γn −W‖� ≥ ε for every n ≥ n0. By
passing to a subsequence, we may suppose that ‖Γn −W‖� ≥ ε for every natural number n. By
the definition of the cut-norm, there is a sequence B1, B2, B3, . . . of subsets of I such that for every

natural number n we have
∣∣∣∫x∈Bn

∫
y∈Bn

(Γn(x, y)−W (x, y))
∣∣∣ ≥ ε. This means that either

∫
x∈Bn

∫
y∈Bn

Γn(x, y) ≥
∫
x∈Bn

∫
y∈Bn

W (x, y) + ε or(21) ∫
x∈Bn

∫
y∈Bn

Γn(x, y) ≤
∫
x∈Bn

∫
y∈Bn

W (x, y)− ε .

By passing to a subsequence, we may assume that only one of these two cases occurs. We stick
to the case when (21) holds for every natural number n (the other case is analogous). By passing
to a subsequence once again, we may assume that the sequence 1B1 ,1B2 ,1B3 , . . . converges in the
weak∗ topology to some ψ : I → [0, 1]. For every natural number n, let Jn be the ordered partition
of I into two sets Bn and I \ Bn (in this order). This allows us to define αJn,1, αJn,2, γJn : I → I
as in (2), and versions J1Γ1, J2Γ2, J3Γ3, . . . of Γ1,Γ2,Γ3, . . .. We pass to a subsequence again to
assure that the sequence J1Γ1, J2Γ2, J3Γ3, . . . is convergent in the weak∗ topology, and we denote

the weak∗ limit by W̃ . Now Lemma 11 tells us that INTf (W̃ ) ≤ INTf (W ) and that to prove that

this inequality is sharp, we only need to show that the equality W (x, y) = W̃ (θ(x), θ(y)) does not
hold on a set of full measure. So to complete the proof, it suffices to prove the following claim.

Claim 2. We have

∫ 1

0

∫ 1

0
W̃ (θ(x), θ(y))ψ(x)ψ(y) ≥

∫ 1

0

∫ 1

0
W (x, y)ψ(x)ψ(y) + 1

2ε .

13



Proof of Claim 2. We have∫ 1

0

∫ 1

0
W̃ (θ(x), θ(y))ψ(x)ψ(y) =

∫ θ(1)

0

∫ θ(1)

0
W̃ (x, y)

JnΓn
w∗→ W̃ = lim

n→∞

∫ θ(1)

0

∫ θ(1)

0
JnΓn(x, y)

for large enough n, as αJn,1(1)→ θ(1) ≥ lim sup
n→∞

∫ αJn,1(1)

0

∫ αJn,1(1)

0
JnΓn(x, y)− 1

2ε

integration by substitution = lim sup
n→∞

∫ 1

0

∫ 1

0
JnΓn(αJn,1(x), αJn,1(y))1Bn(x)1Bn(y)− 1

2ε

γJn (x) = αJn,1(x) for every x ∈ Bn = lim sup
n→∞

∫
Bn

∫
Bn

JnΓn(γJn(x), γJn(y))− 1
2ε

= lim sup
n→∞

∫
Bn

∫
Bn

Γn(x, y)− 1
2ε

(21)

≥ lim sup
n→∞

∫
Bn

∫
Bn

W (x, y) + 1
2ε

1Bn
w∗→ ψ =

∫ 1

0

∫ 1

0
W (x, y)ψ(x)ψ(y) + 1

2ε .

�

Remark. The initial step when we “shift the sets Bn to the left” crucially relies on the Euclidean
order on I. This order is needless for the theory of graphons, i.e., graphons can be defined on a
square of an arbitrary atomless separable probability space Ω. A linear order on Ω can be always
introduced additionally, as Ω is measure-isomorphic to I. So, while our results work in full generality
for an arbitrary Ω, we wonder if our argument can be modified so that the proof would naturally
work without assuming a linear structure of the underlying probability space.

5. Proof of Theorem 3(b)

The bulk of the proof is given after proving the following key lemma.

Lemma 13. For every sequence Γ1,Γ2,Γ3, . . . : I2 → [0, 1] of graphons there exists a subsequence
Γk1 ,Γk2 ,Γk3 , . . . such that

inf {INTf (W ) : W ∈ ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)} = inf {INTf (W ) : W ∈ LIMw∗(Γk1 ,Γk2 ,Γk3 , . . .)} .

