Reaction-diffusion systems

Tomáš Vejchodský

Based on lecture notes of Radek Erban http://www.maths.ox.ac.uk/courses/course/19651/material http://www.maths.ox.ac.uk/cmb/education

> Centre for Mathematical Biology Mathematical Institute

Summer school, Prague, 6–8 August, 2013

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Motivation
- Reaction kinetics: deterministic and stochastic models
- Models of diffusion
- Application to circadian rhythms
- Application to pattern formation

Motivation - gene regulatory networks

Neighbourhood of mating response genes [Rung, Schlitt, et al, 2002]

Motivation - gene regulatory networks

Angiogenic signaling network. [Abdollahi et al, PNAS 2007]

Stochastic models of reaction kinetics

Degradation

$$A \xrightarrow{k} \emptyset$$

Naive stochastic simulation algorithm (SSA):

Initialization: $\Delta t > 0$ small, for t = 0 set $A(0) = n_0$.

(a1) Generate a random number r uniformly distributed in (0,1)
(b1) If r < A(t)kΔt then A(t + Δt) = A(t) - 1; else A(t + Δt) = A(t)

Naive SSA: degradation

 $k = 0.1, A(0) = 20, \Delta t = 0.005$

naivessa_mean_anim.m

э

(日)、

Gillespie SSA for degradation

$$A \xrightarrow{k} \emptyset$$

Initialization: set $A(0) = n_0$.

(a2) Generate a random number r uniformly distributed in (0,1)

- (b2) Compute the next reaction time $\tau = \frac{1}{A(t)k} \ln \left[\frac{1}{r}\right]$
- (c2) Update the number of molecules: $A(t + \tau) = A(t) 1$ Set $t := t + \tau$ and go to (a2)

Chemical reactions of higher-order

order	reaction	propensity	units of <i>k</i>
0	$\emptyset \xrightarrow{k} A$	kν	${\rm m}^{-3}{ m sec}^{-1}$
1	$A \xrightarrow{k} \emptyset$	A(t)k	sec^{-1}
2	$A+B \stackrel{k}{\longrightarrow} \emptyset$	A(t)B(t)k/ u	${\rm m}^3 { m sec}^{-1}$
2	$2A \xrightarrow{k} \emptyset$	A(t)(A(t)-1)k/ u	${ m m}^3{ m sec}^{-1}$
3	$A+B+C \xrightarrow{k} \emptyset$	$A(t)B(t)C(t)k/ u^2$	${\rm m}^6{ m sec}^{-1}$
3	$2A + B \xrightarrow{k} \emptyset$	$A(t)(A(t)-1)B(t)k/ u^2$	${\rm m}^6{ m sec}^{-1}$
3	$3A \xrightarrow{k} \emptyset$	$A(t)(A(t) - 1)(A(t) - 2)k/\nu^2$	$m^6 sec^{-1}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

System with two species

$$2A \xrightarrow{k_1} \emptyset, \quad A + B \xrightarrow{k_2} \emptyset, \quad \emptyset \xrightarrow{k_3} A, \quad \emptyset \xrightarrow{k_4} B,$$

Gillespie SSA:

- (a4) Generate two random numbers: $r_1, r_2 \sim U(0, 1)$
- (b4) Compute propensities: $\alpha_1(t) = k_1 A(t)(A(t) - 1), \ \alpha_2(t) = k_2 A(t)B(t), \ \alpha_3 = k_3, \ \alpha_4 = k_4, \ \text{and} \ \alpha_0 = \alpha_1(t) + \alpha_2(t) + \alpha_3 + \alpha_4$ (c4) Next reaction time $\tau = \frac{1}{\alpha_0} \ln \left[\frac{1}{r_1}\right]$

(d4) Update the numbers of molecules:

System with two species

Trajectories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

System with two species

(日)、

3.0

Stationary distribution

General Gillespie SSA

Notation

 $q \dots$ number of chemical reactions $\alpha_j(t) \dots$ propensity function of *j*-th reaction, $j = 1, 2, \dots, q$ $\alpha_j(t) dt =$ probability that *j*-th reaction occurs in [t, t + dt)

Algorithm

(a5) Generate random numbers r_1 , r_2 uniformly distributed in (0, 1) (b5) Compute propensity $\alpha_j(t)$ of each reaction and $\alpha_0 = \sum_{j=1}^q \alpha_j$ (c5) Next reaction time $\tau = \frac{1}{\alpha_0} \ln \left[\frac{1}{r_1}\right]$

(d5) Compute which reaction occurs at time $t + \tau$. Find j such that

$$r_2 \geq rac{1}{lpha_0}\sum_{i=1}^{j-1}lpha_i(t) \quad ext{and} \quad r_2 < rac{1}{lpha_0}\sum_{i=1}^j lpha_i(t)$$

