Reaction-diffusion systems

Tomáś Vejchodský

Based on lecture notes of Radek Erban http://www.maths.ox.ac.uk/courses/course/19651/material http://www.maths.ox.ac.uk/cmb/education

Centre for Mathematical Biology
Mathematical Institute

Outline

- Motivation
- Reaction kinetics: deterministic and stochastic models
- Models of diffusion
- Application to circadian rhythms
- Application to pattern formation

Motivation - gene regulatory networks

Neighbourhood of mating response genes [Rung, Schlitt, et al, 2002]

Motivation - gene regulatory networks

Angiogenic signaling network. [Abdollahi et al, PNAS 2007]

Stochastic models of reaction kinetics

Degradation

$$
A \xrightarrow{k} \emptyset
$$

Naive stochastic simulation algorithm (SSA):
Initialization: $\Delta t>0$ small, for $t=0$ set $A(0)=n_{0}$.
(a1) Generate a random number r uniformly distributed in $(0,1)$
(b1) If $r<A(t) k \Delta t$ then $A(t+\Delta t)=A(t)-1$;

$$
\text { else } A(t+\Delta t)=A(t)
$$

Naive SSA: degradation

Gillespie SSA for degradation

$$
A \xrightarrow{k} \emptyset
$$

Initialization: set $A(0)=n_{0}$.
(a2) Generate a random number r uniformly distributed in $(0,1)$
(b2) Compute the next reaction time $\tau=\frac{1}{A(t) k} \ln \left[\frac{1}{r}\right]$
(c2) Update the number of molecules: $A(t+\tau)=A(t)-1$ Set $t:=t+\tau$ and go to (a2)

Chemical reactions of higher-order

order	reaction	propensity	units of k
0	$\emptyset \xrightarrow{k} A$	$k \nu$	$\mathrm{~m}^{-3} \mathrm{sec}^{-1}$
1	$A \xrightarrow{k} \emptyset$	$A(t) k$	sec^{-1}
2	$A+B \xrightarrow{k} \emptyset$	$A(t) B(t) k / \nu$	$\mathrm{m}^{3} \mathrm{sec}^{-1}$
2	$2 A \xrightarrow{k} \emptyset$	$A(t)(A(t)-1) k / \nu$	$\mathrm{m}^{3} \mathrm{sec}^{-1}$
3	$A+B+C \xrightarrow{k} \emptyset$	$A(t) B(t) C(t) k / \nu^{2}$	$\mathrm{~m}^{6} \mathrm{sec}^{-1}$
3	$2 A+B \xrightarrow{k} \emptyset$	$A(t)(A(t)-1) B(t) k / \nu^{2}$	$\mathrm{~m}^{6} \mathrm{sec}^{-1}$
3	$3 A \xrightarrow{k} \emptyset$	$A(t)(A(t)-1)(A(t)-2) k / \nu^{2}$	$\mathrm{~m}^{6} \mathrm{sec}^{-1}$

System with two species

$$
2 A \xrightarrow{k_{1}} \emptyset, \quad A+B \xrightarrow{k_{2}} \emptyset, \quad \emptyset \xrightarrow{k_{3}} A, \quad \emptyset \xrightarrow{k_{4}} B,
$$

Gillespie SSA:
(a4) Generate two random numbers: $r_{1}, r_{2} \sim U(0,1)$
(b4) Compute propensities:

$$
\begin{aligned}
& \alpha_{1}(t)=k_{1} A(t)(A(t)-1), \alpha_{2}(t)=k_{2} A(t) B(t), \\
& \alpha_{3}=k_{3}, \alpha_{4}=k_{4}, \text { and } \alpha_{0}=\alpha_{1}(t)+\alpha_{2}(t)+\alpha_{3}+\alpha_{4}
\end{aligned}
$$

(c4) Next reaction time $\tau=\frac{1}{\alpha_{0}} \ln \left[\frac{1}{r_{1}}\right]$
(d4) Update the numbers of molecules:

	$r_{2} \in I_{1}$	$r_{2} \in I_{2}$	$r_{2} \in I_{3}$	$r_{2} \in I_{4}$
$A(t+\tau)$	$A(t)-2$	$A(t)-1$	$A(t)+1$	$A(t)$
$B(t+\tau)$	$B(t)$	$B(t)-1$	$B(t)$	$B(t)+$

Set $t:=t+\tau$ and go to (a4)

System with two species

Trajectories

$$
\begin{aligned}
& A(0)=B(0)=0, k_{1}=10^{-3}, k_{2}=10^{-2}, k_{3}=1.2, k_{4}=1 \mathrm{sec}^{-1} \\
& A_{s}=9.6, B_{s}=12.2 \\
& a_{s}=10, b_{s}=10
\end{aligned}
$$

System with two species

General Gillespie SSA

Notation

$q \ldots$ number of chemical reactions
$\alpha_{j}(t) \ldots$ propensity function of j-th reaction, $j=1,2, \ldots, q$
$\alpha_{j}(t) \mathrm{d} t=$ probability that j-th reaction occurs in $[t, t+\mathrm{d} t)$

Algorithm

(a5) Generate random numbers r_{1}, r_{2} uniformly distributed in $(0,1)$
(b5) Compute propensity $\alpha_{j}(t)$ of each reaction and $\alpha_{0}=\sum_{j=1}^{q} \alpha_{j}$
(c5) Next reaction time $\tau=\frac{1}{\alpha_{0}} \ln \left[\frac{1}{r_{1}}\right]$
(d5) Compute which reaction occurs at time $t+\tau$. Find j such that

$$
r_{2} \geq \frac{1}{\alpha_{0}} \sum_{i=1}^{j-1} \alpha_{i}(t) \quad \text { and } \quad r_{2}<\frac{1}{\alpha_{0}} \sum_{i=1}^{j} \alpha_{i}(t)
$$

(e5) The j-th reaction takes place. Update numbers of molecules. Set $t:=t+\tau$ and go to (a5)

System with multiple favourable states

Schlögl system

$$
3 A \stackrel{k_{1}, k_{2}}{\rightleftharpoons} 2 A \quad A \stackrel{k_{3}, k_{4}}{\rightleftharpoons} \emptyset
$$

Concentration: $a(t)=A(t) / \nu$

$$
\frac{d a}{d t}=-k_{1} a^{3}+k_{2} a^{2}-k_{3} a+k_{4}
$$

Average number of molecules: $\bar{A}(t)=a(t) \nu$

$$
\frac{d \bar{A}}{d t}=-\frac{k_{1}}{\nu^{2}} \bar{A}^{3}+\frac{k_{2}}{\nu} \bar{A}^{2}-k_{3} \bar{A}+k_{4} \nu
$$

Schlögl system

$\frac{k_{1}}{\nu^{2}}=2.5 \times 10^{-4}, \frac{k_{2}}{\nu}=0.18, k_{3}=37.5, k_{4} \nu=2200 \quad\left[\mathrm{~min}^{-1}\right]$

Schlögl system

Schlögl system

$$
\frac{k_{1}}{\nu^{2}}=2.5 \times 10^{-4}, \frac{k_{2}}{\nu}=0.18, k_{3}=37.5, k_{4} \nu=2200 \quad\left[\min ^{-1}\right]
$$

Schlögl system

$\frac{k_{1}}{\nu^{2}}=2.5 \times 10^{-4}, \frac{k_{2}}{\nu}=0.18, k_{3}=37.5, k_{4} \nu=2200 \quad\left[\mathrm{~min}^{-1}\right]$

Self－induced stochastic resonance

Schnakenberg system

$$
2 A+B \xrightarrow{k_{1}} 3 A \quad \emptyset \stackrel{k_{2}, k_{3}}{\rightleftharpoons} A \quad \emptyset \xrightarrow{k_{4}} B
$$

Concentration：

$$
\begin{aligned}
& \frac{d a}{d t}=k_{1} a^{2} b+k_{2}-k_{3} a \\
& \frac{d b}{d t}=-k_{1} a^{2} b+k_{4}
\end{aligned}
$$