Proof. We start by finding countably many subsequences S1,S2,S3, . . . of the sequence Γ1,Γ2,Γ3, . . .
such that for every natural number n we have:

(i) Sn+1 is a subsequence of Sn, and
(ii) there exists Wn+1 ∈ LIMw∗(Sn+1) such that

(22) INTf (Wn+1) < inf {INTf (W ) : W ∈ ACCw∗(Sn)}+ 1
n .

This is done by induction. In the first step, we just define the sequence S1 to be the original
sequence Γ1,Γ2,Γ3, . . .. Next suppose that we have already defined the subsequence Sn for some
natural number n. Then there is a graphon Wn+1 ∈ ACCw∗(Sn) such that

INTf (Wn+1) < inf {INTf (W ) : W ∈ ACCw∗(Sn)}+ 1
n .

Now we find a subsequence Sn+1 of Sn such that some versions of the graphons from Sn+1 converge
to Wn+1 in the weak∗ topology. This finishes the construction.
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Now we use the diagonal method to define, for every natural number n, the graphon Γkn to be
the nth element of the sequence Sn. Then we have for every n that

inf {INTf (W ) : W ∈ ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)}
Γkn ,Γkn+1

,Γkn+2
, . . . is a subsequence of Sn ≥ inf {INTf (W ) : W ∈ ACCw∗(Sn)}

(22)
> INTf (Wn+1)− 1

n

Wn+1 ∈ LIMw∗ (Sn+1) ⊂ LIMw∗ (Γk1
,Γk2

,Γk3
, . . .) ≥ inf {INTf (W ) : W ∈ LIMw∗(Γk1 ,Γk2 ,Γk3 , . . .)} − 1

n ,

and so

inf {INTf (W ) : W ∈ ACCw∗(Γk1 ,Γk2 ,Γk3 , . . .)} ≥ inf {INTf (W ) : W ∈ LIMw∗(Γk1 ,Γk2 ,Γk3 , . . .)} .
The other inequality is trivial. �

We can now give the proof of Theorem 3(b).
By using Lemma 13 and by passing to a subsequence, we may assume that

inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)} = inf {INTf (W ) : W ∈ LIMw∗(Γ1,Γ2,Γ3, . . .)} .
We construct the desired subsequence Γk1 ,Γk2 ,Γk3 , . . . by the following construction.

In the first step, we find a graphon W1 ∈ LIMw∗(Γ1,Γ2,Γ3, . . .) such that

INTf (W1) < inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)}+ 1 .

By Lemma 6, there is a partition J1 of I into finitely many intervals of positive measure such that
|INTf (W1)− INTf (WonJ1

1 )| < 1. Then we clearly have

INTf (WonJ1
1 ) < inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)}+ 2 .

By Lemma 7, the graphon WonJ1
1 is also an element of the set LIMw∗(Γ1,Γ2,Γ3, . . .), and so there

is a sequence Γ1
1,Γ

1
2,Γ

1
3, . . . of versions of Γ1,Γ2,Γ3, . . . that converges to W̃1 := WonJ1

1 in the weak∗

topology. We define Γk1 := Γ1, and we also define a sequence q1
1, q

1
2, q

1
3, . . . to be the increasing

sequence of all natural numbers.
Now fix a natural number n and suppose that we have already defined a finite subsequence

Γk1 ,Γk2 , . . . ,Γkn of Γ1,Γ2,Γ3, . . .. Suppose also that for every 1 ≤ i ≤ n, we have already con-
structed

(i) a step-graphon W̃i with steps given by some partition Ji of I into finitely many intervals
of positive measure such that Ji is a refinement of Ji−1 (if i > 1) and such that

INTf (W̃i) < inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)}+ 2
i ,

and
(ii) an increasing sequence qi1, q

i
2, q

i
3, . . . of natural numbers which is a subsequence of qi−1

1 , qi−1
2 , qi−1

3 , . . .
(if i > 1), together with a sequence Γi

qi1
,Γi

qi2
,Γi

qi3
, . . . of versions of Γqi1

,Γqi2
,Γqi3

, . . . which con-

verges to W̃i in the weak∗ topology and such that (if i > 1) for every natural number j and
for every intervals K,L ∈ Ji−1 it holds that∫

K

∫
L

Γiqij
(x, y) =

∫
K

∫
L

Γi−1
qij

(x, y) .

