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Diffusion limits in a model of radiative flow (B. Ducomet, S.N.)
Low Mach number limit in a model of radiative flow (B. Ducomet,
S.N.)

Low Mach number limit for a model of accretion disk (D.Donatelli,
B.Ducomet,S.N.)

Inviscid incompressible limits on expanding domains (E.Feireis|, S.N.,
Y.Sun)
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Hypotheses and stability result

General questions

Compressible vs. incompressible

Is air compressible? Is it important?
Is the physical space bounded or unbounded?

Viscous vs. inviscid

What is turbulence?
Do extremely viscous fluids exhibit turbulent behavior?

Effect of rotation

Does it matter that the Earth rotate?
Is the rotation fast or slow? Is it important?
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The scaling effect

Characteristic values and scaling

Scaling of derivatives
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Hypotheses and stability result

Gaseous stars in astrophysics
The effect of coupling between the macroscopic description of

the fluid and the statistical character of the motion of the
massless photons.
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Thermostatic variable

e mass density o = o(t, x)

Motion

* macroscopic velocity u = u(t, x)
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(compressible) Navier-Stokes system

Mass conservation

aude Louis Or0 + divy(ou) =0
arie Henri
avier [1785-1836]

Momentum balance

Ot(ou) + divy(ou ® u) + Vyp(0) = div,S + of

Newton’s rheological law

2
S=u (qu + Viu— 3divxu]I> + ndiv,ul



Compressible Navier-Stokes system with radiation

Equation of continuity

Oro + divy(ou) =0

Equation of motion

Ot(ou) + divi(ou @ u) + Vip(0) = pAsu + AV, diveu + §F
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Radiative transfer equation

1
E@,_»I + @ -V, =S5, cis speed of light

1 =
5_08(B_I)+05(44T/52Idw_l>

§F:(aa+as)/ / &1 A3 dv.
(0] S2

Radiative intensity

the radiative intensity / = I(t, x,w, ), depending on the direction
weS?,

82 C R3 the unit sphere,

the frequency v > 0.
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Hypothesis

» Isotropy. The coefficients o, os are independent of &J.

* Grey hypothesis The coefficients o,, o5 are independent of v.
B = B(v, p) measures the departure from equilibrium
is a barotropic equivalent of the Planck function

b the frequency average of B(v, o)
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Hypotheses and stability result

boundary conditions

ulpo =0

I(t, x,@,v) = 0 for (x,&) € {(x,w) ‘ (x,3) € 09 x S, w.ﬁgo},
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Hypotheses and stability result

Scaled equations

Scaling

Mass conservation

[Sr]0:0 + divk(ou) =0

Momentum balance

[St10% o) + div(ou & u) + [i} V.p0)

Ma

= [Ri] (Axu + AV, diveu) + (external forces)
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Hypotheses and stability result

Transport of radiative intensity

S ot Vo)==

C

1
=Lo,(B—1)+ LLsos (E S2/dw—/).
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Characteristic numbers - Strouhal number

Strouhal number

[St]

length

char

 timegparvelocity g,

Cen&k Strouhal
[1850-1922]

Scaling by means of Strouhal number is used in the study of the long-time
behavior of the fluid system, where the characteristic time is large

Sarka Netasova A model of radiative flow




Hypotheses and stability result

Mach number

Mach number

Ernst Mach [1838-1916] velocit
[Ma] _ Y char

\/pressure,,,, /density ...

Mach number is the ratio of the characteristic speed to
the speed of sound in the fluid. Low Mach number limit,
where, formally, the speed of sound is becoming infinite,
characterizes incompressibility
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Reynolds number

Reynolds number

[Re] = density i, . velocity .. length
ViSCOSity par

char

Eborne Reynolds
342-1912]

High Reynolds number is attributed to turbulent flows, where the
viscosity of the fluid is negligible
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Radiation dimensionless numbers

N C
Uref
Os,ref
L= Lrefo'a,ref» Ly =
O a,ref
Lref Vref Sref

P= :
¢ prEfUrzef
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Target system

Incompressible limit

Low Mach number = compressible — incompressible

Fast rotation

Low Rossby number = 3D motion — 2D motion

Inviscid limit

High Reynolds number = viscous flow — inviscid flow

Diffusion limit

compressible Navier-Stokes system with radiation — compressible
Navier-Stokes system with diffusion

