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Chapter 1

First order transport
equation

F
As we have seen, a general form of a balance law reads

∂td + divxJ = s,

where d is the density of a (macroscopic) quantity, J denotes the flux, and s is
a source term. In this chapter, we consider a very simple example of a balance
law

∂tu(t, x) + ∂xf(u(t, x)) = s(u(t, x)), (1.1) F1

where the unknown function u depends on the scalar variables t and x.

1.1 A linear equation with constant speed of
propagation

The simplest example of equation (1.1) reads

∂tu + c∂xu = 0, (1.2) F2

where c is a (positive) constant. In addition, we suppose that the initial distri-
bution of u is determined by a given function u0,

u(0, x) = u0(x), x ∈ R. (1.3) F3

Equation (1.2) asserts that u is constant along the straight lines

t 7→ [t, x + ct],

in particular
u(t, x + ct) = u0(x) for all t, x ∈ R. (1.4) F4

1
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Setting y = x + ct we immediately deduce a solution formula

u(t, y) = u0(y − ct) for all t, y ∈ R. (1.5) F5

The initial shape u0 is simply shifted along the straight lines [t, x + ct] called
characteristics

1.2 Blow-up for a non-linear equation

Consider a non-linear equation

∂tu + c∂xu = u2 for t, x ∈ R, u(0, x) = u0(x), x ∈ R, (1.6) F6

that may be viewed as a variant of (1.2), supplemented with a source term
proportional to u2.

Similarly to problem (1.2), (1.3), equation (1.6) may be integrated along
characteristics. More specifically, introducing

v(τ) = u(τ, x + cτ),

we observe that v must satisfy a simple differential equation

∂τv(τ) = v2(τ), v(0) = u0(x).

In other words, v is given through formula

v(τ) =
u0(x)

1− τu0(x)
,

therefore

u(t, x + ct) =
u0(x)

1− tu0(x)
. (1.7) F7

Formula (1.7) makes sense as long as 1 − tu0(x), in other words, problem
(1.2) admits a unique smooth solution defined on the time interval

t ∈ [0, Tmax), Tmax = ∞ provided u0 ≤ 0, Tmax =
1

supx∈R u0(x)
otherwise.

Moreover, in the latter case,

sup
x∈R

u(t, x) →∞ as t → Tmax.

This phenomenon is usually called blow-up. In such a case, there does not
seem to be any “sensible” way how to continue the solution after the blow-up
time. Non-linear equations therefore may not admit (smooth) solutions on an
arbitrary time interval. A more sophisticated and also more realistic example
will be given in the next section.
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1.3 Shock waves

We now consider a more realistic example transport represented by Burger’s
equation

∂tu(t, x) + u(t, x)∂xu(t, x) = 0, t > 0, x ∈ R, (1.8) F8

supplemented with the initial condition

u(0, x) = u0(x), x ∈ R. (1.9) F9

Equation (1.9) may be viewed as a drastically simplified model of the unidi-
rectional motion of, say, cars that move with the speed determined initially
by u0(x). The cars are modeled as a continuum and they are not allowed to
“overtake” each other. Intuitively, there are two possibilities:

• The function u0 is monotonically increasing, meaning, the cars ahead move
with a higher speed, and, accordingly, the motion is smooth.

• There are two points, say, x1 < x2 such that u0(x1) > u0(x2), meaning
the car occupying initially the position x1 moves faster than that one at
x2. It is intuitively clear that such a situation must inevitably provide a
“collision” in a finite time.

Motivated by formula (1.4), we suppose that the solution is constant along
straight lines, with the slope proportional to u0. Indeed it is easy to check that
a function u satisfying

u(t, x + u0(x)t) = u0(x) (1.10) F10

solves (1.8), (1.9).
Let x1 < x2 be two different points on the real line. Supposing that u0(x1) >

u0(x2) we find a critical time tcrit, for which

tcrit =
x2 − x1

u0(x1)− u0(x2)
,

in other words
x1 + u0(x1)tcrit = x2 + u0(x2)tcrit = y.

Accordingly, formula (1.10) yields two different values of u(tcrit, y), namely,
u0(x1) and u0(x2) ! As the solution becomes discontinuous at tcrit, the life-span
of classical solutions to problem (1.8), (1.9) does not exceed, in general, the time

Tmax = sup
x∈R

1
|∂xu0(x)|

.

Of course, solutions remain smooth for any t > 0 as soon as u0 is non-decreasing.
This is a mathematical counterpart of the previous discussion concerning the
road traffic. The singularity now appears in the derivative of u - a phenom-
enon called shock wave by analogy with problems arising in mathematical fluid
mechanics.
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1.4 Generalized solutions

The almost ubiquitous presence of various singularities in solutions to non-
linear problems initiated a thorough discussion about suitability of the classical
concepts of continuum mechanics, based on smooth functions solving systems
of partial differential equations at any point of the space-time. The present
“crisis” of the theory has apparently two ways out:

• The models based on continuum hypothesis apply with certain limitations.
Their success in many numerical experiments is due to the fact that the
situations considered were not “extremal”. After all, cars never form a
continuum no matter how close each other they are. New models or even
conceptual approaches are necessary in order to handle a broader class of
problems.

• The models are essentially good but the hypothesis of smoothness of solu-
tions is not justified. A new concept of generalized solutions to differential
equations is needed.

Pursuing the latter idea we introduce the concept of weak solution based
on the theory of generalized derivatives (distributions). The leading idea of
this approach is to replace the point-wise values of the unknown functions by
their integral averages. Practically this means that we multiply the equations
by suitable smooth test function with compact support and perform by-parts
integration.