Then we find a graphon Wn+1 ∈ LIMw∗(Γ1,Γ2,Γ3, . . .) such that

INTf (Wn+1) < inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)}+ 1
n+1 .

Find a sequence Γ
n+1
qn1

,Γ
n+1
qn2

,Γ
n+1
qn3

, . . . of versions of Γqn1 ,Γqn2 ,Γqn3 , . . . which converges to Wn+1 in

the weak∗ topology. For every natural number j, let φj : I → I be the measure-preserving almost
15



bijection satisfying Γ
n+1
qnj

(x, y) = Γnqnj
(φ−1
j (x), φ−1

j (y)) for a.e. (x, y) ∈ I2 (such an almost-bijection

exists as both Γ
n+1
qnj

and Γnqnj
are versions of the same graphon Γqnj ). Let us fix some order of the sets

from the partition Jn. For every j, let Ij be the ordered partition of I consisting of the sets φj(K),
K ∈ Jn, with the order given by the order of the sets from Jn. Let r1, r2, r3, . . . be a subsequence
of qn1 , q

n
2 , q

n
3 , . . . such that for every K ∈ Jn, the sequence 1φ1(K),1φ2(K),1φ3(K), . . . is convergent in

the weak∗ topology. Find an accumulation point Wn+1 of the sequence I1Γ
n+1
r1 , I2Γ

n+1
r2 , I3Γ

n+1
r3 , . . .

(in the weak∗ topology). By Corollary 12, we have

INTf (Wn+1) ≤ INTf (Wn+1) < inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)}+ 1
n+1 .

Let s1, s2, s3, . . . be a subsequence of r1, r2, r3, . . . such that the sequence I1Γ
n+1
s1 , I2Γ

n+1
s2 , I3Γ

n+1
s3 , . . .

converges to Wn+1 in the weak∗ topology. Note that for every natural number j and for every
intervals K,L ∈ Jn, it holds that

(23)

∫
K

∫
L
Ij

Γ
n+1
sj (x, y) =

∫
φJ (K)

∫
φj(L)

Γ
n+1
sj (x, y) =

∫
φJ (K)

∫
φj(L)

Γnsj (φ
−1
j (x), φ−1

j (y))

=

∫
K

∫
L

Γnsj (x, y) .

By Lemma 6, there is a partition Jn+1 of I into finitely many intervals of positive measure such

that Jn+1 is a refinement of Jn and such that |INTf (Wn+1) − INTf (W
onJn+1

n+1 )| < 1
n+1 . Then we

clearly have

INTf (W
onJn+1

n+1 ) < inf {INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)}+ 2
n+1 .

By Lemma 7, the graphon W̃n+1 := W
onJn+1

n+1 is a limit (in the weak∗ topology) of the sequence of

some versions Γn+1
s1 ,Γn+1

s2 ,Γn+1
s3 , . . . of the graphons I1Γ

n+1
s1 , I2Γ

n+1
s2 , I3Γ

n+1
s3 , . . .. By the “moreover”

part of Lemma 7, we may further assume that for every natural number j and for every intervals
P,Q ∈ Jn+1, we have ∫

P

∫
Q
Ij

Γ
n+1
sj (x, y) =

∫
P

∫
Q

Γn+1
sj (x, y) ,

which, together with (23), easily implies that for every natural number j and for every intervals
K,L ∈ Jn it holds

(24)

∫
K

∫
L

Γn+1
sj (x, y) =

∫
K

∫
L

Γnsj (x, y) .

We define Γkn+1 := Γsn+1
n+1

, and we also define the sequence qn+1
1 , qn+1

2 , qn+1
3 , . . . to be the sequence

s1, s2, s3, . . .. This completes the construction of the sequence Γk1 ,Γk2 ,Γk3 , . . ..
Now let Wmin be an arbitrary accumulation point (in the weak∗ topology) of the sequence

Γk1 ,Γk2 ,Γk3 , . . ., so that in particular Wmin ∈ ACCw∗(Γ1,Γ2,Γ3, . . .). It suffices to show that it

holds for every n that INTf (Wmin) ≤ INTf (W̃n) as then we clearly have by our choice of the

graphons W̃1, W̃2, W̃3, . . . that

INTf (Wmin) = min{INTf (W ) : W ∈ ACCw∗(Γ1,Γ2,Γ3, . . .)} .