(e5) The *j*-th reaction takes place. Update numbers of molecules. Set $t := t + \tau$ and go to (a5) System with multiple favourable states

Schlögl system

$$3A \stackrel{k_1,k_2}{\rightleftharpoons} 2A \qquad A \stackrel{k_3,k_4}{\rightleftharpoons} \emptyset$$

oncentration: $a(t) = A(t)/\nu$

Co

$$\frac{da}{dt} = -k_1 a^3 + k_2 a^2 - k_3 a + k_4$$

Average number of molecules: $\overline{A}(t) = a(t)\nu$

$$\frac{d\overline{A}}{dt} = -\frac{k_1}{\nu^2}\overline{A}^3 + \frac{k_2}{\nu}\overline{A}^2 - k_3\overline{A} + k_4\nu$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Self-induced stochastic resonance

Schnakenberg system

$$2A + B \stackrel{k_1}{\rightarrow} 3A \qquad \emptyset \stackrel{k_2,k_3}{\rightleftharpoons} A \qquad \emptyset \stackrel{k_4}{\rightleftharpoons} B$$

Concentration:

$$\frac{da}{dt} = k_1 a^2 b + k_2 - k_3 a$$
$$\frac{db}{dt} = -k_1 a^2 b + k_4$$

Average numbers of molecules:

$$\frac{d\overline{A}}{dt} = \frac{k_1}{\nu^2} \overline{A}^2 \overline{B} + k_2 \nu - k_3 \overline{A}$$
$$\frac{d\overline{B}}{dt} = -\frac{k_1}{\nu^2} \overline{A}^2 \overline{B} + k_4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Schnakenberg system

・ロト・西ト・モート・モー うえぐ

Schnakenberg system

Schnakenberg system

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�?

Stochastic differential equations (SDE)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$X(t + dt) = X(t) + f(X(t), t) dt + g(X(t), t) dW$$

 $dW \dots$ white noise, $dW \approx \sqrt{\Delta t} \xi$, with $\xi \sim N(0, 1)$

Simulation algorithm

$$X(0) = x_0, \ \Delta t > 0 \text{ small}$$
(a6) $\xi \sim N(0, 1)$
(b6) $X(t + \Delta t) = X(t) + f(X(t), t)\Delta t + g(X(t), t)\sqrt{\Delta t}\xi$
Set $t := t + \Delta t$ and go to (a6)

Example 1: f(x, t) = 0, g(x, t) = 1

Trajectories: $X(t + \mathrm{d}t) = X(t) + \mathrm{d}W_1$ $X(t + \mathrm{d}t) = X(t) + \mathrm{d}W$ $Y(t + dt) = Y(t) + dW_2$ 0.6 1.5 0.4 0.2 0.5 y [mm] × -0.5 -0.2-1 -0.4 -1.5 -0.6 0 0.2 0.4 0.6 0.8 -0.6 -0.2 0 0.2 0.4 0.6 x [mm] ŧ

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● 回 ● の Q @

Example 2: f(x, t) = 1, g(x, t) = 1

Trajectories: X(t + dt) = X(t) + dt + dW

Example 3: two favourable states

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Example 1: f = 0, g = 1 (revisited)

Stationary probability distribution: X(t + dt) = X(t) + dW

Example 3: two favourable states (revisited)

Stationary probability distribution: $f(x, t) = -k_1 x^3 + k_2 x^2 - k_3 x + k_4$, $g(x, t) = k_5$ $k_1 = 10^{-3}$, $k_2 = 0.75$, $k_3 = 165$, $k_4 = 10^4$, $k_5 = 200$, X(t + dt) = X(t) + f(X(t), t) dt + g(X(t), t) dW

Example 3: two favourable states (revisited)

イロト イポト イヨト イヨト

ъ

Mean exit time: $\tau_{\rm sim} = 64.7$ $\tau_{\rm x_{s_1}} = 59.45$

Stochastic equations for chemical kinetics

$$\sum_{i=1}^{N} \nu_{ji}^{\mathrm{r}} X_{i} \xrightarrow{k_{j}} \sum_{i=1}^{N} \nu_{ji}^{\mathrm{p}} X_{i}, \qquad j = 1, 2, \dots, q$$

Notation:

• Well mixed reactor: N chemical species, q reactions (R_1, \ldots, R_q)

х

- ► $\mathbf{X} = [X_1, \dots, X_N]$, $X_i(t) =$ number of molecules, $i = 1, \dots, N$
- α_j(x) is propensity function of reaction R_j, j = 1,..., q
 (α_j(x) dt = probability that one reaction R_j occurs in [t, t + dt), given X(t) = x)
- ν_{ji} = ν^p_{ji} − ν^r_{ji}, change of X_i during reaction R_j,
 ν_i = [ν_{i1},..., ν_{iN}]