Average numbers of molecules：

$$
\begin{aligned}
\frac{d \bar{A}}{d t} & =\frac{k_{1}}{\nu^{2}} \bar{A}^{2} \bar{B}+k_{2} \nu-k_{3} \bar{A} \\
\frac{d \bar{B}}{d t} & =-\frac{k_{1}}{\nu^{2}} \bar{A}^{2} \bar{B}+k_{4}
\end{aligned}
$$

Schnakenberg system

$$
\begin{aligned}
& \frac{k_{1}}{\nu^{2}}=4 \times 10^{-5}, k_{2} \nu=50, k_{3}=10, k_{4} \nu=25 \quad\left[\mathrm{sec}^{-1}\right] \\
& A(0)=10, \quad B(0)=10
\end{aligned}
$$

Schnakenberg system

$$
\begin{aligned}
& \frac{k_{1}}{\nu^{2}}=4 \times 10^{-5}, k_{2} \nu=50, k_{3}=10, \quad k_{4} \nu=100 \quad\left[\mathrm{sec}^{-1}\right] \\
& A(0)=10, \quad B(0)=10
\end{aligned}
$$

Schnakenberg system

Stochastic differential equations (SDE)

$$
X(t+\mathrm{d} t)=X(t)+f(X(t), t) \mathrm{d} t+g(X(t), t) \mathrm{d} W
$$

$\mathrm{d} W \ldots$ white noise, $\mathrm{d} W \approx \sqrt{\Delta t} \xi$, with $\xi \sim N(0,1)$
Simulation algorithm
$X(0)=x_{0}, \Delta t>0$ small
(a6) $\xi \sim N(0,1)$
(b6) $X(t+\Delta t)=X(t)+f(X(t), t) \Delta t+g(X(t), t) \sqrt{\Delta t} \xi$
Set $t:=t+\Delta t$ and go to (a6)

Example 1: $f(x, t)=0, g(x, t)=1$

Trajectories:

$$
X(t+\mathrm{d} t)=X(t)+\mathrm{d} W
$$

$$
\begin{aligned}
& X(t+\mathrm{d} t)=X(t)+\mathrm{d} W_{1} \\
& Y(t+\mathrm{d} t)=Y(t)+\mathrm{d} W_{2}
\end{aligned}
$$

Example 2: $f(x, t)=1, g(x, t)=1$

Trajectories:
$X(t+\mathrm{d} t)=X(t)+\mathrm{d} t+\mathrm{d} W$

Example 3: two favourable states

Trajectories:

$$
f(x, t)=-k_{1} x^{3}+k_{2} x^{2}-k_{3} x+k_{4}, \quad g(x, t)=k_{5}
$$

$$
k_{1}=10^{-3}, k_{2}=0.75, k_{3}=165, k_{4}=10^{4}, k_{5}=200,
$$

$$
X(t+\mathrm{d} t)=X(t)+f(X(t), t) \mathrm{d} t+g(X(t), t) \mathrm{d} W
$$

Example 1: $f=0, g=1$ (revisited)

Stationary probability distribution: $X(t+\mathrm{d} t)=X(t)+\mathrm{d} W$

Example 3: two favourable states (revisited)

Stationary probability distribution:

$$
\begin{aligned}
& f(x, t)=-k_{1} x^{3}+k_{2} x^{2}-k_{3} x+k_{4}, \quad g(x, t)=k_{5} \\
& k_{1}=10^{-3}, k_{2}=0.75, k_{3}=165, k_{4}=10^{4}, k_{5}=200, \\
& X(t+d t)=X(t)+f(X(t), t) \mathrm{d} t+g(X(t), t) \mathrm{d} W
\end{aligned}
$$

Example 3: two favourable states (revisited)

Mean exit time:

$$
\begin{aligned}
& \tau_{\mathrm{sim}}=64.7 \\
& \tau_{x_{s_{1}}}=59.45
\end{aligned}
$$