Thus a weak formulation of equation (1.8) is represented by the integral
identity ∫ ∞

0

∫
R

(
u(t, x)∂tϕ(t, x) +

1
2
u2(t, x)∂xϕ(t, x)

)
dx dt = 0 (1.11) F11

for any test function ϕ ∈ C∞c ((0,∞)×R). It is worth-noting that (1.11) makes
sense if u and u2 are merely locally integrable functions.

Let us examine how the new formulation accommodates possible singularities
in the solutions to equation (1.8). Consider the simplest case when the solution
u has a jump along a curve χ : t 7→ [t, χ(t)] and is smooth otherwise. Writing

0 =
∫ ∞

0

∫
R

(
u(t, x)∂tϕ(t, x) +

1
2
u2(t, x)∂xϕ(t, x)

)
dx dt

=
∫ ∞

0

∫
{x<χ(t)}

(
u(t, x)∂tϕ(t, x) +

1
2
u2(t, x)∂xϕ(t, x)

)
dx dt

+
∫ ∞

0

∫
{x>χ(t)}

(
u(t, x)∂tϕ(t, x) +

1
2
u2(t, x)∂xϕ(t, x)

)
dx dt

and using Gauss-Green theorem we may infer that∫ ∞

0

∫
{x=χ(t)}

(
[u(t, χ(t)−)− u(t, χ(t)+)]nt
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+
1
2
[u2(t, χ(t)−)− u2(t, χ(t)+)]nx

)
ϕ(t, χ(t)) dSx = 0

for any ϕ ∈ C∞c ((0,∞) × R), where [nt, nx] is the normal vector to χ. Conse-
quently, the solution u must satisfy the Rankine-Hugeniot jump conditions:

[u(t, χ(t)−)− u(t, χ(t)+)]nt +
1
2
[u2(t, χ(t)−)− u2(t, χ(t)+)]nx = 0. (1.12) F12

1.4.1 Example I - Riemann problem

We consider the standard example of discontinuous initial function u0,

u0(x) =

 1 if x ≤ 0,

0 if x > 0
(1.13) F13

Finding solutions of equation (1.8) emanating from the initial datum specified
in (1.13) is usually called Riemann problem.

We suppose that the points of discontinuity of the weak solution are located
on a curve χ : t 7→ [t, χ(t)] such that χ(0) = 0, while

u(t, x) =

 1 if x < χ(t),

0 if x > χ(t)

Thus u is a weak solution in the sense of (1.11) as soon as the Rankine-Hugeniot
conditions (1.12) hold. However, (1.12) reduces to a simple relation nt+ 1

2nx = 0,
in other words, χ is a straight-line

χ : t 7→ [t,
1
2
t], t ≥ 0.

Note that shock waves - solutions emanating from the initial datum λu0, λ > 0
- propagate with different speeds related to the value of λ.

1.4.2 Example II - uniqueness failure

The class of weak solutions is apparently larger than the class of classical ones.
Consider the initial datum in the form

u0(x) =

 0 if x ≤ 0,

1 if x > 0.
(1.14) F14

In virtue of the arguments used in Example I, problem (1.8), (1.14) admits a
piecewise constant (discontinuous) solution

u1(t, x) =

 0 if x < t/2,

1 if x > t/2.
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On the other hand, the same problem possesses a continuous solution

u2(t, x) =

 0 if x ≤ 0,
λ if x = λt, 0 < λ < 1
1 if x ≥ 1.

We have constructed two different weak solutions to the same problem! Obvi-
ously, one is tempted to say that u2 is the “correct” solution as it is more regular,
however, the selection problem is more subtle and requires a deep understanding
of the physical background of the concrete model.

1.5 Selection criteria

We examine various criteria how identify the “physical” solution of equation
(1.8).

1.5.1 Maximal energy dissipation

Revoking the analogy with cars, we compute the kinetic energy density of the
system proportional to 1

2 |u|
2. Multiplying equation (1.8) on u we deduce the

kinetic energy balance in the form

∂t

(
1
2
u2

)
+ ∂x

(
1
3
u3

)
= 0. (1.15) F15

Equations (1.8), (1.15) are equivalent provided the solution u is regular. This
may not be the case in the class of discontinuous weak solutions. Note that the
weak formulation of (1.15) reads∫ ∞

0

∫
R

((
1
2
u2

)
∂tϕ +

(
1
3
u3

)
∂xϕ

)
dx dt = 0 (1.16) F16

for any ϕ ∈ C∞c ((0,∞)× R).
Let us examine the situation discussed in Example II. It is easy to check

that solution u2 “conserves” the kinetic energy as u2 clearly satisfies (1.16).
On the other hand, however, we get∫ ∞

0

∫
R

((
1
2
u2

1

)
∂tϕ +

(
1
3
u3

1

)
∂xϕ

)
dx dt = −1

6

∫
{x=t/2}

ϕ(t, t/2)dSx (1.17) F17

for any ϕ ∈ C∞c ((0,∞)× R). Relation (1.17) may be interpreted as

∂t

(
1
2
u2

1

)
+ ∂x

(
1
3
u3

1

)
=

1
6
× [positive measure supported on χ],

or, simply, ∫ ∞

0

∫
R

((
1
2
u2

1

)
∂tϕ +

(
1
3
u3

1

)
∂xϕ

)
dx dt ≤ 0



CHAPTER 1. FIRST ORDER TRANSPORT EQUATION 7

for any ϕ ∈ C∞c ((0,∞)× R), ϕ ≥ 0 that may be viewed as a weak formulation
of

∂t

(
1
2
u2

1

)
+ ∂x

(
1
3
u3

1

)
≥ 0.

We conclude that solution u1 produces energy in contrast with the commonly
accepted physical principles. Obviously, it is the function u2 that represents a
physically admissible solution.

Finally, it is interesting to observe that the shock wave solution u constructed
in Example I dissipates energy, specifically,

∂t

(
1
2
u2

)
+ ∂x

(
1
3
u3

)
≤ 0.