Sarka Netasova A model of radiative flow




Diffusion limit

Mass conservation

Oro + divy(ou) =0

Momentum balance

O¢(ou) + divy(ou ® u) + Vip(0) = div,S(V,u)+

<€aa+ 05>/ / wl dw dv.
82
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Transport of radiative intensity

1 1
€0l +w- Vel =0y (B— 1) + =0, (/ /dw—l)
€ 47 S2

Asymptotic limit(formal)
1 1

ER = @7 B e04(0), 05 = 505(9)7
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Limit system

Continuity equation

Oro + divy(ou) =0

Momentum equation

1
O¢(ou) +divx(ou®@u) + V, (p(g) + 3N> = pAu+ (A4 p)Vydivyu

Diffusion equation

0N — divx(ﬁva) = 0.(0)(b(0) — N),

b(e) = /000 B(o,v) dv
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Hypotheses and stability result

Preparing the initial data

Il prepared initial data

0(0,-) =02+ 6@8{2, u(0,-) =,
{g(()lg} bounded in L2 N L
" J)e>0

{uoc},..o bounded in L2

Well prepared initial data

ggg—>0in [2ase—0

Ug,e — Ug in [?as e — 0, diveug =0
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Fundamental issues

Solvability of the primitive system

The primitive system should admit (global) in time solutions for any
choice of the scaling parameters and any admissible initial data

Solvability of the target system

The target system should admit solutions, at least locally in time;
the solutions are regular

Stability

The family of solutions to the primitive system should be stable with
respect to the scaling parameters




Assumptions

Assumption on the pressure
e pisa C! function on [0, ) such that p(0) =0,
e p'(p) >0 for all p> 0, such that
P'(2) 3

p,y_l :poo>07’y>§

Assumptions on radiative quantities

0 < 05(0), 0ale) < a1,
0a(0)B™(v, 0) < h(v), he L*(0,00) for m=1,2,
for any o > 0.




Weak formulation

Renormalized continuity equation
[ [ (o4 0)ow) axas
[ ((o+ 3@)u- e+ (560) - Be)e)aiveus) e at
= [ (e0-+ Blen)) v(0.) dx
Q

satisfied for any 1) € C2([0,00) x Q), and any 3 € C*|[0, c0),
B e C0,00).




Hypotheses and stability result

The momentum equation

/Q ou(r, Yo, ) dx — /Q 000 (0, ) dx

:/ /Qu-8t¢+gu®u:VX¢+pdivX¢—S:VX¢—§F-¢dxdt,
0o Ja

for any ¢ € CY([0, T] x ; R3) with ¢|,, =0, any 7 € [0, T].
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Definition of weak solution of primitive system

Weak solution

» the density o is a non negative measurable function,

p € Cueak(0, T; L7())
u € L0, T; W2(Q)),
ou € Cuear(0, T; L741 (2 R?)),
p e L (0, T) x Q)
€ L0, T) x Q x 82 x (0,00)),

I € L0, T; LY x 82 x (0,00))),




Existence of primitive system

Existence of weak solution
e Q C R3 be a bounded domain of class C%¥, v > 0.

® Assumptions on p, the transport coefficients o,, os and the
equilibrium function B are satisfied

e Let (0,,u, /) be a weak solution to radiative Navier-Stokes

system for (t,x) € [0, T] x ©, and (w,v) € 8? x R, in the

sense of previous definition




Hypotheses and stability result

Class of regularity of primitive system

e the density g is a non negative measurable function,

p e Cweak(oa T; L’Y(Q))

L]
u e L*(0, T; WH(Q)),
* 2.
ou € Cweak(07 T; LTJ’:I(Q,R3))7
L]
pe L0, T)xQ),
L]

I € L((0,T) x Q x S? x (0,00)),

I € L0, T; LY x S? x (0,0))),
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Hypotheses and stability result

A finite energy weak solution

Lol (r) + N(0)(r) + ER(7)| dx
IAE }

+/ / (1] Vxu]® + (X + p)|divy uf?] dx dt
0 Ja
1gP R !
< ——— +M(00) + E'| dx dt+ Sru
al2 e 0 JQ
ER(t,x) = // (t,x,w,v) dw dv
S2

fora.e. 7€ (0, T).
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satisfying the integral identities for the continuity equation and the
momentum equations and the transport of radiative intensity
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Hypotheses and stability result

