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CUT DISTANCE IDENTIFYING GRAPHON PARAMETERS OVER WEAK* LIMITS

MARTIN DOLEŽAL, JAN GREBÍK, JAN HLADKÝ, ISRAEL ROCHA, VÁCLAV ROZHOŇ

ABSTRACT. The theory of graphons comes with the so-called cut distance. The cut distance is
finer than the weak* topology. Doležal and Hladký [arXiv:1705.09160] showed, that given a se-
quence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak*
accumulation points as minimizers of the entropy. Motivated by this, we study graphon param-
eters with the property that their minimizers or maximizers identify cut distance accumulation
points over the set of weak* accumulation points. We call such parameters cut distance identifying.

Of particular importance are cut distance identifying parameters coming from subgraph den-
sities, t(H, ·). It turns out that this concept is closely related to graph norms. In particular, we
prove that a connected graph H is step Sidorenko (a concept very similar to t(H, ·) being cut dis-
tance identifying) if and only if it is weakly norming. This answers a question of Král’, Martins,
Pach and Wrochna [arXiv:1802.05007].

Further, we study convexity properties of cut distance identifying graphon parameters, and
find a way to identify cut distance limits using spectra of graphons.

1. INTRODUCTION

The theory of graphons, initiated in [2, 19] and covered in depth in [18], provides a powerful
formalism for handling large graphs that are dense, i.e., they contain a positive proportion of
edges. In this paper, we study the relation between the cut norm and the weak* topology on the
space of graphons through various graphon parameters. Let us give basic definitions needed
to explain our motivation and results.

We writeW0 for the space of all graphons, i.e., all symmetric measurable functions from Ω2 to
[0, 1]. Here as well as in the rest of the paper, Ω is an arbitrary separable atomless probability
space with probability measure ν. Given a graphon W and a measure preserving bijection
ϕ : Ω→ Ω, we define a version of W by

(1.1) Wϕ(x, y) = W(ϕ(x), ϕ(y)) .

Let us recall that the cut norm is defined by[a]

‖Y‖� = sup
S,T⊂Ω

∣∣∣∣∫S×T
Y
∣∣∣∣ for each Y ∈ L1(Ω2) .

Key words and phrases. graphon; graph limit; cut norm; weak* convergence; norm graphs.
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[a]All the sets and functions below are tacitly assumed to be measurable.
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Given two graphons U and W we define in (1.2) their cut norm distance and in (1.3) their cut
distance,

d� (U, W) : = ‖U −W‖� , and(1.2)

δ�(U, W) := inf
ϕ:Ω→Ω m.p.b.

d� (U, Wϕ) .(1.3)

Recall that the key property of the space W0, which makes the theory such a powerful in
applications in extremal graph theory, random graphs, property testing, and other areas, is
its compactness with respect to the cut distance. The result was first proven by Lovász and
Szegedy [19] using the regularity lemma,[b] and then by Elek and Szegedy [11] using ultrafilter
techniques, by Austin [1] and Diaconis and Janson [8] using the theory of exchangeable random
graphs, and finally by Doležal and Hladký [9] and by Doležal, Grebík, Hladký, Rocha and
Rozhoň [10] in a way explained below. For our later purposes, it is more convenient to state
the result in terms of the cut norm distance.

Theorem 1.1. For every sequence Γ1, Γ2, Γ3, . . . of graphons there is a subsequence Γn1 , Γn2 , Γn3 , . . .,

measure preserving bijections πn1 , πn2 , πn3 , . . . : Ω → Ω and a graphon Γ such that d�
(

Γ
πni
ni , Γ

)
→

0.

Let us now explain the approach from [9] and from [10], which is based on the weak* topol-
ogy. Recall that a sequence of graphons Γ1, Γ2, Γ3, . . . converges weak* to a graphon W if for every
S, T ⊂ Ω we have

lim
n→∞

∫
S×T

Γn −
∫

S×T
W = 0 .

From this, we get that the weak* topology is weaker than the topology generated by d�, of
which the former can be viewed as a certain uniformization.

So, the idea in [9] and [10], on a high level, is to look on the set ACCw∗ (Γ1, Γ2, Γ3, . . .) of all
weak* accumulation points of sequences,

ACCw∗ (Γ1, Γ2, Γ3, . . .) =
⋃

π1π2,π3,...:Ω→Ω m.p.b.

weak* accumulation points of Γπ1
1 , Γπ2 2, Γπ3

3 , . . . .

and locate in the set ACCw∗ (Γ1, Γ2, Γ3, . . .) one graphon Γ that is an accumulation point not
only with respect to the weak* topology but also with respect to the cut norm distance. In [9],
this was done by choosing Γ as a maximizer[c] of an operator INT f (·), defined for a continuous
strictly convex function f : [0, 1]→ R by

(1.4) INT f (W) :=
∫

x

∫
y

f (W(x, y)) .

In [10], we then approached Theorem 1.1 by more abstract means. Namely, we showed
that Γ can be chosen as the element with the maximum «envelope» in ACCw∗ (Γ1, Γ2, Γ3, . . .).
We recall the notion of envelopes only in Section 2.5. For now, it suffices to say that each
envelope is a subset of L∞(Ω2) and the notion maximality is with respect to the set inclusion.
In the current paper, we return to the program from [9]. We provide a comprehensive study of
graphon parameters where the maximization problem over ACCw∗ (Γ1, Γ2, Γ3, . . .) pinpoints

[b]see also [20] and [21] for variants of this approach
[c]In fact, the supremum of

{
INT f (W) : W ∈ ACCw∗ (Γ1, Γ2, Γ3, . . .)

}
need not be attained (see [9, Section 7.4]),

so the rigorous treatment needs to be a bit more technical. Similarly, we simplify the presentation of the approach
from [10] below. The correct way is shown in Theorems 3.3 and 3.4.
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cut distance accumulation points. We call such parameters «cut distance identifying» and «cut
distance compatible» (definitions are given in Section 3.1). In Section 3.1 we sketch that each
cut distance identifying parameter can indeed be used to prove Theorem 1.1. As we explain in
Section 3.1.1, the defining properties of cut distance identifying parameters in particular imply
that they can be used for characterization of graph quasi-random sequences, in the spirit of
the Chung–Graham–Wilson Theorem. As we show, the two most prominent parameters in
the Chung–Graham–Wilson Theorem, the 4-cycle density and the spectrum of the adjacency
matrix, indeed possess these stronger properties and can be used as cut distance identifying
parameters.

In Section 3.2 we reprove the result of Doležal and Hladký and show that the assumption of
f being continuous (1.4) is not really needed. This result is a short application of our concept of
so-called «range frequencies» which we previously introduced in [10] (this notion is recalled in
Section 2.5). In particular, our current approach gives as a shorter proof of the results from [9],
even when the necessary theory from [10] is counted.

In Section 3.4, we prove that when the spectrum is turned appropriately into a graphon
parameter (using the «spectral quasiorder» which we define in Section 2.2.3), we indeed get a
cut distance identifying graphon parameter.

Last, but most importantly, we study in Section 3.5 cut distance identifying and cut distance
compatible graph parameters coming of the form t(H, ·), that is, densities of a fixed graph H.
As we show, this is tightly linked with concepts from graph norms (with notions such norming
graphs and (weakly) Hölder graphs). It is also tightly related to concepts of graphs with the
«step Sidorenko property» and the «step forcing property» introduced recently by Král’, Mar-
tins, Pach and Wrochna [15]. In fact, it follows from Proposition 3.1 that a graph H has the step
Sidorenko property if and only if t(H, ·) is cut distance compatible and an analogous equiva-
lence between the step forcing property and cut distance identifying parameters t(H, ·) would
follow from Conjecture 3.2. In Theorem 3.19 we prove if for a connected graph H we have that
t(H, ·) is cut distance compatible, then H is weakly Hölder (the opposite implication was al-
ready known). This in particular answers a question of Král’, Martins, Pach and Wrochna [15,
page 20].