In the presence of shocks, the kinetic energy is converted into heat, in accordance
with the second law of thermodynamics.

1.5.2 Entropy solutions
ES

Consider a more general equation

∂tu(t, x) + ∂xf(u(t, x)) = 0 in (0,∞)× R, (1.18) F18

with the initial condition

u(0, x) = u0(x), x ∈ R. (1.19) F19

Motivated by the previous discussion, we take a convex function E and multiply
(1.18) on E′ to obtain

∂tE(u(t, x)) + ∂xF (u(t, x)) = 0 where F ′(u) = f ′(u)E′(u).

The function E is termed entropy and F is the entropy flux.

We shall say that u is an entropy solution to (1.19) if∫ ∞

0

∫
R1

(
E(u)∂tϕ + F (u)∂xϕ

)
dx dt ≥ 0 (1.20) F20

for any ϕ ∈ C∞c ((0,∞) × R), ϕ ≥ 0, and any convex entropy E, with the
associated flux F .

Relation (1.20) can be interpreted as

∂tE(u) + ∂xF (u) ≤ 0 in the sense of generalized derivatives.

Clearly, (1.20) provides more information than just the weak formulation of
(1.19) that is included as a special case E(u) = ±u. It is interesting to note
that for the linear equation (1.2), the entropy formulation yields

∂tE(u) + c∂xE(u) = 0,
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which is nothing other that (1.2) as all solutions are constant along characteris-
tic lines. As we shall see in the next section, however, the fact that the entropy
is different from the flux in non-linear equations produces an important com-
pactification effect. Unlike (1.2), the sign “≤” in (1.20) specifies the arrow of
time in many physical problems. To avoid confusion, the physical entropies are,
by definition, concave therefore satisfying (1.20) in the opposite sense. In other
words, the physical entropy is being produced rather than dissipated.

1.5.3 Viscosity solutions

Another possibility how to identify the relevant class of weak solutions is to
regard equation (1.18) as a limit case of a more complex problem. It turns out
that a suitable approximation is provided by adding artificial viscosity to the
problem. The resulting equation reads

∂tu(t, x) + ∂xf(u(t, x)) = ε∆u(t, x), ∆ = ∂2
x,x, (1.21) F21

where ε > 0 is a small parameter. Equation (1.18) is then formally recovered as
the asymptotic limit ε → 0.

We recall that the solutions of the linear equation

∂tv(t, x) = ∆v(t, x), v(0, x) = v0(x) (1.22) F22

are given by the explicit formula

v(t, x) =
1√
4πt

∫
R

exp
(
−|x− y|2

4t

)
v0(y) dy, (1.23) F23

in particular, they are smooth even for rather irregular initial data. We may
therefore conjecture that the same property is likely to hold also for problem
(1.21).

Note in passing that the artificial viscosity regularization, in general, does
not prevent blow-up of solutions in the supremum norm. Indeed consider

∂tv + c∂xv = ε∆v + v2. (1.24) F24

Now, spatially homogeneous functions v = v(t) satisfying

∂tv(t) = v2(t)

represent particular solutions of (1.24).
Now, similarly to Section 1.5.2, let us multiply (1.21) by a function E′(u) to

obtain
∂tE(u) + ∂xF (u) = ε∂x

(
E′(u)∂xu

)
− E′′(u)|∂xu|2.

If E is convex, the last term is non-positive, and we obtain

∂tE(u) + ∂xF (u) ≤ ε∂x

(
E′(u)∂xu

)
(1.25) F25
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for any entropy-flux pair E, F . Relation (1.25) is, of course, reminiscent of
(1.20). More specifically, property (1.20) is likely to be inherited by any weak
solution obtained by means of the asymptotic limit ε → 0. In the ideal case,
both solutions coincide and (1.20) would represent an intrinsic definition of a
viscosity solutions. However, such a property has been rigorously verified only
for some special classes of equations including (1.20).

1.6 Weak sequentially stability of bounded sets
of entropy solutions

wss
In order to avoid problems with “large” domains, we consider problems supple-
mented with the periodic boundary conditions. Given a non-linear equation

∂tu(t, x) + ∂xf(u(t, x)) = 0, (1.26) w1

we look for solutions satisfying

u(t, x + 2π) = u(t, x) for all t > 0, x ∈ R.

Accordingly, the initial data u0(x) obey the same periodicity condition

u0(x + 2π) = u0(x).

The specific choice of the period length 2π is for convenience, clearly, any other
period can be treated in the same way. We may also say that equation (1.26)
is considered on the “flat” torus

T1 = [0, 2π]|{0,2π}.

1.6.1 Uniform bounds on entropy solutions

Entropy solution of equation (1.26), considered on T1, can be defined in the
same way as in Section 1.5.2. Specifically, the integral identity∫ ∞

0

∫
T1

(
E(u)∂tϕ + F (u)∂xϕ

)
dx dt ≥ 0 (1.27) w2

for any ϕ ∈ C∞c ((0,∞) × T1), ϕ ≥ 0, and any convex entropy E, with the
associated flux F .

It seems convenient to incorporate the initial condition u(0, x) = u0(x) in
the weak formulation. This can be achieved by extending conveniently the set
of admissible test functions.

We shall say that u is an entropy solution of equation (1.26), sup-
plemented with the periodic boundary conditions and the initial condition
u(0, x) = u0(x), if the integral identity∫ ∞

0

∫
T1

(
E(u)∂tϕ + F (u)∂xϕ

)
dx dt ≥ −

∫
T1

E(u0(x))ϕ(0, x) dx (1.28) w3



CHAPTER 1. FIRST ORDER TRANSPORT EQUATION 10

holds for any ϕ ∈ C∞c ([0,∞) × T1), ϕ ≥ 0, and any convex entropy E, with
the associated flux F .