Stochastic equations for chemical kinetics

$$
\sum_{i=1}^{N} \nu_{j i}^{\mathrm{r}} X_{i} \xrightarrow{k_{j}} \sum_{i=1}^{N} \nu_{j i}^{\mathrm{p}} X_{i}, \quad j=1,2, \ldots, q
$$

Notation:

- Well mixed reactor: N chemical species, q reactions $\left(R_{1}, \ldots, R_{q}\right)$
- $\mathbf{X}=\left[X_{1}, \ldots, X_{N}\right], X_{i}(t)=$ number of molecules, $i=1, \ldots, N$
- $\alpha_{j}(x)$ is propensity function of reaction $R_{j}, j=1, \ldots, q$ $\left(\alpha_{j}(\mathbf{x}) \mathrm{d} t=\right.$ probability that one reaction R_{j} occurs in $[t, t+\mathrm{d} t)$, given $\mathbf{X}(t)=\mathbf{x})$
- $\nu_{j i}=\nu_{j i}^{\mathrm{p}}-\nu_{j i}^{\mathrm{r}}$, change of X_{i} during reaction R_{j},
- $\boldsymbol{\nu}_{j}=\left[\nu_{j 1}, \ldots, \nu_{j N}\right]$
- $p(\mathbf{x}, t)=$ probability that $\mathbf{X}(t)=\mathbf{x}$

Stochastic equations for chemical kinetics

Chemical master equation (CME) - exact
$\frac{\partial}{\partial t} p(\mathbf{x}, t)=\sum_{j=1}^{q}\left[\alpha_{j}\left(\mathbf{x}-\nu_{j}\right) p\left(\mathbf{x}-\nu_{j}, t\right)-\alpha_{j}(\mathbf{x}) p(\mathbf{x}, t)\right]$
Chemical Langevin equation (CLE) - approximate
$\mathrm{d} X_{i}=f_{i}(\mathbf{X}(t)) \mathrm{d} t+\sum_{j=1}^{q} d_{j i}(\mathbf{X}(t)) \mathrm{d} W_{j}$
where $f_{i}(\mathbf{X}(t))=\sum_{j=1}^{q} \nu_{j i} \alpha_{j}(\mathbf{X}(t)), \quad d_{j i}(\mathbf{X}(t))=\nu_{j i} \sqrt{\alpha_{j}(\mathbf{X}(t))}$
Chemical Fokker-Planck equation (CFP) \Leftrightarrow CLE

$$
\begin{aligned}
& \frac{\partial}{\partial t} p(\mathbf{x}, t)=\frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \frac{\partial^{2}}{\partial x_{i} \partial x_{k}}\left[\left(\sum_{j=1}^{q} d_{j i}(\mathbf{x}) d_{j k}(\mathbf{x})\right) p(\mathbf{x}, t)\right] \\
&-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left[f_{i}(\mathbf{x}) p(\mathbf{x}, t)\right]
\end{aligned}
$$

Schlögl system (revisited)

Diffusion - position jump process

$$
\begin{aligned}
& X(t+\mathrm{d} t)=X(t)+\sqrt{2 D} \mathrm{~d} W_{x} \\
& Y(t+\mathrm{d} t)=Y(t)+\sqrt{2 D} \mathrm{~d} W_{y} \\
& Z(t+\mathrm{d} t)=Z(t)+\sqrt{2 D} \mathrm{~d} W_{z}
\end{aligned}
$$

Reflecting boundary condition

Simulation algorithm
$X(0)=x_{0}, \Delta t>0$ small
(a7) $\xi \sim N(0,1)$
(b7) $X(t+\Delta t)=X(t)+\sqrt{2 D \Delta t} \xi$
(c7) If $X(t+\Delta t)<0$ then $X(t+\Delta t)=-X(t)-\sqrt{2 D \Delta t} \xi$
If $X(t+\Delta t)>L$ then $X(t+\Delta t)=2 L-X(t)-\sqrt{2 D \Delta t} \xi$ Set $t:=t+\Delta t$ and go to (a7)