Global weak solutions

Barotropic case
P. L. Lions (98)

p(o) =0, 7>9/5
Generalization to a larger class of exponents v > 3/2
E. Feireisl, A. Novotny and H. Petzeltova
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Stability result

Main Theorem(B.Ducomet, S.N.)
Q C R3 be a bounded domain of class C%¥

e Assumptions on p,radiative quantities

® (0-,uc, I.) be a weak solution of rescaled system of equations
00, — 0o in L7(R),

/ 7(9“)0,5 dx < c,
Q

00,

lo.e ()] < h(v), he L' L(0,50).
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Convergence

Then up to subsequences

0. — o in C([0, T]; L*(Q)) and in Cyeax([0, T]; L7(Q)),

u. — u weakly in L2(0, T; WH2(Q; R?)),

I. — I weakly in ¥L°°(0, T; Q x 82 x (0, 0))
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Limit system

where o, u, | is a weak solution satisfying

Oro + divy(ou) =0

1
Ot(ou) +dive(ou®u) + V, (p(g) + 3N> = pAu+ (A + p)Vydivyeu
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Pomraning
Mihalas and Weibel-Mihalas in the framework of special relativity.

astrophysics, laser applications (in the relativistic and inviscid case)
by Lowrie, Morel and Hittinger, Buet and Després

with a special attention to asymptotic regimes Dubroca and
Feugeas, Lin, Lin, Coulombel and Goudon

a simplified version of the system (non conducting fluid at rest) -
investigated by Golse and Perthame , where global existence was
proved by means of the theory of nonlinear semi-groups under very
general hypotheses.
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Full system

The continuity equation

Oro + divye(ou) =0 in (0, T) x Q,

The momentum equation

Ot(ou) + divy(ou @ u) + V,p(p,9) = div,S + Sf

The energy equation

8 <g <;|u|2 + e(g,ﬂ))) + div, (g (;|u2 el 19)) u>

+divy (pu +q- SU) =-S5 in(0,T)xQ,
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The radiative intensity

1
E&H—uwvxlzs in (0, T) x Q x (0,00) x S2.

Sources
S5:=S5,c+ S5, where

Soe=0a(B )~ 1), S, =0, (4; /S 1(yw) dw — /) ,

Se :/ / S(,v,w) dv dw,
S2Jo
. 1 [>®
Se(t,x) = f/ / wS dw dv,
c Jo S2
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Full system

Maxwell’s equation

Stress tensor
2
S=u <qu + Viu-— 3divxu) +n div,u I,

the shear viscosity coefficient = p(¢) > 0 the bulk viscosity

coefficient n = n(¥) > 0 are effective functions of the temperature

Fourier’s law
q=—rV, 0,

the heat conductivity coefficient x = x(9) > 0
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Radiation quantities

the absorption coefficient o, = o5(v,9) > 0,
the scattering coefficient o5 = o5(v,9) > 0

B 0) =2 (o8 -1)

— the radiative equilibrium function
h and k are the Planck and Boltzmann constants,
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Hypothesis on pressure

0 a
P(Q7 '19) = 7.95/2P (W) + 5194, a> 07

P :[0,00) — [0,00)
P € C'[0,00), P(0) =0, P'(Z) >0 forall Z>0,

3P(Z) - P(2)Z

0
< Z

< cforall Z>0,

lim AZ)

2M 573 = Poo > 0.

¥4~ “equilibrium” radiation pressure.
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Assumptions on viscosities

0<ca(l+9) <u), W) <c, 0<n) <c(l+9),

Assumption on heat conductivity coefficient

0<ca(l+9%) <k < (1l +9%)
for any ¥ > 0.

Assumptions on radiation quantities

0< Ua(”a 19)7 US(V, 19)7 |81903(V7 19)|7 |81905(V7 ﬁ)l <a,
0 < 0.(v,9)B(v, ), |09{c(v,9)B(v,9)}| < c2,
o.(1,9),0s(v,9),04(v,9)B(v,9) < h(v), he Ll(O,oo).
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Hypotheses and stability result

Weak formulation of renormalized continuity equation

/ / 0)0rp + b(o)u - Vi) dx dt
/ / (0) )dlvxuap) dxdt

- / b(e0) (0, ) dx
Q

satisfied for any ¢ € C°([0, T) x Q), and any b € C*[0, 00),
e C°[0, o)
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Hypotheses and stability result