The system of integral identities (1.28) provides a uniform bound for any
entropy solution in terms of the data. Given T > 0, consider a family of
functions

ϕε = ϕε(t) =


1 for t < T − ε

non-increasing and smooth in [T − ε, T ]

0 for t > T.

Taking ϕε as a test function in (1.28) and letting ε → 0 we obtain∫
T1

E(u)(t, ·) dx ≤
∫
T1

E(u0) dx for a.a. t ∈ (0, T ). (1.29) w4

Relation (1.29) yields boundedness of entropy solutions in terms of the initial
data.

Pw1 Proposition 1.1 Let u ∈ L∞((0, T )× T1) satisfy (1.28). Then

ess inf
x∈T1

u0(x) ≤ u(t, x) ≤ ess sup
x∈T1

u0(x) for a.a. t ∈ (0,∞), x ∈ T1. (1.30) w5

Proof: We consider a convex function u 7→ |u− c|+. It follows from (1.29) that

|u(t, x)− c|+ = 0 provided |u0(x)− c| ≤ 0 for a.a. t > 0.

Taking c = ess supx∈R u0(x) we therefore obtain the upper bound in (1.30). The
lower bound can be deduced in a similar way replacing |u− c|+ by |u− c|−.

q.e.d.

1.6.2 Weak continuity in time

It follows from (1.28) that the function[
t 7→

∫
T1

u(t, x)ϕ(x) dx
]

is continuous in time for any fixed ϕ ∈ C∞c (R1).

(1.31) w6

Relation (1.31) is termed weak continuity in time. Using density of smooth
functions in Lp(T1) we may infer that

u ∈ Cweak([0, T ];Lp(T1)) for any 1 ≤ p < ∞ whenever u ∈ L∞((0, T )× T1).
(1.32) w7

In other words, the mapping t 7→ u(t, ·) is continuous as a mapping of the time
interval [0, T ] into the Lebesgue space Lp(T1) endowed with the weak topology.
Accordingly, we may speak about instantaneous values of u(t, ·) for any time
t ≥ 0.
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1.6.3 Weak compactness of bounded families of solutions

Our main goal in this section is to show the following remarkable result.

Tw1 Theorem 1.1 Let {un}∞n=1 be a family of entropy solutions to equation (1.26)
such that

‖un‖L∞((0,T )×T1) ≤ M uniformly for all n = 1, 2, . . .

Assume that f is a twice continuously differentiable function such that f ′′(u) >
0 for all u ∈ R1.

Then there exists a subsequence (not relabeled) such that

un → u a.a. in (0, T )× T1.

Theorem 1.1 is a remarkable results. To begin, it shows compactness of
bounded sets of entropy solutions without any specific constraints imposed on
the initial data. Such a result does not hold for linear equations and leans heavily
on the strict convexity of the flux function f . This observation fits well into the
abstract framework of the weak solutions proposed by DiPerna [1]. In many
problems of mathematical physics, the linear, in terms of the entropy and flux,
character of the balance laws interferes with non-linear constitutive relations
represented here by the flux function f . Different speed of shock waves leads
eventually to their mutual cancellation and the solution set becomes compact.
Unfortunately, however, such a nice property is known to hold for an extremely
narrow class of problems.

The rest of this section is devoted to the proof of Theorem 1.1.

1.6.4 Compensated compactness

It is well known that Sobolev spaces W k,p(Ω) of functions having k generalized
derivatives in the Lebesgue space Lp enjoy certain compactness properties stated
in Rellich-Kondrashev theorem. Compensated compactness assumes bounded-
ness of generalized derivatives only in certain specific direction whereas the
results are weaker than for classical Sobolev spaces. The best known result in
this direction is the celebrated Div-Curl lemma by Murat and Tartar [4], [6].

Div-Curl lemma - soft version
Lw1 Lemma 1.1 Assume that B ⊂ RN is an open set. Let

Un → U weakly in L2(B; RN ), Vn → V weakly in L2(B; RN ),

divxUn = 0, curlVn = 0 in B.



CHAPTER 1. FIRST ORDER TRANSPORT EQUATION 12

Then ∫
B

Un ·Vnϕ dx →
∫

B

U ·Vϕdx for any ϕ ∈ C∞c (B).

Proof:
Without loss of generality, we may assume that B is bounded, regular, and

simply connected. In such a case, as curlVn = 0, there exists a potential

Φn, Vn = ∇xΦn, {Φn}∞n=1 bounded in W 1,2(B).

By virtue of the standard compactness embedding relations, we may assume
that

Φn → Φ (strongly) in L2(B; RN ), where ∇xΦ = V.

Now, write,∫
B

Un ·Vnϕ dx =
∫

B

Un · ∇xΦnϕ dx = −
∫

B

ΦnUn · ∇xϕ dx,

where ∫
B

ΦnUn · ∇xϕ dx →
∫

B

ΦU · ∇xϕ dx = −
∫

B

U ·Vϕ dx

q.e.d.
Unfortunately, the hypotheses of Lemma 1.1 are to strong to be applicable

to our problem.

Div-Curl lemma - hard version
Lw2 Lemma 1.2 Assume that B ⊂ RN is a bounded domain. Let

Un → U weakly in L2(B; RN ), Vn → V weakly in L2(B; RN ),

{divxUn}∞n=1, {curlVn}∞n=1 precompact in W−1,2(B).

Then ∫
B

Un ·Vnϕ dx →
∫

B

U ·Vϕdx for any ϕ ∈ C∞c (B).

Remark Since the result is local, we can assume that B is any open set
supposing precompactness in W−1,2

loc (B).

Proof:
Write

Un =
(
Un −∇x∆−1

D divxUn

)
+∇x∆−1

D divxUn,

and, similarly,

Vn =
(
Vn −∇x∆−1

D divxVn

)
+∇x∆−1

D divxVn,
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where the symbol ∆D denotes the Laplace operator endowed with the homoge-
neous Dirichlet boundary condition on ∂B.