But for every three natural numbers n < m and j and for every intervals K,L ∈ Jn it holds by (ii)
that ∫

K

∫
L

Γmqmj (x, y) =

∫
K

∫
L

Γnqmj (x, y) ,
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and so (as Γnqnj
w∗→ W̃n as j →∞ for every n)∫

K

∫
L
W̃m(x, y) =

∫
K

∫
L
W̃n(x, y) .

It follows that for every n it holds∫
K

∫
L
Wmin(x, y) =

∫
K

∫
L
W̃n(x, y) .

The rest follows by Lemma 10.

6. Proof of Proposition 4

As promised, we give two proofs of Proposition 4. The first one is somewhat quicker, but uses
a theorem of Borgs, Chayes, and Lovász [2] about uniqueness of graph limits. More precisely, the
theorem states that if U ′ : I2 → [0, 1] and U ′′ : I2 → [0, 1] are two cut-norm limits of versions
Γ′1,Γ

′
2,Γ
′
3, . . . and Γ′′1,Γ

′′
2,Γ
′′
3, . . . of a graphon sequence Γ1,Γ2,Γ3, . . ., then there exists a graphon

U∗ : I2 → [0, 1] that is a cut-norm limit of versions of Γ1,Γ2,Γ3, . . ., and measure preserving
transformations ψ′, ψ′′ : I → I such that for almost every (x, y) ∈ I2, U ′(x, y) = U∗(ψ′(x), ψ′(y))
and U ′′(x, y) = U∗(ψ′′(x), ψ′′(y)). Since then, the result was proven in several different ways,
see [8, p.221]. Also, let us note that while all known proofs of the Borgs–Chayes–Lovász theorem
are complicated, none uses the compactness of the space of graphons or the Regularity lemma. So,
using this result as a blackbox, we still obtain a self-contained characterization of cut-norm limits
in terms of weak∗ limits.

So, suppose that W : I2 → [0, 1] is a limit of versions of Γ1,Γ2,Γ3, . . . in the cut-norm. By
Theorem 3 and by passing to a subsequence, we may assume that there exists a minimizer W ′ :
I2 → [0, 1] of INTf (·) over LIMw∗(Γ1,Γ2,Γ3, . . .) which is a limit of versions of Γ1,Γ2,Γ3, . . . in the
cut-norm. Therefore, the Borgs–Chayes–Lovász theorem tells us that there exists a graphon W ∗ :
I2 → [0, 1] and measure preserving maps ψ,ψ′ : I → I such that W (x, y) = W ∗(ψ(x), ψ(y)) and
W ′(x, y) = W ∗(ψ′(x), ψ′(y)) for almost every (x, y) ∈ I2. Since ψ and ψ′ are measure preserving,
we get INTf (W ) = INTf (W ∗) and INTf (W ′) = INTf (W ∗). This finishes the proof. �

Let us now give a self-contained proof of Proposition 4. By Theorem 3 and by passing to
a subsequence, we may assume that there exists a minimizer W ′ : I2 → [0, 1] of INTf (·) over
LIMw∗(Γ1,Γ2,Γ3, . . .) which is a limit of versions Γ′1,Γ

′
2,Γ
′
3, . . . of Γ1,Γ2,Γ3, . . . in the cut-norm.

Suppose that W is a graphon with INTf (W ) > INTf (W ′). This in particular means that there
exists δ > 0 so that

(25) ‖W ′ − U‖1 > δ

for any version U of W . We claim that there are no versions of Γ1,Γ2,Γ3, . . . that converge to W in
the cut-norm. Indeed, suppose that such versions Γ∗1,Γ

∗
2,Γ
∗
3, . . . exist. Observe that δ1(Γ′n,Γ

∗
n) = 0

for each n (in fact, the infimum in the definition of δ1 is attained). Now, [11, Lemma 2.11]4 tells
us that

0 = lim inf
n

0 = lim inf
n

δ1(Γ′n,Γ
∗
n) ≥ δ1(W ′,W ) ,

which is a contradiction to (25). �

4Let us stress that [11, Lemma 2.11] does not rely on the Borgs–Chayes–Lovász theorem, and has a self-contained,
one-page proof.
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7. Concluding remarks

7.1. Specific concave and convex functions. Perhaps the most natural choice of continuous
concave function is the binary entropy H.

An equivalent characterization to our main result is that the limit graphons are the weak∗ limits
that maximize INTg for a strictly convex function g. The most interesting instance of this version
of the statement is that the limit graphons are weak∗ limits maximizing the L2-norm.