Reflecting boundary condition

$D=10^{-4} \mathrm{~mm}^{2} \mathrm{sec}^{-1}, \quad L=1 \mathrm{~mm}$,
$t=4 \mathrm{~min}, \quad h=25 \mu \mathrm{~m}$ $X(0)=0.4 \mathrm{~mm}, \quad \Delta t=0.1 \mathrm{sec}$

Compartment based model

$t=4$ min
$K=40, h=1 / K, d=D / h^{2}=0.16 \mathrm{sec}^{-1}$
$N_{\text {mol }}=1000, A_{16}(0)=A_{17}(0)=500$
$a(0)=\delta_{0.4}(x)$

10 realizations 1 molecule

Compartment based reaction-diffusion

$$
A \xrightarrow{k_{1}} \emptyset \text { in }[0, L], \quad \emptyset \xrightarrow{k_{p}} A \text { in }[0, L / 5],
$$

$t=10 \mathrm{~min}$

$$
t=30 \mathrm{~min}
$$

$$
K=40, h=1 / K, d=D / h^{2}=0.16 \mathrm{sec}^{-1}
$$

$$
k_{1}=10^{-3} \sec ^{-1}, k_{p}=0.012 \mu \mathrm{~m}^{-1} \sec ^{-1}, k_{2}=k_{p} h
$$

$$
A_{i}(0)=0, \quad a(0)=0
$$

Compartment based reaction-diffusion

$$
\begin{aligned}
& 2 A \xrightarrow{k_{1}} \emptyset, \quad A+B \xrightarrow{k_{2}} \emptyset \\
& \emptyset \xrightarrow{k_{3}} A \text { in }[0, L], \\
& {[0,9 L / 10], \quad \emptyset \xrightarrow{k_{4}} B \text { in }[2 L / 5, K], }
\end{aligned}
$$

$t=30 \mathrm{~min}$
compRD_nonlin.m
$K=40, h=1 / K, d=D / h^{2}=0.16 \mathrm{sec}^{-1}$ $k_{1}=10^{-3}, k_{2}=10^{-2}, k_{3}=1.2, k_{4}=1 \mathrm{sec}^{-1}$ per one compartment $A(0)=B(0)=0, \quad a(0)=b(0)=0$

Pattern formation - French flag

$A \xrightarrow{k_{1}} \emptyset$ in $[0, L], \quad \emptyset \xrightarrow{k_{p}} A$ in $[0, L / 5], \quad+$ diffusion

deterministic

stochastic

Pattern formation - Turing instability

Schnakenberg system

$$
2 A+B \xrightarrow{k_{1}} 3 A \quad \emptyset \stackrel{k_{2}, k_{3}}{\rightleftharpoons} A \quad \emptyset \xrightarrow{k_{4}} B
$$

+ diffusion $D_{A}=10^{-5}, D_{B}=10^{-3}\left[\mathrm{~mm}^{2} \mathrm{sec}^{-1}\right]$

$$
\begin{aligned}
& L=1 \mathrm{~mm}, K=40, h=\frac{L}{K}=25 \mu \mathrm{~m} \\
& A_{i}(0)=a_{s}=200, B_{i}(0)=b_{s}=75
\end{aligned}
$$

Acknowledgement

This presentation is based on "A practical guide to stochastic simulations of reaction-diffusion processes" written by R. Erban, S.J. Chapman, and P.K. Maini and on lecture notes "Stochastic modelling of biological processes" by R. Erban.

I am thankful to Radek Erban and Philip K. Maini for their support and fruitful discussions about the topics presented during this summer school.

Marie Curie Fellowship, StochDetBioModel

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Pro-
EUROPEAN gramme (FP7/2007-2013) under REA grant COMMISSION agreement no. 328008.

Thank you for your attention

Tomás Vejchodský

Based on lecture notes of Radek Erban
http://www.maths.ox.ac.uk/courses/course/19651/material http://www.maths.ox.ac.uk/cmb/education

Centre for Mathematical Biology
Mathematical Institute