It follows from the standard elliptic regularity theory that

{∇x∆−1
D divxUn}∞n=1 is precompact in L2(B;RN ),

while,

divx

(
Vn −∇x∆−1divxVn

)
= 0, curl

(
Vn −∇x∆−1divxVn

)
= curlVn;

whence, by the same token,

{Vn −∇x∆−1divxVn}∞n=1 is precompact in L2(B;RN ).

On the other hand,

divx

(
Un −∇x∆−1

D divxUn

)
= 0, curl∇x∆−1

D divxVn = 0,

and we may apply Lemma 1.1 to conclude the proof.
q.e.d

What Lemma 1.1 says is that product of two weakly converging sequences
tends to the product of their corresponding weak limits as soon as we can show
that their possible oscillations direction are orthogonal.

1.6.5 Reformulation of the entropy formulation in terms
of “defect” measures

The entropy inequality (1.27) may be interpreted in terms of a “defect” measure
supported by possible discontinuities of the solution. Indeed (1.27) expresses
the fact that the distribution

∂tE(u) + ∂xF (u) is non-positive.

In accordance with the well known observation, non-negative distributions may
be represented by a Radon measure µF , specifically,

∂tE(u) + ∂xF (u) = −µF ,

or, more precisely,∫ ∞

0

∫
T1

(
E(u)∂tϕ + F (u)∂xϕ

)
dx dt =< µF ;ϕ > (1.33) w8

for any ϕ ∈ C∞c ((0,∞)× T1).
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1.6.6 Tartar’s equation

Consider a bounded (regular) domain B ⊂ (0, T )×T1. Since the Sobolev space
W 1,p

0 (B) is compactly embedded into the space C(B) of continuous functions
for any p > 2 we may infer that

{∂tE(un)+∂xF (un)}∞n=1 is precompact in W−1,q(B) for any 1 ≤ q < 2, (1.34) w9

where {un}∞n=1 is the bounded family of entropy solutions introduced in Theo-
rem 1.1.

On the other hand, since un are uniformly bounded in L∞, we have

{∂tE(un) + ∂xF (un)}∞n=1 bounded W−1,r(B) for any r ≥ 1. (1.35) w10

Interpolating (1.34), (1.35) we conclude that

{∂tE(un) + ∂xF (un)}∞n=1 is precompact in W−1,2(B) (1.36) w11

for any entropy-flux pair E,F . Thus we are allowed to apply Div-Curl lemma
(Lemma 1.2) to deduce that

E1(un)F2(un)− E2(un)F1(un) → E1(u) F2(u)− E2(u) F1(u) weakly in L2(B)
(1.37) w12

for any choice of entropy flux pairs Ei, Fi, i = 1, 2, where we have used the stan-
dard notation B(u) for a weak limit of the sequence of compositions {B(un)}∞n=1.

Relation (1.37) is the celebrated Tartar’s equation

E1(u)F2(u)− E2(u)F1(u) = E1(u) F2(u)− E2(u) F1(u) (1.38) w13

for any convex E1, E2 and the corresponding fluxes F ′1 = E′
1f , F ′2 = E′

2f .

Given the rich variety of entropy-flux pairs - E may be any convex func-
tion - relation (1.38) is so restrictive that it implies strong (a.a. pointwise)
compactness of the sequence {un}∞n=1. Indeed, for fixed (t, x), we take

E1(z) = z, F1(z) = f(z),

E2(z) = |z − U |, F2(z) = sgn(z − U)(f(z)− f(U)), U constant,

where u denotes a weak limit of the sequence {un}∞n=1. Applying (1.38) we
obtain

lim
n→∞

∫ T

0

∫
T1

(
f(u)− f(U)

)
|un − U |ϕ dx dt (1.39) w14

=
∫ T

0

∫
T1

(u− U)sgn(u− U)(f(u)− f(U)) dx dt.

for any U and any ϕ ∈ C∞c ((0, T )×T1). In particular, relation (1.39) holds for
U = u(τ, y).
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Now, we may deduce

lim
r→0

1
|Br(τ, y)|

(
lim

n→∞

∫
Br(τ,y)

(
f(u)− f(u(τ, y))

)
|un − u(τ, y)| dx dt

)
= 0;

whence, at any Lebesgue point (τ, y) of the function u,

lim
r→0

1
|Br(τ, y)|

(
lim

n→∞

∫
Br(τ,y)

(
f(u)− f(u)

)
|un − u| dx dt

)
= 0. (1.40) w15

We recall that (τ, y) is a Lebesgue point of u if

lim
r→0

1
|Br(τ, y)|

∫
Br(τ,y)

|u− u(τ, y)| dx dt = 0.

Relation (1.40) in turn implies that

(f(u)− f(u))w = 0 a.a. in (0, T )× T1,

where w denotes a weak limit of {|un − u|}∞n=1. In particular,

un → u a.a. in the set {(t, x) | f(u) 6= f(u)}. (1.41) w16

Finally, since f is strictly convex, we have

f(un)− f(u) = f ′(u)(un − n) + f ′′(ξ)|un − u|2

for a certain ξ. As un, u are bounded, we deduce that

un → u whenever f(u) = f(u). (1.42) w17

Relations (1.41), (1.42) imply pre-compactness of the sequence {un}∞n=1 in
L1((0, T )× T1 and complete the proof of Theorem 1.1.