2. PRELIMINARIES

In this section we recall some notation, standard facts about graphons, and some results
from [10] which we will build on in this paper. Parts of this section are borrowed from [10].

2.1. General notation. We write
ε≈ for equality up to ε. For example, 1

0.2≈ 1.1
0.2≈ 1.3. We write

Pk for a path on k vertices and Ck for a cycle on k vertices.
If A and B are measure spaces then we say that a map f : A→ B is an almost-bijection if there

exist measure zero sets A0 ⊂ A and B0 ⊂ B so that f�A\A0
is a bijection between A \ A0 and

B \ B0. Note that in (1.3), we could have worked with measure preserving almost-bijections ϕ

instead.

2.2. Graphon basics. Our notation is mostly standard, following [18]. Let us fix a separa-
ble measure space Ω with a probability measure ν. Let W denote the space of kernels, i.e.
all bounded symmetric measurable real functions defined on Ω2. We always work modulo
differences on null-sets. We write W0 ⊂ W for the space of all graphons, that is, symmetric
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measurable functions from Ω2 to [0, 1], andW+ ⊂ W for the space of all bounded symmetric
measurable functions from Ω2 to [0,+∞). We write ν⊗k for the product measure on Ωk.

For p ∈ [0, 1], we write Gp =
{

W ∈ W0 :
∫

x

∫
y W(x, y) = p

}
for all graphons with edge

density p.

Remark 2.1. It is a classical fact that there is a measure preserving almost-bijection between each two
separable atomless probability spaces. So, while most of the time we shall work with graphons on Ω2, a
graphon defined on a square of any other probability space as above can be represented (even though not
in a unique way) on Ω2.

If W : Ω2 → [0, 1] is a graphon and ϕ, ψ are two measure preserving bijections of Ω then we
use the short notation Wψϕ for the graphon Wψ◦ϕ, i.e. Wψϕ(x, y) = W(ψ(ϕ(x)), ψ(ϕ(y))) =

Wψ(ϕ(x), ϕ(y)) =
(
Wψ
)ϕ

(x, y) for (x, y) ∈ Ω2.

2.2.1. Subgraph densities. As usual, given a finite graph H on the vertex set {v1, v2, . . . , vn} and
a graphon W, we write

(2.1) t(H, W) :=
∫

x1∈Ω

∫
x2∈Ω

· · ·
∫

xn∈Ω
∏

vivj∈E(H)

W(xi, xj)

for the density of H in W. Note that (2.1) extends to all W ∈ W . We call the quantity t(P2, W) =∫
x

∫
y W(x, y) the edge density of W. Recall also that for x ∈ Ω, we have the degree of x in W

defined as degW(x) =
∫

y W (x, y). Recall that measurability of W gives that degW(x) exists for
almost each x ∈ Ω. We say that W is p-regular if for almost every x ∈ Ω, degW(x) = p.

We will need to generalize homomorphism densities to decorated graphs, as is done in [18,
p. 120]. AW-decorated graph is a finite simple graph H on the vertex set {v1, v2, . . . , vn} in which
each edge vivj ∈ E(H) is labelled by an element Wvivj ∈ W . We denote such a W-decorated

graph by (H, w), where w =
(

Wvivj

)
vivj∈E(H)

. For such aW-decorated graph (H, w) we define

t(H, w) =
∫

x1∈Ω

∫
x2∈Ω

· · ·
∫

xn∈Ω
∏

vivj∈E(H)

Wvivj(xi, xj) .

2.2.2. Tensor product. Finally, we will need the definition of the tensor product of two graphons.
Suppose that U, V : Ω2 → [0, 1] are two graphons. We define their tensor product as a [0, 1]-
valued function U ⊗V :

(
Ω2)2 → [0, 1] by (U ⊗V) ((x1, x2) , (y1, y2)) = U(x1, y1)V(x2, y2).

Using Remark 2.1, we can think of U ⊗V as a graphon inW0. Note that for every graph H
we have

t(H, U ⊗V) =
∫

Ω2|H| ∏
vivj∈E(H)

U(xi, xj) ∏
vivj∈E(H)

V(x|H|+i, x|H|+j) = t(H, U) · t(H, V) .

One can deal with the generalised homomorphism density for decorations on a fixed finite
graph H (where the tensor product w1 ⊗ w2 is defined coordinatewise) in the same way and
get that

(2.2) t(H, w1 ⊗ w2) = t(H, w1) · t(H, w2) .
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2.2.3. Spectrum and the spectral quasiorder. We recall basic spectral theory for graphons, details
and proofs can be found in [18, §7.5]. We shall work with the real Hilbert space L2 (Ω), inner
product on which is denoted by 〈·, ·〉. Given a graphon W : Ω2 → [0, 1], we can associate to it
an operator TW : L2 (Ω)→ L2 (Ω),

(TW f ) (x) :=
∫

y
W(x, y) f (y) .

TW is a Hilbert–Schmidt operator, and hence has a discrete spectrum of finitely or count-
ably many non-zero eigenvalues (with possible multiplicities). All these eigenvalues are real,
bounded in modulus by 1, and their only possible accumulation point is 0. For a given graphon
W denote its eigenvalues by

λ+
1 (W) ≥ λ+

2 (W) ≥ λ+
3 (W) ≥ . . . ≥ 0 ,

λ−1 (W) ≤ λ−2 (W) ≤ λ−3 (W) ≤ . . . ≤ 0 .

(We pad zeros if the spectrum has only finitely many positive or negative eigenvalues.)
We now introduce the notion of spectral quasiorder (this definition has not appeared in other

literature). We write W
S
� U if λ+

i (W) ≤ λ+
i (U) and λ−i (W) ≥ λ−i (U) for all i = 1, 2, 3, . . ..

Further we write W
S
≺ U if W

S
� U and at least one of the above inequalities is strict. Then

S
� is

a quasiorder onW0, which we call the spectral quasiorder.
Recall that the eigenspaces are pairwise orthogonal. Recall also that (see e.g. [18, p. 124])

(2.3) ‖W‖2
2 = ∑

i
λ+

i (W)2 + ∑
i

λ−i (W)2 .

In Section 3.5 we shall use the following formula connecting eigenvalues and cycle densities.
For any graphon W for any k ≥ 3, we have by [18, eq. (7.22), (7.23)],

(2.4) t (Ck, W) = ∑
i

λ+
i (W)k + ∑

i
λ−i (W)k .

2.2.4. The stepping operator. Suppose that W : Ω2 → [0, 1]2 is a graphon. We say that W is
a step graphon if W is constant on each Ωi × Ωj, for a suitable finite partition P of Ω, P =

{Ω1, Ω2, . . . , Ωk}.
We recall the definition of the stepping operator.

Definition 2.2. Suppose that Γ : Ω2 → [0, 1] is a graphon. For a finite partition P of Ω,
P = {Ω1, Ω2, . . . , Ωk}, we define a graphon ΓonP by setting it on the rectangle Ωi ×Ωj to be
the constant 1

ν⊗2(Ωi×Ωj)

∫
Ωi

∫
Ωj

Γ(x, y). We allow graphons to have not well-defined values on

null sets which handles the cases ν(Ωi) = 0 or ν(Ωj) = 0.

In [18], a stepping is denoted by ΓP rather than ΓonP . The following easy technical result
taken from [10, Lemma 2.5] will be used.

Lemma 2.3. For every graphon Γ : Ω2 → [0, 1] and every ε > 0 there exists a finite partition P of Ω
such that

∥∥Γ− ΓonP
∥∥

1 < ε.