•
$$p(\mathbf{x}, t) = \text{probability that } \mathbf{X}(t) =$$

Stochastic equations for chemical kinetics

Chemical master equation (CME) – exact $\frac{\partial}{\partial t} p(\mathbf{x}, t) = \sum_{j=1}^{q} \left[\alpha_j (\mathbf{x} - \boldsymbol{\nu}_j) p(\mathbf{x} - \boldsymbol{\nu}_j, t) - \alpha_j(\mathbf{x}) p(\mathbf{x}, t) \right]$ Chemical Langevin equation (CLE) - approximate $\mathrm{d}X_i = f_i(\mathbf{X}(t))\,\mathrm{d}t + \sum_{j=1}^{7} d_{ji}(\mathbf{X}(t))\,\mathrm{d}W_j$ where $f_i(\mathbf{X}(t)) = \sum_{j=1}^{7} \nu_{ji} \alpha_j(\mathbf{X}(t)), \quad d_{ji}(\mathbf{X}(t)) = \nu_{ji} \sqrt{\alpha_j(\mathbf{X}(t))}$ Chemical Fokker-Planck equation (CFP) ⇔ CLE $\frac{\partial}{\partial t}\rho(\mathbf{x},t) = \frac{1}{2}\sum_{i=1}^{N}\sum_{k=1}^{N}\frac{\partial^{2}}{\partial x_{i}\partial x_{k}}\left|\left(\sum_{i=1}^{q}d_{ji}(\mathbf{x})d_{jk}(\mathbf{x})\right)\rho(\mathbf{x},t)\right|$ $-\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}[f_{i}(\mathbf{x})\rho(\mathbf{x},t)]$

・ロト・(四ト・(田下・(日下・))

Schlögl system (revisited)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Diffusion – position jump process

$$X(t + dt) = X(t) + \sqrt{2D} dW_x$$
$$Y(t + dt) = Y(t) + \sqrt{2D} dW_y$$
$$Z(t + dt) = Z(t) + \sqrt{2D} dW_z$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Reflecting boundary condition

Simulation algorithm $X(0) = x_0, \ \Delta t > 0 \text{ small}$ (a7) $\xi \sim N(0, 1)$ (b7) $X(t + \Delta t) = X(t) + \sqrt{2D\Delta t}\xi$ (c7) If $X(t + \Delta t) < 0$ then $X(t + \Delta t) = -X(t) - \sqrt{2D\Delta t}\xi$ If $X(t + \Delta t) > L$ then $X(t + \Delta t) = 2L - X(t) - \sqrt{2D\Delta t}\xi$ Set $t := t + \Delta t$ and go to (a7)

Reflecting boundary condition

▲ロト▲圖ト▲画ト▲画ト 画 のへで

Compartment based model

 $t = 4 \min$

 $a(0) = \delta_{0.4}(x)$

 $K = 40, h = 1/K, d = D/h^2 = 0.16 \text{ sec}^{-1}$

 $N_{\rm mol} = 1000, A_{16}(0) = A_{17}(0) = 500$

10 realizations 1 molecule

comp_diff.m

ъ

(日)、

Compartment based reaction-diffusion

Compartment based reaction-diffusion

$$2A \xrightarrow{k_1} \emptyset, \quad A + B \xrightarrow{k_2} \emptyset \quad \text{in } [0, L],$$
$$\emptyset \xrightarrow{k_3} A \text{ in } [0, 9L/10], \qquad \emptyset \xrightarrow{k_4} B \text{ in } [2L/5, K],$$

Pattern formation – French flag

 $A \xrightarrow{k_1} \emptyset$ in [0, L], $\emptyset \xrightarrow{k_p} A$ in [0, L/5], +diffusion

deterministic

stochastic

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Pattern formation – Turing instability

Schnakenberg system

$$2A + B \xrightarrow{k_1} 3A \qquad \emptyset \stackrel{k_2,k_3}{\rightleftharpoons} A \qquad \emptyset \stackrel{k_4}{\rightleftharpoons} B$$

+ diffusion $D_A = 10^{-5}$, $D_B = 10^{-3} \text{ [mm}^2 \text{sec}^{-1]}$

Acknowledgement

This presentation is based on "A practical guide to stochastic simulations of reaction-diffusion processes" written by R. Erban, S.J. Chapman, and P.K. Maini and on lecture notes "Stochastic modelling of biological processes" by R. Erban.

I am thankful to Radek Erban and Philip K. Maini for their support and fruitful discussions about the topics presented during this summer school.

Marie Curie Fellowship, StochDetBioModel

EUROPEAN COMMISSION The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 328008.

Thank you for your attention

Tomáš Vejchodský

Based on lecture notes of Radek Erban http://www.maths.ox.ac.uk/courses/course/19651/material http://www.maths.ox.ac.uk/cmb/education

> Centre for Mathematical Biology Mathematical Institute