1.7 Exercises
ex

Exercise 1: Let u ∈ L∞((0, T ) × R1) be a weak (distributional) solution of
equation (1.18), with continuously differentiable flux function f . Show that u is
weakly continuous in time, specifically, after modification in a zero set of times
if necessary, the function

t 7→
∫
R1

u(t, x)ϕ(x) dx

is continuous in [0, T ] for any ϕ ∈ C∞c (R1).
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Exercise 2: Let u ∈ L∞((0, T ) × T1) be a weak (distributional) space
periodic solution of equation (1.18). Show that the L1-norm is a constant of
motion, meaning ∫

T1
u(t1, x) dx =

∫
T1

u(t2, x) dx

for any t1, t2.

Exercise 3: Let uε be smooth solutions of the viscous regularization

∂tuε(t, x) + ∂xf(uε(t, x)) = ε∆xuε(t, x) in (0, T )× T1

such that
‖uε‖L∞((0,T )×T1

)
≤ M

Show that Div-Curl lemma can be used to establish precompactness of the
family {uε}ε>0 in the Lebesgue space L1((0, T )× T1).

Exercise 4: Use Div-Curl lemma to show the following “Lions-Aubin”like
compactness result:

Let uε be a weak solution of

∂tuε(t, x) = ∆xuε(t, x) in (0, T )× T1

such that

ess sup
t∈(0,T )

‖uε(t, ·)‖L2(T1) +
∫ T

0

‖∂xuε‖2L2(T1)
dt ≤ M

uniformly for ε → 0.
Then {uε}ε>0 is precompact in L2((0, T )× T1).



Chapter 2

A brief introduction to the
theory of dynamical
systems

D
The central object of mathematical modeling is a system to be described. Sys-
tems may originate in physics, chemistry, biology and other areas as the case
may be. The state of a system at an instant t ∈ R is (believed to be) described
as a point U(t, ) in an abstract phase space X. In deterministic models, the
state at any time t > 0 is uniquely determined by the state U0 at t = 0 and the
time t; we write U = U(t, U0).

2.1 Standard approach via semigroups

For simplicity, we restrict ourselves to autonomous system whose characteristics
do not change in time. Accordingly, the dynamical system {U(t, ·)}t>0 enjoys
the following properties:

• U(0, ·) = I, in other words, U(0, U0) = U0 for any U0 ∈ X;

• U(t + s, U0) = U(t, U(s, U0)) for any s, t ≥ 0 yielding U(t + s, U0) =
U(s, U(t, U0)), meaning the mappings U(t, ·) commute;

• the mapping t 7→ U(t, U0) is continuous for any fixed U0; the mapping
U0 7→ U(t, U0) is continuous for any fixed t ≥ 0.

In the case when U(t, U0) represents the value at the time t of a solution of
an evolutionary differential equation or system emanating from the initial state
U0, the mappings {U(t, ·)}t≥0 are called solution semigroup. Note that the
property of continuity requires a kind of “distance” or topology to be defined
in the phase space X. Typically, X is a Banach space endowed with a norm
topology. However it may happen, and we have seen several examples in the

17
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previous text, that it is convenient to consider the weak topology that replaces
the standard “coordinate-wise” continuity. Moreover, the semigroup property
obviously includes uniqueness of solutions in terms of the initial data. Although
uniqueness is an indispensable attribute of any deterministic system, in many
important applications solutions are not (known to be) unique. On the other
hand, as we shall see below, many of the classical concepts of the theory of
dynamical systems as absorbing set or even attractor can be developed with
a minimum piece of information available concerning the associated solution
semigroup.

2.1.1 Conservative vs. dissipative dynamical system

In order to fix ideas, assume that X is a Banach space endowed with norm ‖·‖X .
We say that a dynamical system is conservative if

‖U(t, U0)‖X = ‖U0‖ for any t ≥ 0, U0 ∈ X.

Example 2.1
Consider the linear transport equation

∂tu(t, x) + c∂xu(t, x) = 0, u(0, x) = u0(x)

endowed with the space-periodic boundary conditions discussed in Chapter 1.
AS we have seen, the (unique) solution u can be written as

u(t, x) = u0(x− ct).

Clearly, the solution is classical provided u0 is continuously differentiable. In
such a case, it is easy to check that∫

T1
F (u(t, x)) dx =

∫
T1

F (u0(x)) dx.

Thus the solution semigroup U(t, u0) = u(t, ·) can be extended as a conserv-
ative dynamical system on any space Lp(T1) and also C(T1), in particular, it
conserves the “energy” norm in L2(T1).

Typically, conservative systems may be extended even for t ≤ 0 forming a
group.

A dynamical system is called dissipative provided it possesses a bounded
absorbing set Ba. A subset Ba ⊂ X is absorbing if for any bounded set B there
is a time t0(B) such that

U(t, U0) ∈ B0 for any U0 ∈ B and any t ≥ t0(B).

Example 2.2
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Consider a parabolic equation

∂tu(t, x)− ∂2
x,xu(t, x) = f(x), u(0, x) = u0(x),

with the Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0 for all t.

Multiplying the equation by u and integrating by parts, we get

d
dt

∫ 1

0

1
2
u2(t, x) dx +

∫ 1

0

|∂xu|2 dx =
∫ 1

0

f(x)u(t, x) dx.

Now, we can use Poincaré’s inequality∫ 1

0

|∂xu|2 dx ≥ a

∫ 1

0

u2 dx, a > 0,

together with the Hölder’s inequality

ab ≤ ε2

2
a2 +

1
2ε2

b2

to conclude that

χ′(t) + dχ(t) ≤ B, where we have set χ(t) =
∫ 1

0

u2(t, x) dx

Thus the associated dynamical system is dissipative in X = L2(0, 1). Of
course, we left open the problem of existence and uniqueness of solutions with
the data in the aforementioned space.

It is worth-noting that the concept of absorbing set can be introduced with-
out continuity and even without the semigroup property of the underlying dy-
namical system.