We call ΓonP with properties as in Lemma 2.3 an averaged L1-approximation of Γ by a step-
graphon for precision ε.
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Finally, we say that a graphon U refines a graphon W, if W is a step graphon for a suitable
partition P of Ω and UonP = W.

2.3. Norms defined by graphs. In this section we briefly recall how subgraph densities t(H, ·)
induce norms on the space of graphons. More details can be found in [18, §14.1].

We now introduce the seminorming and weakly norming graphs and graphs with the (weak)
Hölder property, concepts first introduced in [12]. We say that a graph H is (semi)norming,
if the function ‖W‖H := t(H, W)1/e(H) is a (semi)norm on W . This means that we require
that t(H, ·) is subadditive and homogeneous (i.e., t(H, cW) = c · t(H, W)), and in the case
of norming graphs we moreover assume that there is not a kernel U that is not identically
zero, but t(H, U) = 0. Similarly, we say that a graph H is weakly norming, if the function
‖W‖H := t(H, |W|)1/e(H) is a seminorm on W . Note that by adding the absolute values we
change our attention to the spaceW0 of graphons. Also note that in this case every seminorm
is also a norm, since if U is a graphon that is not zero almost everywhere, it is bounded from
zero on a rectangle of positive measure, and therefore t(H, U) > 0.

Since the homomorphism density is homogeneous, the only nontrivial requirement is the
triangle inequality for the homomorphism density defined on the space of kernels W , or the
space of graphons W0, respectively. In other words we ask that for each W1, W2 ∈ W , or for
each W1, W2 ∈ W0, we have

(2.5) ‖W1 + W2‖H ≤ ‖W1‖H + ‖W2‖H

Complete bipartite graphs (in particular, stars), complete balanced bipartite graphs without a
perfect matching , even cycles, and Hamming cubes are the known examples of weakly norm-
ing graphs.

A graph H has the Hölder property, if for everyW-decoration w = (We)e∈E(H) of H we have

t(H, w)e(H) ≤ ∏
e∈E(H)

t(H, We) .(2.6)

The graph H has the weak Hölder property, if (2.6) holds for everyW0-decoration w of H.

Remark 2.4. Due to the homogeneity of (2.6), we could have defined the weak the Hölder property by
testing over allW+-decorations w of H . For the same reason, it is enough to test the Hölder property
only over allW-decorations w of H that satisfy t(H, We) = 1 for every We.

2.4. Topologies on W0. There are several natural topologies on W0. The ‖·‖∞ topology in-
herited from the normed space L∞(Ω2), the ‖·‖1 topology inherited from the normed space
L1(Ω2), the topology given by the ‖·‖� norm, the weak* topology inherited from the weak*
topology of the dual Banach space L∞(Ω2), and the weak topology inherited from the weak
topology of the Banach space L1(Ω2). Note thatW0 is closed in both L1(Ω2) and L∞(Ω2). We
write d1 (·, ·) for the distance derived from the ‖·‖1 norm and d∞ (·, ·) for the distance derived
from the ‖·‖∞ norm. The weak* topology of the dual Banach space L∞(Ω2) is generated by
elements of its predual L1(Ω2). That means that the weak* topology on L∞(Ω2) is the small-
est topology on L∞(Ω2) such that all functionals of the form g ∈ L∞(Ω2) 7→

∫
Ω2 f g, where

f ∈ L1(Ω2) is fixed, are continuous. Recall that by the Banach–Alaoglu theorem,W0 equipped
with the weak* topology is compact. Recall also that the weak* topology onW0 is metrizable.
We shall denote by dw∗(·, ·) any metric compatible with this topology. For example, we can
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take some countable family {An}n∈N of measurable subsets of Ω which forms dense set in the

sigma-algebra of Ω, and define dw∗ (U, W) := ∑n,k∈N 2−(n+m)
∣∣∣∫An×Ak

(U −W)
∣∣∣.

2.5. Envelopes, the structuredness order, and the pushforward measures ΦW and ΥW . Here,
we recall the key concepts from [10].

For every graphon W ∈ W0 we define the set 〈W〉 as the set of all weak* limit points of
sequences of versions of W. That is, a graphon U ∈ W0 belongs to 〈W〉 if and only if there
are measure preserving bijections π1, π2, π3, . . . of Ω such that the sequence Wπ1 , Wπ2 , Wπ3 , . . .
converges to U in the weak* topology. We call the set 〈W〉 the envelope of W.

We say that a graphon U is at most as structured as a graphon W if 〈U〉 ⊂ 〈W〉. We write
U �W in this case. We write U ≺W if U �W but it does not hold that W � U.

It follows directly from the definition of the weak* topology that the edge density of a weak*
limit of a sequence of graphons equals to the the limit of the edge densities of the graphons in
the sequence. Thus, we obtain the following.

Fact 2.5. If two graphons have different edge densities then they are incomparable in the structuredness
order.

Given a graphon W : Ω2 → [0, 1], we can define a pushforward probability measure on [0, 1]
by

(2.7) ΦW (A) := ν⊗2
(

W−1(A)
)

,

for every measurable set A ⊂ [0, 1]. The measure ΦW gives us the distribution of the values
of W. In [10], ΦW is called the range frequencies of W. Similarly, we can take the pushforward
measure of the degrees, which is called the degree frequencies of W,

(2.8) ΥW (A) := ν
(

deg−1
W (A)

)
,

for every measurable set A ⊂ [0, 1]. The measures ΦW and ΥW provide substantial information
about the graphon W. It is therefore natural to ask how these measures relate with respect to the
structuredness order. To this end the following «flatness relation» on measures is introduced.

Definition 2.6. Suppose that Λ1 and Λ2 are two finite measures on [0, 1]. We say that Λ1 is at
least as flat as Λ2 if there exists a finite measure Ψ on [0, 1]2 such that Λ1 is the marginal of Ψ on
the first coordinate, Λ2 is the marginal of Ψ on the second coordinate, and for each D ⊂ [0, 1]
we have

(2.9)
∫
(x,y)∈D×[0,1]

x dΨ =
∫
(x,y)∈D×[0,1]

y dΨ .

We say that Λ1 is strictly flatter than Λ2 if Λ1 is at least as flat as Λ2 and Λ1 6= Λ2.

We can now state the main result of Section 4.2 of [10].

Proposition 2.7. Suppose that we have two graphons U �W. Then the measure ΦU is at least as flat
as the measure ΦW . Similarly, the measure ΥU is at least as flat as the measure ΥW . Lastly, if U ≺ W
then ΦU is strictly flatter than ΦW .



CUT DISTANCE IDENTIFYING GRAPHON PARAMETERS OVER WEAK* LIMITS 8

3. CUT DISTANCE IDENTIFYING GRAPHON PARAMETERS

3.1. Basics. In the paper [10], we based our treatment of the cut distance on ACCw∗ (W1, W2, W3, . . .)
and LIMw∗ (W1, W2, W3, . . .), which are sets of functions. In contrast, the key objects in [9] are
the sets of numerical values{

INT f (W) : W ∈ ACCw∗ (W1, W2, W3, . . .)
}

and
{

INT f (W) : W ∈ LIMw∗ (W1, W2, W3, . . .)
}

,

with notation taken from (1.4). In this section, we introduce an abstract framework to ap-
proaching the cut distance via similar optimization problems. Our key definitions of cut dis-
tance identifying graphon parameters and cut distance compatible graphon parameters use
Rn together with lexicographical ordering and Euclidean metric, and RN together with lexi-
cographical ordering which we denote just ≤. Further, we use the following metric on RN (or
Rn). For u, v ∈ RN (or for u, v ∈ Rn) we define dlex(u, v) to be the smallest number ε ≥ 0
such that |ui − vi| ≤ ε for every 1 ≤ i < 1

ε . Note that the metric dlex gives us the topology of
pointwise convergence on RN (or Rn).