7.2. Regularity lemmas as a corollary. While the cut-distance is most tightly linked to the
weak regularity lemma of Frieze and Kannan [7], a short reduction given in [10] shows that Theo-
rem 2 implies also Szemerédi’s regularity lemma [13], and its “superstrong” form, [1]. So, we believe
that the simplest proofs of these regularity lemmas are using the approach from this paper.5

The most remarkable difference of the current approach is that it does not use any index-pumping.
Recall that in the conventional proofs of regularity lemmas one keeps refining a partition, and
an index-pumping argument is needed to show that the number of refinements is bounded. In
comparison, in our proof one refinement is sufficient for the argument. Such a shortcut is available
only in the limit setting, it seems.

7.3. Hypergraphs. The theory of limits of dense hypergraphs of a fixed uniformity was worked out
in [6] (using ultraproduct techniques) and in [15] (using hypergraph regularity lemma techniques),
and is substantially more involved. It seems that the currect approach may generalize to the
hypergraph setting. This is currently work in progress.
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Appendix A. The weak∗ topology

Suppose that X is a Banach space and denote by X∗ its dual. Then the weak∗ topology on X∗

is the coarsest topology on X∗ such that all mappings of the form X∗ 3 x∗ 7→ x∗(x), x ∈ X, are
continuous. Recall that if the space X is separable then by the sequential Banach–Alaoglu Theorem
(see e.g. [14, Theorem 1.9.14]), the unit ball of X∗ is sequentially compact. This means that every
bounded sequence of elements of the dual space X∗ contains a weak∗-convergent subsequence.

In this paper, we are interested in the case when X is the Banach space L1(Ω) of all integrable
functions on some probability space Ω. (Depending on our needs, the probability space Ω will
be chosen to be either the unit interval I equipped with the one-dimensional Lebesgue measure
or the unit square I2 equipped with the two-dimensional Lebesgue measure). The space L1(Ω) is
equipped with the norm ‖f‖1 =

∫
Ω |f(x)|, f ∈ L1(Ω). In this setting, the dual X∗ = (L1(Ω))∗

is isometric to the space L∞(Ω) of all bounded measurable functions on Ω, equipped with the
norm ‖g‖∞ = ess supx∈Ω |g(x)|. The duality between L1(Ω) and L∞(Ω) is given by the formula
〈g, f〉 =

∫
Ω f(x)g(x) for g ∈ L∞(Ω) and f ∈ L1(Ω). This means that a sequence g1, g2, g3, . . . of

elements of L∞(Ω) converges to g ∈ L∞(Ω) if and only if limn→∞
∫

Ω f(x)gn(x) =
∫

Ω f(x)g(x) for

every f ∈ L1(Ω).
Now consider the Banach space X = L1(I2) of all integrable functions defined on the unit square

I2 (which is equipped with the two-dimensional Lebesgue measure). Standard arguments show
that the weak∗ topology on its dual space L∞(I2) can be equivalently generated by mappings of
the form L∞(I2) 3 g 7→

∫
A

∫
B g(x, y) where A,B are measurable subsets of I. That is, the weak∗

topology can be equivalently generated only by characteristic functions of measurable rectangles
(instead of all integrable functions on I2). If we restrict this topology only to the space of all

5With a notable drawback that we do not obtain any quantitative bounds.
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graphons W : I2 → [0, 1] defined on I2 then it is easy to see that this restricted topology is
generated only by mappings of the form W 7→

∫
A

∫
AW (x, y) where A is a measurable subsets of

I (this is because each graphon is symmetric by the definition). This is the topology we refer to
when we talk about convergence of graphons in the weak∗ topology. So this means that a sequence
W1,W2,W3, . . . of graphons defined on I2 converges to a graphon W defined on I2 if and only if
limn→∞

∫
A

∫
AWn(x, y) =

∫
A

∫
AW (x, y) for every measurable subset A of I. Note that the space

of all graphons defined on I2 is a closed subset of the unit ball of L∞(I2), and so it is sequentially
compact by the sequential Banach–Alaoglu Theorem (as the space L1(I2) is separable).

While crucial to our arguments, it is worth noting that the Banach–Alaoglu Theorem is not a
particularly deep statement and follows easily from Tychonoff’s theorem for powers of compact
spaces.
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