2.2 Attractors

The notion of attractors have been originally introduced in problems connected
with fluid dynamics, in particular in meteorological models. There was a strong
hope attractors may shed some light on the complex phenomena related to
turbulence, see Eckmann and Ruelle [2], Robinson [5]. However, we should
always keep in mind that attractors describe the behavior of the corresponding
system for a very large time comparable to the “age of universe”, while the real
world applications take place on much shorter time scales.

Attractor is a compact set in the phase space X that “attracts” all solutions
emanating from a bounded set of initial data. Clearly, the existence of an
attractor is conditioned by the existence of a bounded absorbing set. Let us
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introduce attractor in an intuitive way. Suppose we know that a dynamical
system {U(t, ·)}t≥0 possesses a bounded absorbing set ba ⊂ X and that it is
asymptotically compact, meaning

{U(tn, U0,n)}∞n=1 is precompact in X

whenever tn →∞ and {U0,n}∞n=1 ⊂ X is bounded. We set

A = {z ∈ X | there exist tn →∞, {U0,n}∞n=1 ⊂ Ba, U(tn, U0,n) → z}.

Since Ba is bounded and absorbing, A is a bounded subset of X. Moreover,
it is easy to observe that A is, in fact, compact in X. Indeed consider a sequence
{zn}∞n=1 ⊂ A. It follows from the proper definition of A that there is a sequence
tn →∞ and U0,n ∈ Ba such that

‖U(tn, U0,n)− zn‖X <
1
n

.

However {U(tn, U0,n)}∞n=1 is precompact in X and so is zn. Moreover, each
accummulation point of {zn}∞n=1 belongs to A.

Similarly, arguing by contradiction, we can show that A attracts bounded
sets in X, specifically, for any bounded set B and any ε > 0, there exists a time
t0(B, ε) such that

dist[U(t, U0);A] < ε for all U0 ∈ B, t > t0(ε, B).

Finally, it follows from continuity of U that A is invariant, meaning,

U(t,A) = A

Indeed, if U(tn, U0,n) → z, then U(tn ± τ, U0,n) → U(±τ, z) for any τ ≥ 0.
Motivated by the previous discussion, we introduce the concept of attractor

as follows.

Definition 2.1

Let {U(t, ·)}t≥0 be a dynamical system in a Banach space X. A set A ⊂ X
is called attractor if:

• A is compact in X;

• A is invariant, meaning U(t,A) = A for any t ≥ 0;

• A attracts bounded sets in X, that means for any bounded B ⊂ X and
any ε > 0 there exists t0 = t0(ε, B) such that

dist[U(t, U0);A] < ε for all t ≥ t0 and all U0 ∈ B.



Chapter 3

Time discretization,
accretive operators

a
Consider an abstract differential equation

d
dt

U(t) +A[U(t)] = 0, t ∈ (0, T ), (3.1) a1

supplemented with the initial condition

U(0) = U0. (3.2) a2

Here A denotes a mapping acting in a Banach space X,

A : D[A] ⊂ X 7→ X. (3.3) a3

Our aim is to solve problem (3.1), (3.2) by the method of time discretization.
Accordingly, fixing h > 0, we replace (3.1) by

U(t + h) + hA[U(t + h)] = U(t), U(0) = U0. (3.4) a4

Accordingly, in order to solve (3.4) for an arbitrary choice of initial conditions,
we need

R[Id + hA] = X. (3.5) a5

Moreover, a certain kind of continuity of the inverse [Id + hA]−1 is needed in
order to make the scheme stable. Specifically, we suppose that

‖y1 + hA[y1]− (y2 + hA[y2])‖X ≥ ‖y1 − y2‖X (3.6) a6

for any y1, y2 ∈ D[A]. This motivates the following definition.

Definition 3.1 Let X be a Banach space, and let A : D(A) : X → X be
a mapping. We say that A is accretive if

‖y1 + hA[y1]− (y2 + hA[y2])‖X ≥ ‖y1 − y2‖X

21
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holds for any y1, y2 ∈ D[A] and any h > 0.
The mapping A is called m-accretive if it is accretive and

R[Id + hA] = X for any h > 0.

3.1 Construction of solutions

Our first goal is to construct solutions to problem (3.1), (3.2) by means of the
approximation scheme based on (3.4). To this end, fix

λ =
T

N

and set, recursively,

U0
λ = U0, Un

λ + λA[Un
λ ] = Un−1

λ , n = 1, . . . , N.

• Step 1:
Obviously,

Un
λ + hA[Un

λ ]− Un−1
λ − hA[Un−1

λ ] = Un−1
λ − Un−2

λ ,

therefore, as A is m−accretive,

‖Un
λ − Un−1

λ ‖X ≤ ‖Un−1
λ − Un−2

λ ‖X .

Since
‖Un

λ − Un−1
λ ‖X ≤ ‖U1

λ − U0‖X ,

where, by accretivity of A,

‖U1
λ − U0‖X ≤ λ‖A[U0]‖X ,

we may infer that

‖Un
λ − U0‖X ≤ nλ‖A[U0]‖X =

n

N
T‖A[U0]‖X . (3.7) a7

The family U0, U
1
λ, . . . , UN

λ is bounded uniformly for λ → 0 provided U0 belongs
to the domain of A.

• Step 2:
Setting

µ =
T

M
, Um

µ + µA[Um
µ ] = Um−1

µ , U0
µ = U0, m = 1, . . . ,M

we compare the family U0, U
1
µ, . . . , UM

µ with U0, U
1
λ, . . . , UN

λ constructed in the
previous step. We have

Um
µ − Un

λ = Um−1
µ − µA[Um

µ ]− Un−1
λ + λA[Un

λ ]
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= Um−1
µ − Un−1

λ − µ
(
A[Um

µ ]−A[Un
λ ]

)
+ (λ− µ)A[Un

λ ],

where
(λ− µ)A[Un

λ ] =
λ− µ

λ

(
Un−1

λ − Un
λ

)
.