By a graphon parameter we mean any function that either θ : W0 → R, θ : W0 → Rn (for
some n ∈ N), or θ : W0 → RN, such that θ(W1) = θ(W2) for any two graphons W1 and W2
with δ�(W1, W2) = 0. We say that a graphon parameter θ is a cut distance identifying graphon
parameter if we have that W1 ≺ W2 implies θ (W1) < θ (W2) (here, by < we understand the
usual Euclidean order on R in case θ : W0 → R and the lexicographic order in case θ : W0 →
Rn or θ : W0 → RN). We say that a graphon parameter θ is a cut distance compatible graphon
parameter if we have that W1 �W2 implies θ (W1) ≤ θ (W2).

The following proposition provides a useful criterion for cut distance compatible graphon
parameters. In this criterion, we restrict ourselves to L1-continuous parameters (which is not a
big restriction really).

Proposition 3.1. Suppose that θ is a graphon parameter that is continuous with respect to the L1

norm. Then θ is cut distance compatible if and only if for each graphon W : Ω2 → [0, 1] and each finite
partition P of Ω we have θ

(
WonP) ≤ θ (W).

Proof. The ⇒ direction is obvious. As for the reverse direction, suppose that θ is not cut dis-
tance compatible. That is, there exist two graphons U � W so that θ(U) > θ(W). Since θ is
L1-continuous at U we can use Lemma 2.3 to find a finite partition Q such that

(3.1) θ
(

UonQ
)
> θ(W).

As U � W, there exist measure preserving bijections π1, π2, π3, . . . so that Wπn w∗−→ U. In
particular, the sequence

(
(Wπn)onQ

)
n

converges to UonQ in L1. Thus the L1-continuity of θ

at UonQ gives us that for some n, θ
(
(Wπn)onQ

)
is nearly as big as θ

(
UonQ

)
. In particular,

using (3.1) we have that θ
(
(Wπn)onQ

)
> θ(W). We let πn act on the partition Q, P := πn(Q).

Obviously, (Wπn)onQ is a version of WonP , and thus θ
(
WonP) = θ

(
(Wπn)onQ

)
> θ (W), as was

needed.
It is natural to believe that there is a similar characterization for cut distance identifying

parameters. We were however unable to prove it, so we leave it as a conjecture. �
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Conjecture 3.2. Suppose that θ is a graphon parameter that is continuous with respect to the L1 norm.
Then θ is cut distance identifying if and only if for each graphon W and each finite partition P of Ω for
which WonP 6= W we have θ

(
WonP) < θ (W).

Note that the⇒ direction is obvious as in Proposition 3.1.
Cut distance identifying graphon parameters can be used to prove compactness of the graphon

space. This is stated in the next two theorems.

Theorem 3.3. Let Γ1, Γ2, Γ3, . . . be a sequence of graphons. Suppose that θ is a cut distance compatible
graphon parameter. Then there exists a subsequence Γn1 , Γn2 , Γn3 , . . . such that ACCw∗ (Γn1 , Γn2 , Γn3 , . . .)
contains an element Γ with θ (Γ) = sup {θ(W) : W ∈ ACCw∗ (Γn1 , Γn2 , Γn3 , . . .)}.

Proof. This follows immediately from [10, Theorem 3.3] and [10, Lemma 4.7]. [d] �

Theorem 3.4. Let W1, W2, W3, . . . be a sequence of graphons. Suppose that θ is a cut distance identify-
ing graphon parameter. Suppose that Γ ∈ LIMw∗ (W1, W2, W3, . . .) is such that

θ (Γ) = sup {θ(W) : W ∈ ACCw∗ (W1, W2, W3, . . .)} .

Then W1, W2, W3, . . . converges to Γ in the cut distance.

Proof. As a first step, we show that 〈Γ〉 = ACCw∗ (W1, W2, . . . ) = LIMw∗ (W1,W2, . . . ). Let
U ∈ ACCw∗ (W1, W2, . . . ). By Theorem 3.3 from [10] we can find a subsequence Wn1 , Wn2 , . . .
such that LIMw∗ (Wn1 , Wn2 , . . . ) = ACCw∗ (Wn1 , Wn2 , . . . ) and U ∈ LIMw∗ (Wn1 , Wn2 , . . . ).
Note that Γ ∈ ACCw∗ (Wn1 , Wn2 , . . . ). Using Lemma 4.7 from [10], we can find a maximal
element W ∈ LIMw∗ (Wn1 , Wn2 , . . . ) with respect to the structuredness order. It follows from
the definition of the structuredness order that Γ � W and therefore θ (Γ) ≤ θ (W). Using our
assumption on Γ and the fact that θ is a cut distance identifying graphon parameter, we must
have 〈Γ〉 = 〈W〉. This implies that U ∈ 〈W〉 = 〈Γ〉 ⊆ LIMw∗ (W1, W2, . . . ).

We may suppose that Wn
w∗−→ Γ. To show that in fact Wn

δ�−→ Γ, we can mimic the proof
of Theorem 3.5 (b) =⇒ (a) from [10]. �

So, while the concepts of cut distance identifying graphon parameters do not bring any new
tools compared to the structuredness order, knowing that a particular parameter is cut distance
identifying allows calculations that are often more direct than working with the structuredness
order.

3.1.1. Relation to quasi-randomness. Recall that dense quasi-random finite graphs correspond to
constant graphons. Thus, the key question in the area of quasi-randomness is which graphon
parameters can be used to characterize constant graphons.[e]

The Chung–Graham–Wilson Theorem [3], a version of which we state below, provides the
most classical parameters whose minimizers in Gp are is constant-p graphon.

[d]Let us note that an alternative direct proof of Theorem 3.3 can be repeated mutatis mutandis from Lemma 13
in [9]. This latter proof is more elementary and does not need transfinite induction or any appeal to the Vietoris
topology.

[e]Strictly speaking, only parameters that are continuous with respect to the cut distance are relevant for charac-
terizing sequences of quasi-random graphs. Indeed, the assumption of continuity is used to transfer between finite
graphs and their limits. The two main parameters we treat below — subgraph densities t(H, ·) and spectrum — are
indeed well-known to be cut distance continuous (see Theorems 11.52 and 11.53 in [18]). The parameter INT f (·) is not
cut distance continuous, and hence does not admit such a transference.
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Theorem 3.5. Let p ∈ [0, 1]. Then the constant-p graphon is the only graphon U in the family Gp
satisfying any of the following conditions.

(a) We have t(C2`, U) ≤ p2` for a fixed ` ∈ {2, 3, 4, . . .}.
(b) The largest eigenvalue of U is at most p and all other eigenvalues are zero.

Such characterizations of quasi-randomness fit very nicely our framework of cut distance
identifying graphon parameters. Indeed, constant graphons are exactly the minimal elements
in the structuredness order; we refer to [10, Proposition 7.5] for an easy proof. Thus, each cut
distance identifying graphon parameter can be used to characterize constant graphons.

In the opposite direction, we show in Sections 3.4 and 3.5 that the graphon parameters con-
sidered in Theorem 3.5 are actually cut distance identifying. Such a strengthening is not au-
tomatic (even for reasonable graphon parameters); for example the parameter t(C+

4 , ·) (here,
C+

4 is a 4-cycle with a pendant edge) is shown in [15, Section 2] to be minimized on constant
graphons but not to be cut distance identifying.[f]

3.2. Revising the parameter INT f (·). Recall that in [9], the parameter INT f (·) (for a strictly
convex continuous function f : [0, 1]→ R) was used to identify cut distance limits of graphons
(thus providing a new proof of Theorem 1.1). One of the key steps in [9] was to show that a
certain refinement of a graphon leads to an increase of INT f (·). While not approached this
way in [9], this hints that INT f (·) is cut distance identifying. We prove this statement in the
current section, as a quick application of the results from [10, Section 4.2]. Also, here we show
that the requirement of continuity of f was just an artifact of the proof in [9].

Theorem 3.6. (a) Suppose that f : [0, 1]→ R is a convex function. Then INT f (·) is cut distance
compatible.

(b) Suppose that f : [0, 1] → R is a strictly convex function. Then INT f (·) is cut distance
identifying.

Proof of Part (a). Suppose that f : [0, 1]→ R is a convex function. Recall that every convex func-
tion admits left and right derivatives which are both increasing functions. The key is to observe
that for a graphon Γ, we have INT f (Γ) =

∫
x∈[0,1] f (x) dΦΓ, where ΦΓ is defined by (2.7). So

suppose that U � W. By Proposition 2.7, we have that ΦU is at least as flat as ΦW . Let Λ be
a measure on [0, 1]2 as in Definition 2.6 that witnesses this fact. If Λ is carried by the diagonal
of [0, 1]2 then ΦU = ΦW . In that case U ⊀ W by Proposition 2.7. In other words, 〈U〉 = 〈W〉.
By Corollary 4.22 of [10], we have δ�(U, W) = 0. Since θ is a graphon parameter, we conclude
that θ(U) = θ(W). It remains to consider the case when Λ is not carried by the diagonal. Then
there are intervals [a, b], [c, d] ⊆ [0, 1] with Λ([a, b]× [c, d]) > 0 and b < c (the other case when
d < a is similar). For every y ∈ [c, d] we have

(3.2) f (y) ≥ f ′+(b) · y + ( f (b)− f ′+(b) · b) .

Fix ε > 0 arbitrarily and note that f is continuous on the open interval (0, 1) by convexity, thus
the points 0 and 1 are the only possible points of discontinuity of f . So for every x ∈ (0, 1)
there is an interval Jx ⊂ (0, 1) containing x such that every two values of f on Jx differ by at
most ε. Take a covering of (0, 1) consisting of at most countably many such intervals, add the
singletons {0} and {1}, and then refine the resulting family to a countable disjoint covering

[f]See Remark 3.20 for a more general result.
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{J1, J2, . . .} of [0, 1]. Then for every i and for every x ∈ Ji we have | f (x)− f (xi)| ≤ ε where xi
is the ΦU-mean value of x on Ji, i.e. (by (2.9))

(3.3) xi =
1

ΦU(Ji)

∫
Ji

x dΦU =
1

Λ(Ji × [0, 1])

∫
Ji×[0,1]

x dΛ =
1

Λ(Ji × [0, 1])

∫
Ji×[0,1]

y dΛ

(if for some i we have ΦU(Ji) = 0 then we can define xi to be an arbitrary element of Ji). We may
moreover assume that for every i either Ji ⊆ [a, b] or Ji ∩ [a, b] = ∅, then xi ∈ [a, b] whenever
Ji ⊆ [a, b]. Note that convexity of f together with equation (3.2) imply that

(3.4) f (y) ≥ f ′+(xi) · y + ( f (xi)− f ′+(xi) · xi)

for every y ∈ [c, d] and every i with Ji ⊆ [a, b].
We have

INT f (U) =
∫

x∈[0,1]
f (x) dΦU

= ∑
i

∫
x∈Ji

f (x) dΦU

ε≈∑
i

f (xi)ΦU(Ji)

= ∑
i

f (xi)Λ(Ji × [0, 1])

Jensen’s inequality and (3.3) ≤∑
i

∫
(x,y)∈Ji×[0,1]

f (y)dΛ

=
∫
(x,y)∈[0,1]2

f (y)dΛ

=
∫

y∈[0,1]
f (y) dΦW

= INT f (W) .

As this is true for every ε > 0 we conclude that INT f (U) ≤ INT f (W).
Proof of Part (b): Now suppose that f : [0, 1]→ R is strictly convex and that U ≺W (then ΦU

is strictly flatter than ΦW , and so the witnessing measure Λ cannot be carried by the diagonal
of [0, 1]2). In that case both one-sided derivatives of f are strictly increasing, and so equation
(3.2) can be strengthen to

(3.5) f (y) ≥ f ′+(b) · y + ( f (b)− f ′+(b) · b) + δ

for y ∈ [c, d], for some δ > 0. Equation (3.4) then also holds in the stronger form

(3.6) f (y) ≥ f ′+(xi) · y + ( f (xi)− f ′+(xi) · xi) + δ

for every y ∈ [c, d] and every i with Ji ⊆ [a, b]. We show that then the application of Jensen’s
inequality above ensures that INT f (U) < INT f (W). To this end it suffices to show that there
is a constant K > 0 not depending on ε such that

∑
i : Ji⊆[a,b]

f (xi)Λ(Ji × [0, 1]) ≤ ∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×[0,1]

f (y)dΛ− K .
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For every i denote gi(y) := f ′+(xi) · y + ( f (xi)− f ′+(xi) · xi). Then we have

∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×[0,1]

f (y)dΛ

= ∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×[c,d]

f (y)dΛ + ∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×([0,1]\[c,d])

f (y)dΛ

(3.6) and convexity ≥ ∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×[c,d]

(gi(y) + δ)dΛ + ∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×([0,1]\[c,d])

gi(y)dΛ

= ∑
i : Ji⊆[a,b]

∫
(x,y)∈Ji×[0,1]

gi(y)dΛ + δ ·Λ([a, b]× [c, d])

(3.3)
= ∑

i : Ji⊆[a,b]
f (xi)Λ(Ji × [0, 1]) + δ ·Λ([a, b]× [c, d]) .

So it suffices to set K := δ ·Λ([a, b]× [c, d]). �

For a later reference, let us apply Theorem 3.6 to the strictly convex function x 7→ x2, for
which INTx 7→x2(·) = ‖·‖2

2.

Corollary 3.7. Suppose that U and W are two graphons with U ≺W. Then ‖U‖2 < ‖W‖2.

3.3. Convex graphon parameters. In Definition 3.8 we introduce convex graphon parameters.
In Theorem 3.9 we prove that such parameters are cut distance compatible if they are also
L1-continuous. In Remark 3.11 we observe that the opposite implication is not true.

Definition 3.8. A graphon parameter f : W0 → R is convex if for every α1, α2, α3, . . . , αk ∈
[0, 1] with ∑i αi = 1 and every graphons W, W1, W2, . . . , Wk ∈ W0 with W = ∑i αiWi we have
f (W) ≤ ∑i αi f (Wi).

Theorem 3.9. Let f : W0 → R , f : W0 → Rn, or f : W0 → RN be a graphon parameter that is
convex and continuous in L1. Then f is cut distance compatible.

Theorem 3.9 can be used to give another proof of the first part of Theorem 3.6 under the
additional assumption that the convex function f : [0, 1] → R is continuous. (Note that this
is not a very much restrictive assumption as the only possible discontinuities of any convex
function defined on a closed interval are the endpoints of the interval.) Indeed, the continuity
of f easily implies that the graphon parameter INT f is continuous in L1, and the the convexity
of INT f is also clear.

The rest of this section is devoted to the proof of Theorem 3.9. The crux of the proof is the
following lemma.

Lemma 3.10. Let U, W be two graphons such that U ≺ W. Then for any ε > 0 there exist measure
preserving bijections π1, π2, . . . , πn and a convex combination ∑n

i=1 αiWπi such that∥∥∥∥∥ n

∑
i=1

αiWπi −U

∥∥∥∥∥
1

< ε.