Consequently,

Um
µ + µA[Um

µ ]− Un
λ − µA[Un

λ ] = Um−1
µ − Un

λ −
µ

λ

(
Un−1

λ − Un
λ

)
(3.8) a8

= θ
(
Um−1

µ − Un−1
λ

)
+ (1− θ)

(
Um−1

µ − Un
λ

)
,

for
θ =

µ

λ
, n = 0, . . . , N, m = 0, . . . ,M.

Without loss of generality, we will assume that µ < λ, meaning, θ ∈ (0, 1).
By virtue of the accretivity hypothesis (3.6), relation (3.8) implies that

am,n ≡ ‖Um
µ − Un

λ ‖X ≤ θ‖Um−1
µ − Un−1

λ ‖X + (1− θ)‖Um−1
µ − Un

λ ‖X (3.9) a9

= θam−1,n−1 + (1− θ)am−1,n.

Moreover, as we have shown in (3.7),

a0,n ≤ nλ‖A[U0]‖X , am,0 ≤ mµ‖A[U0]‖X . (3.10) a10

It can be deduced from (3.9), (3.10) that∥∥Un
λ − Um

µ

∥∥
X
≤

(
mµ(λ− µ) + (nλ−mµ)2

)1/2 ‖A[U0]‖X . (3.11) a11

Following [3] we show (3.10) in several steps:
(1)

am,n ≤ bm,n for all 1 ≤ m ≤ M, 1 ≤ n ≤ N

provided
am,0 ≤ bm,0, a0,n ≤ b0,n

and
bm,n = θbm−1,n−1 + (1− θ)bm−1,n. (3.12) a12

(2) Let cm,n, dm,n solve the scheme (3.12), and, in addition,

cm,0 ≥ d2
m,0, c0,n ≥ d2

0,n.

Then cm,n ≥ d2
m,n for all m,n.

Indeed it follows from (3.12) that

cm,n =
∑

i=0∨j=0

θi,jci,j , dm,n =
∑

i=0∨j=0

θi,jdi,j ,
∑

θi,j = 1, θi,j ≥ 0.
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Thus, by virtue of Jensen’s inequality,

d2
m,n =

 ∑
i=0∨j=0

θi,jdi,j

2

≤
∑

i=0∨j=0

θi,jd
2
i,j

≤
∑

i=0∨j=0

θi,jci,j = cm,n.

(3)
Consider the solution cm,n of the scheme (3.12) with

cm,0 = (mµ)2, c0,n = (nλ)2.

We claim that ∣∣cm,n − (mµ− nλ)2
∣∣ ≤ mµ(λ− µ). (3.13) a13

In order to see (3.13), we set

rm,n = cm,n − (mµ− nλ)2.

Obviously rm,0 = r0,n = 0, and, by direct computation,

rm,n = θrm−1,n−1 + (1− θ)rm−1,n + µ(λ− µ);

whence
max
n≤N

|rm,n| ≤ max
n≤N

|rm−1,n|+ µ(λ− µ),

and (3.13) follows.

(4)
Setting

bm,0 = mµ‖A[U0]‖X , b0,n = nλ‖A[U0]‖X ,

we combine steps (2), (3) to obtain the desired conclusion (3.11).

Step 3:
We define approximate solutions as a piecewise linear function in the follow-

ing way:
Let

t = nλ + ξ = mµ + η, ξ ∈ [0, λ), η ∈ [0, µ).

We set

UN (t) = Un
λ + (Un+1

λ − Un
λ )

ξ

λ
, UM (t) = Um

µ + (Um+1
µ − Um

µ )
η

µ
.

Thus

‖UN (t)−UM (t)‖X ≤ ‖Un
λ −Um

µ ‖X +‖Un+1
λ −Un

λ ‖X +‖Um+1
µ −Um

µ ‖X , (3.14) a11a
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where, in accordance with Step 1 and relation (3.10),

‖Un
λ − Um

µ ‖X + ‖Un+1
λ − Un

λ ‖X + ‖Um+1
µ − Um

µ ‖X (3.15) a12a

≤
(
T (λ− µ) + |ξ − η|2

)1/2

‖A[U0]‖X + (λ + µ)‖A[U0]‖X .

As a direct consequence of (3.14), (3.15), we get

UN (t) → U(t) as N →∞ uniformly for t ∈ [0, T ]. (3.16) a13a

3.2 Solution semigroup

We define a solution semigroup by means of the formula obtained in the previous
section, specifically,

St[U0](t) = lim
N→∞

UN [U0](t),

where

UN [U1](t)− UN [U2](t) =
(

Id +
T

N

)−n

[U1]−
(

Id +
T

N

)−n

[U2] for t = n
T

N
.

Since A is accretive, we deduce that

‖UN [U1](t)− UN [U2](t)‖X ≤ ‖U1 − U2‖X whenever t = n
T

N
for a certain n.

(3.17) a14a

Letting N → ∞ in (3.17) and using continuity of the limit U(t) we conclude
that

‖St[U1]− St[U2]‖X ≤ ‖U1 − U2‖X for any t ∈ [0, T ], (3.18) a15a

meaning we have constructed a contractive semigroup of solutions to problem
(3.1), (3.2).



Bibliography

DiP2 [1] R.J. DiPerna. Measure-valued solutions to conservation laws. Arch. Rat.
Mech. Anal., 88:223–270, 1985.

EcRu1 [2] J.-P. Eckmann and D. Ruelle. Addendum: “Ergodic theory of chaos and
strange attractors”. Rev. Modern Phys., 57(4):1115, 1985.

KaYo [3] J. Kaplan and J. Yorke. Toward a unification of ordinary differential equa-
tions with nonlinear semigroup theory. In Proc. Internat. Conference on
Ordinary Differential Equations, USC 1974, Academic Press, New York,
pages 424–422, 1975.
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