Proof. Find measure preserving bijections π1, π2, π3, . . . of Ω such that Wπi
w∗−→ U. As the

weak topology onW0 is weaker than the weak* topology, we have Wπi
w→ U as well. There-

fore U ∈ conv{Wπ1 , Wπ2 , Wπ3 , . . .}w
. But in any Banach space, the weak closure of any convex
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set coincides with its norm closure. So U ∈ conv{Wπ1 , Wπ2 , Wπ3 , . . .}L1

and the result fol-
lows. �

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9. First, suppose that f is convex. Suppose that U, W : Ω2 → [0, 1] are ar-
bitrary graphons such that U ≺ W. Suppose that ε > 0 is arbitrary. Let ∑

n(ε)
i=1 αiWπε,i be the

convex combination given by Lemma 3.10 for U, W and error ε. Then, we have

f (U) = f

(
n(ε)

∑
i=1

αiWπε,i

)
+

(
f (U)− f

(
n(ε)

∑
i=1

αiWπε,i

))

convexity ≤
n(ε)

∑
i=1

αi f (Wπε,i ) +

(
f (U)− f

(
n(ε)

∑
i=1

αiWπε,i

))

= f (W) +

(
f (U)− f

(
n(ε)

∑
i=1

αiWπε,i

))
.(3.7)

Now, as ε goes to 0, the graphon ∑
n(ε)
i=1 αiWπε,i goes to U in L1(Ω2). Thus, the L1-continuity of

f tells us that the last term in (3.7) vanishes, and thus f (U) ≤ f (W). Thus f is cut distance
compatible. �

Remark 3.11. In this example we first construct two graphons U and V such that V is a convex
combination of versions of U but V 6� U. We then use this to construct a cut distance compatible
graphon parameter f ∗ that is not convex.The graphons U and V are shown in Figure 3.1. The graphon U
is defined as U (x, y) = 1 if and only if (x, y) ∈ [0, 1

2 ]
2 and U (x, y) = 0 otherwise, while V (x, y) = 1

2
if and only if (x, y) ∈ [0, 1

2 ]
2 ∪ [ 1

2 , 1]2 and V (x, y) = 0 otherwise. If we set ϕ (x) = 1− x, then
clearly V = U+Uϕ

2 . Let us now argue that V 6� U. For any measure preserving bijection π we

have
∫
[0, 1

2 ]×[
1
2 ,1] Uπ = ν

(
π
(
[0, 1

2 ]
)
∩ [0, 1

2 ]
)
· ν
(

π
(
[0, 1

2 ]
)
∩ [ 1

2 , 1]
)

. Thus, for any sequence of
measure preserving bijections π1, π2, . . . such that (after passing to a subsequence if necessary) we
have that either ν

(
πn

(
[0, 1

2 ]
)
∩ [0, 1

2 ]
)
→ 0 or ν

(
πn

(
[0, 1

2 ]
)
∩ [0, 1

2 ]
)
→ 1

2 . We conclude that

Uπ1 , Uπ2 , . . .
w∗

6−→ V.
Now, take any cut distance compatible parameter f and suppose that it is convex. In particular, we

have that 1
2 f (U) + 1

2 f (Uϕ) ≥ f (V) for the two graphons U and V defined above. We can now define

f ∗ (W) = f (W) +

(
1
2

f (U) +
1
2

f (Uϕ)− f (V) + 1
)

for each graphon W such that W � V and

f ∗(W) = f (W)

otherwise. The graphon parameter f ∗ is clearly cut distance compatible, but no longer convex, since

f ∗ (V) =
1
2

f (U) +
1
2

f (Uϕ) + 1 >
1
2

f ∗(U) +
1
2

f ∗(Uϕ) .

This example works even if we restrict ourselves to graphons lying in an envelope of a certain fixed
graphon W, since if we set W (x, y) = 1 if and only if (x, y) ∈ [0, 1

4 ]
2 ∪ [ 1

4 , 1
2 ]

2 and W(x, y) = 0
otherwise, and set U′ = U

2 , V′ = V
2 , then we have three graphons U′, V′, W such that U′, V′ � W,

V′ = U′+U′ϕ
2 , but V′ 6� U′.
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U V W

FIGURE 3.1. Graphons U and V from Example 3.11

The function f ∗ from Example 3.11 is, however, very unnatural since it is not continuous
with respect to L1. We leave it as an open problem, whether there is a continuous example.

Problem 3.12. Is there a function f :W0 → R that is is not convex, but is continuous in L1 and
compatible with the structuredness order?

In the subsequent Section 3.5 we manage to partially answer this problem by showing that
for homomorphism densities, which are an important class of functions defined on the space of
graphons (and continuous in L1), we can indeed reverse Theorem 3.9 and get that compatibility
with structuredness order implies that the respective function is convex.

3.4. Spectrum. We will prove in Theorem 3.14 that the structuredness order is a suborder of
the spectral quasiorder defined in Section 2.2.3. But first we need an easy lemma.

Lemma 3.13. Let (Wn)n and U be graphons on Ω2 such that Wn
w∗−→ U. Let u, v ∈ L2 (Ω). Then

we have 〈Wnu, v〉 → 〈Uu, v〉.

Proof. Since step functions are dense in L2 (Ω), and since the forms 〈Wn·, ·〉 and 〈U·, ·〉 are
obviously bilinear, it suffices to prove the statement for indicator functions of sets, u = 1A,
v = 1B (where A, B ⊂ Ω). But in that case 〈Wnu, v〉 =

∫
A×B Wn and 〈Uu, v〉 =

∫
A×B U. The

statement follows since Wn
w∗−→ U. �

We are now ready to prove the main result of this section. Let us note that the arguments
that we use to prove this result also turned out to be useful in the setting of finitely forcible
graphs; in particular Král’, Lovász, Noel, and Sosnovec [14], use our arguments in a final step
of their proof that for each graphon and each ε > 0, there exists a forcible graphon that differs
from the original one on a set of measure at most ε.

Theorem 3.14. If U ≺W, then U
S
≺W.

Proof. Consider the sequence of versions Wπn w∗−→ U. Let λ+
1 ≥ λ+

2 ≥ λ+
3 ≥ . . . ≥ 0 be the

positive eigenvalues of U with associated pairwise orthogonal unit eigenvectors u1, u2, u3, . . .,
and let β+

1 ≥ β+
2 ≥ β+

3 ≥ . . . ≥ 0 be the positive eigenvalues of W. First, we will prove that for
any given ε > 0 and k, we have β+

k ≥ λ+
k − ε. By the maxmin characterization of eigenvalues,

we have

β+
k = max

H subspace of L2(Ω)
dim(H)=k

min
g∈H
‖g‖2=1

〈Wg, g〉 .
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Fix the space H̃ = span
{

uπ−1
n

1 , uπ−1
n

2 , . . . , uπ−1
n

k

}
, where uπ−1

n
i (x) = ui(π

−1
n (x)). Then, we have

(3.8) β+
k ≥ min

g∈H̃
‖g‖2=1

〈Wg, g〉 .

Furthermore, by Lemma 3.13 we can find n large enough so that for all i, j ≤ k we have∣∣〈Wπn ui, uj
〉
−
〈
Uui, uj

〉∣∣ < ε

k2 .

Now, for g ∈ H̃ that realizes the minimum in (3.8), we can write its orthogonal decomposition

as g = ∑k
i=1 ciu

π−1
n

i , where ∑k
i=1 c2

i = 1. Thus, we obtain

〈Wg, g〉 = 〈Wπn gπn , gπn〉

=

〈
Wπn

k

∑
i=1

ciui,
k

∑
i=1

ciui

〉

=
k

∑
i,j=1

cicj
〈
Wπn ui, uj

〉
>

k

∑
i=1

c2
i

(
〈Uui, ui〉 −

ε

k2

)
+

k

∑
i,j=1
i 6=j

cicj

(〈
Uui, uj

〉
− ε

k2

)

=
k

∑
i=1

c2
i

(
λ+

i −
ε

k2

)
−

k

∑
i,j=1
i 6=j

cicj
ε

k2

≥ λ+
k − ε.

Thus, by equation (3.8) we have β+
k ≥ λ+

k − ε.
A similar argument can be used for the negative eigenvalues λ−1 ≤ λ−2 ≤ λ−3 ≤ . . . ≤ 0 of

U and β−1 ≤ β−2 ≤ β−3 ≤ . . . ≤ 0 of W to show that β−k ≤ λ−k + ε. That implies U
S
� W. To

show that the inequality is strict for at least one eigenvalue, assume by contradiction that the
eigenvalues of U and W are all the same. Then a double application of (2.3) gives

‖W‖2
2 = ∑

(
β+

i
)2

+ ∑
(

β−i
)2

= ∑
(
λ+

i
)2

+ ∑
(
λ−i
)2

= ‖U‖2
2 .

But this is a contradiction with Corollary 3.7. This finishes the proof. �

Corollary 3.15. The graphon parameter θ(·) :W0 → RN ×RN defined by[g]

θ(·) =
((

λ+
1 (·), λ+

2 (·), , . . .
)

,
(∣∣λ−1 (·)∣∣ ,

∣∣λ−2 (·)∣∣ , , . . .
))

is cut distance identifying graphon.

[g]The codomain of this graphon parameter is not of the form Rn or RN as required in our definition in Section 3.1.
The right way to extend the lexicographic order to this setting is to say that (a, b) ∈ RN ×RN is at less than or equal
to (c, d) ∈ RN ×RN if a is less than or equal to b in the lexicographic order and c is less than or equal to d in the
lexicographic order. Actually, our Theorem 3.14 is strong enough that the lexicographic order can be replaced by the
pointwise order.
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3.5. Subgraph densities. In this section, we address the following problem.

Problem 3.16. Characterize graphs H for which t(H, ·) : W0 → R is a cut distance compatible
(respectively a cut distance identifying) graphon parameter.

Observe that thanks to Proposition 3.1, for the case of compatible graphon parameters, Prob-
lem 3.16 reduces to characterizing graphs H for which we have

t
(

H, WonP
)
≤ t (H, W) for each W ∈ W0 and each finite partition P .(3.9)

Similarly, if true, our Conjecture 3.2 implies that for the case of identifying graphon param-
eters, Problem 3.16 reduces to characterizing graphs H for which we have

t
(

H, WonP
)
< t (H, W) for each W ∈ W0 and each finite partition P for which W 6= WonP .

(3.10)

This is closely related to Sidorenko’s conjecture (which was asked independently by Erdős and
Simonovits, and by Sidorenko, [22, 23]) and the Forcing conjecture (first hinted in [24, Section
5]). Indeed, these conjectures — when stated in the language of graphons — ask to characterize
graphs H for which we have

t
(

H, Won{Ω}
)
≤ t (H, W) for each W ∈ W0(3.11)

(Sidorenko’s conjecture), and

t
(

H, Won{Ω}
)
< t (H, W) for each nonconstant W ∈ W0(3.12)

(Forcing conjecture).

Recall that Sidorenko’s conjecture asserts that H satisfies (3.11) if and only if H is bipartite.
Similarly, the Forcing conjecture asserts that H satisfies (3.12) if and only if H is bipartite and
contains a cycle. In both cases, the ⇒ direction is easy. Let us recall that the reason why at
least one cycle is required for the Forcing conjecture is that the density of any forest H in any
p-regular graphon (whether constant-p, or not) is pe(H). The other direction in both conjectures
is open, despite being known in many special cases, see [6, 17, 13, 4, 12, 16, 25, 5].

Because all the properties we investigate in this section strengthen (3.11), we are concerned
only with bipartite graphs throughout. The only exception is Remark 3.21 which addresses a
possible «converse» definition of cut distance identifying properties.

Graphs satisfying (3.9) were investigated in [15] where these graphs are said to have the step
Sidorenko property. Similarly, graphs satisfying (3.10) are said to have the step forcing property.
Clearly, these properties imply (3.11) and (3.12), respectively. These stronger «step» properties
do not follow automatically from (3.11) and (3.12); in [15, Section 2] it is shown that the 4-cycle
with a pendant edge C+

4 has the Sidorenko property but not the step Sidorenko property. Thus,
every graph having the step Sidorenko property must be bipartite and every graph having the
step forcing property must be bipartite with a cycle. The focus of [15] was in providing negative
examples. For example, it was shown in [15] that a Cartesian product of cycles does not have
the step Sidorenko property, unless all the cycles have length 4.

The connection to our running Problem 3.16 comes from Proposition 14.13 of [18] which im-
plies that each weakly norming graph has the step Sidorenko property (it also directly follows
from Theorem 3.9).
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Corollary 3.17. For each weakly norming graph H the function t(H, ·) is cut distance compatible.

In this section we show that connected graphs with the step Sidorenko property are exactly
the weakly norming graphs (thus answering a question of Král’, Martins, Pach and Wrochna [15]).
To this end, we at first need to recall several definitions, in particular the equivalent character-
ization of weakly norming graphs from [12].

Theorem 3.18 (Theorem 2.8 in [12]). A graph is seminorming if and only if it has the Hölder property.
It is weakly norming if and only if it has the weak Hölder property.

We are now ready to show the converse of Corollary 3.17 for connected graphs.

Theorem 3.19. Suppose that H is a connected graph. If the function t(H, ·) is cut distance compatible
(or, equivalently, if H has the step Sidorenko property), then H is weakly Hölder.

Remark 3.20. Two nontrivial necessary conditions are established for a graph H being weakly Hölder
are established in [12, Theorem 2.10]. One of them basically says that H does not contain a subgraph
dense than itself. The other condition says that if V(H) = A1 t A2 is a bipartition of H and u, v ∈
Ai are two vertices from the same part, then deg(u) = deg(v). Thus, Theorem 3.19 restricts quite
substantially the class graphs having the step Sidorenko property, compared to the class of all bipartite
graphs which are conjectured to have the Sidorenko property. In particular, we see directly that C+

4 does
not have the step Sidorenko property.

Before showing the proof of Theorem 3.19, we summarize the situation for weakly norming
graphs in the upper part of the Figure 3.2. The notion of weakly norming graphs was intro-
duced in [12] together with the proof of equivalence with the notion of weakly Hölder graphs.
The step Sidorenko property was introduced in [15]. The authors used Proposition 14.3 from
[18] that guarantees that all weakly norming graphs have the step Sidorenko property. Our
notion of cut distance compatible parameters is basically a rewording of the step Sidorenko
property in the language of the structuredness order (see Proposition 3.1). Finally, we now
present a proof that for connected graphs the notion of compatibility implies the weak Hölder
property, thus closing a circle for connected graphs. We do not regard disconnected graphs.
We now return to the proof of Theorem 3.19.

Proof of Theorem 3.19. Suppose that H has m edges and n vertices. We prove that H is weakly
Hölder. By Theorem 3.18 we already know that all weakly Hölder graphs are exactly weakly
norming graphs. We divide the proof of the theorem into two parts, at first we prove that
t(H, ·) is subadditive up to a constant loss, specifically, we show that

t(H, U)1/m + t(H, V)1/m ≥ 1
4
· t(H, U + V)1/m .(3.13)

Then we use this inequality to prove that H is weakly Hölder using the tensoring technique in
the same way as it is used in the proof of Theorem 3.18 from [12].

Let U and V be two arbitrary graphons and let W1 be a graphon containing a copy of U
scaled by a factor of one half in its top-left corner (i.e., W1 (x, y) = U (2x, 2y) for (x, y) ∈ [0, 1

2 ]
2),

a copy of V in its bottom-right corner (i.e., W1 (x, y) = V
(

2(x− 1
2 ), 2(y− 1

2 )
)

for (x, y) ∈
[ 1

2 , 1]2), and zero otherwise (see Figure 3.3). Note that for the homomorphism density t(H, W1)

we have

t(H, W1) =
t(H, U) + t(H, V)

2n .
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H is weakly norming H is weakly Hölder

H has the step Sidorenko property t(H; ·) is compatible with structuredness order

Prop. 3:1

[11], Thm. 2.8

[17], Prop. 14.3 Thm. 3.19

H is seminorming H is Hölder

H has the step forcing property t(H; ·) is a cut distance identifying parameter

from definition

[11], Thm. 2.8

H is norming

only stars on even number of edges

?
?

are seminorming but not norming
[17, Chap. 14.1]

FIGURE 3.2. Diagram of notions used in this paper and their relations. Ques-
tion marks suggest unproven relationships. Theorem 3.19 holds only for con-
nected graphs.

U 0

0 V

U+V
4

�

W1 W2

FIGURE 3.3. Graphons U, V, W1 and W2 from the proof of Theorem 3.19

This is because H is connected and, thus, homomorphisms that map nonzero number of ver-
tices of H to [0, 1

2 ], and nonzero number of vertices to [ 1
2 , 1] do not contribute to the value

of the integral t(H, W1). Now consider the graphon W2 = U+V
4 . Certainly, W1 � W2, as

can be certified by a sequence of measure preserving almost-bijections ϕ1, ϕ2, . . . , defined as
ϕn(x) = b2nxc

2n + x for 0 ≤ x ≤ 1
2 and ϕn(x) = b2nxc−2n+1

2n + x for 1
2 < x ≤ 1, that interlace
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the two intervals [0, 1
2 ] and [ 1

2 , 1] and thus the two copies U and V in W1 together. We get that

t(H, W1) ≥ t(H, W2). Observe that t(H, W2) = t
(

H, U+V
4

)
= t(H,U+V)

4m , hence we get

t(H, U) + t(H, V)

2n ≥ t(H, U + V)

4m .

We are actually interested in the quantity t(H, U)1/m, so we rewrite this as

(t(H, U) + t(H, V))1/m ≥ 2n/m

4
· t(H, U + V)1/m ≥ 1

4
· t(H, U + V)1/m .

Finally note that t(H, U)1/m + t(H, V)1/m ≥ (t(H, U) + t(H, V))1/m, as can be verified by rais-
ing the inequality to the m-th power. This yields the desired inequality (3.13).

Now we merely replicate the proof from [12] that all weakly norming graphs are weakly
Hölder (see also [18], Theorem 14.1). At first note that the inequality (3.13) can be inductively
generalised to yield that for a sequence of graphons U1, . . . , U` we have

`

∑
i=1

t(H, Ui)
1/m ≥

(
1
4

)`−1
· t
(

H,
`

∑
i=1

Ui

)1/m

.(3.14)

Now let (H, w) be a W+-decoration of H. By Remark 2.4 we may assume that t(H, We) = 1
for every We. We want to prove that t(H, w) ≤ 1, but at first we prove a weaker inequality
t(H, w) ≤ 4m(m−1) ·mm. Indeed, we have

t(H, w) ≤ t

H, ∑
e∈E(H)

We

 ≤
4m−1 · ∑

e∈E(H)

t(H, We)
1/m

m

= 4m(m−1) ·mm ,(3.15)

where in the first inequality we replaced each We by ∑e∈E(H) We, while the second inequality is
due to the bound (3.14). Now suppose that we decorate each edge of H by W⊗k

e for k ≥ 1. As
we observed in (2.2), we then have t

(
H, w⊗k

)
= t(H, w)k and t

(
H, W⊗k

e

)
= t (H, We)

k = 1.

Thus the inequality (3.15) gives that t(H, w)k = t(H, w⊗k) ≤ 4m(m−1) · mm, thus t(H, w) ≤(
4m(m−1) ·mm

)1/k
. Since this holds for any k ≥ 1, we conclude that t(H, w) ≤ 1. �

Remark 3.21. Note that the definition of cut distance compatible (resp. identifying) parameters given
at the beginning of Section 3.1 was somewhat arbitrary. That is, instead of requiring that W1 � W2
implies θ (W1) ≤ θ (W2) (resp. that W1 ≺ W2 implies θ (W1) < θ (W2)), we could have reversed
the inequalities to θ (W1) ≥ θ (W2) (resp. θ (W1) > θ (W2)). There are only trivial examples of cut
distance compatible parameters in this sense which are the graphs that are disjoint union of cliques on
one and two vertices. For these graphs the homomorphism densities are either always constant one (if
the graph is a disjoint union of vertices), or the edge density of the graph (otherwise). Since we know
that U � V implies that the edge densities of the two graphons are the same (Fact 2.5), these examples
are cut distance compatible parameters in both senses for a trivial reason, and, in particular, they are
not cut distance identifying parameters in this reverse sense. To see that there are no other examples of
cut distance compatible parameters in the reverse sense, consider the two following graphons: a graphon
Wclique consisting of a clique of measure 0.5 (Wclique(x, y) = 1 if and only if 0 ≤ x, y ≤ 1

2 and
Wclique(x, y) = 0 otherwise), and the constant graphon Wconst ≡ 1

4 . Now let H be a graph that
is not a disjoint union of cliques of order one or two. Without loss of generality we assume that H
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does not contain any component consisting of a single vertex. Hence 2e(H) > v(H). Now we have

Wconst �Wclique, but t (H, Wconst) =
(

1
4

)e(H)
<
(

1
2

)v(H)
= t

(
H, Wclique

)
.

3.5.1. Step Sidorenko versus step forcing. We are not able to provide similar characterizations of
graphs with the step forcing property and we leave it as a conjecture.

Conjecture 3.22. A graph H is norming if and only if it is has the step forcing property and if and only
if t(H, ·) is a cut distance identifying parameter.

It seems possible that the implication that norming graphs have the step forcing property
can be proved using Theorem 2.16 from [12] about moduli of convexity of seminorming graphs.

We summary the relations between various properties of graphs related to norms in the
Figure 3.2.

3.5.2. Two positive results. We conclude the treatment of Problem 3.16 by two positive results,
namely that stars are step Sidorenko and that even cycles are step forcing. Propositions 3.23
and 3.24 in the case ` = 2 are not new and follow from the results on weakly norming and
Hölder graphs above. Yet, the short proofs given here nicely employ other parts of the theory
established in this paper.

Proposition 3.23. For each ` ∈ N, the graphon parameter t (K1,`, ·) : W0 → R is cut distance
compatible.

Proof. The key is to observe that for a graphon Γ, we have t (K1,`, Γ) =
∫

x∈[0,1] x`dΥΓ, where ΥΓ

is defined by (2.8). So, suppose that U � W. By Proposition 2.7, we have that ΥU is at least as
flat as ΥW . Let Λ be a measure on [0, 1]2 as in Definition 2.6 that witnesses this. We have

t (K1,`, U) =
∫

x∈[0,1]
x`dΥU

by Lemma 4.10 from [9] =
∫

x∈[0,1]

(∫
y∈[0,1]

y dΥW

)`

dΥU

Jensen’s inequality ≤
∫

x∈[0,1]

∫
y∈[0,1]

y` dΥW dΥU

=
∫

y∈[0,1]
y` dΥW

= t (K1,`, W) .

�

Proposition 3.24. For each ` ∈ {2, 3, 4, . . .}, the graphon parameter t (C2`, ·) : W0 → R is cut
distance identifying.

Before giving a proof, let us note that Lemma 11 in [7] is equivalent to the case ` = 2 of the
proposition. However, the proof in [7] does not seem to generalize to higher `, in which case
Proposition 3.24 seems to be new.

Proof of Proposition 3.24. To prove the proposition, suppose that ` is fixed and W1 ≺ W2 are

two graphons. Theorem 3.14 tells us that W1
S
≺ W2. That is, the sum of the (2`)-th powers of

eigenvalues of W1 is strictly smaller than that of W2. The statement now follows from Equa-
tion (2.4). �
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