Weak formulation of the momentum equation

-
/ / (ou - 0rp 4+ pu @ u : Vyp + pdivep) dx dt
0 Ja

-
:/ /S:ng0+SF~<pdxdt—/(gu)o-go(o,-)dx
o Ja o

for any o € C°([0, T) x Q; R3).

u e [2(0, T; W, (2 RY)),
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Hypotheses and stability result

Entropy inequality
! q

/ / (955‘ts0 +ou-Vyip+ - ng0> dx dt
0o Ja 9

<~ [ (e9)os(0.) ax

T
1 q-VX19>
= —|S:Veu— p dx dt
Ll ﬁ
T
1
—/0 /QE(U-SF—SE)godxdt

for any ¢ € C=([0, T) x Q), ¢ > 0.
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Hypotheses and stability result

The total energy balance

/( 0|U2+ge(g,q9)+ER>( Ndx
/ //BQx82 wn>0/ = Wi e ) b Gy S
_/ (22 (eu)ol” +(0e)o+ERo> dx,

X):l/ / I(t,x,w,v) dw dv.
€ Js2Jo
(o)
ER,oz/ / (-, w,v) dw dv
s2.Jo

Sarka Netasova A model of radiative flow



Hypotheses and stability result

Definition of weak solution

We say that p,u, ¥, | is a weak solution of problem if
0>0,9>0foraa. (t,x)xQ, | >0a.a. in(0, T)xQ2xS?x(0,00),
o€ L=(0, T; L53(Q)), ¥ € L>=(0, T; L)),
ue L0, T; WA (; R?)), 9 € L2(0, T; WH3(Q)),

I € L°((0, T)xQx8?x(0,00)), I(t, ) € L°(0, T; L1(Q2xS5?x (0, 0))),

and if o, u, 9, | satisfy their weak formulation, together with the
transport equation .
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Hypotheses and stability result

Full system - the Navier - Stokes - Fourier system

Sarka Netasova A model of radiative flow



Theorem(stability)

Let Q C R3 be a bounded Lipschitz

domain. Assume that the thermodynamic functions p, e, s,the
transport coefficients u, A, K, 0,, and o, satisfy the hypothesis.

Let {0c,ue, Ve, I }e>0 be a family of weak solutions to our problem

in the sense of Definition of weak solution such that

96(07 ) = 0,0 — 00 in L5/3(Q),

1
/ <2gs|us|2 + Qse(gavﬁe) + ER,E) (Oa ) dx
Q

1 2
= / (2 |(Qu)0,8| + (Qe)o)s + ER7075) dX S EO,
Q 00,

/ [0e5(0=, V) + s¥(1)](0,-) dx = / (05 +5%)o,c dx > S,
Q Q
and
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0<1(0,)=ho(-) <, |loe(,v)| < h(v) for a certain h € L*(0,0).

Then
0: = 0 in Gueax([0, T1; L73(9)),
u. — u weakly in L2(0, T; Wy (2 R%)),
9. — 9 weakly in L2(0, T; WH3(Q)),
and

I. — I weakly-(*) in L>°((0, T) x Q x 82 x (0, 0)),

at least for suitable subsequences, where {p,u,d, I} is a weak solution of
our problem.
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Hypotheses and stability result

Simplified model Sg = 0

The entropy of a photon gas

2k [
s = ——3/ / v?[nlogn — (n+1)log(n + 1)] dwdv,
C 0 S2

2 . -
n = n(l) = 55 is the occupation number

The radiative entropy flux

2k [
qf = —g/ / v?[nlogn — (n+1)log(n+ 1)]w dwdv,
0o Js

Entropy

. S 1 n
0es® + divqf = _F/o / = log — S dwdv =: .
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Hypotheses and stability result

” Total Entropy”

9 (05 + s7) + divi (osu + qF) + div, (q

5) =+~

¢ =

Se k [® [ 1 n(1) n(B)
7 F/O /3 v {'°g A +1 8 nB)+ 1] oa(B —1) dwdy

k [ [ 1 n(1) n(7)
_F/o /52 v [log O log n(l) + 1

q-Vﬂ)_&

os(1 = 1) dwdv,

1
ST

0 v

(S :Vu —
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Lrefa Treﬁ Urefvprefv 19refa Pref, €refs Hrefs Kref,

the reference hydrodynamical quantities (length, time, velocity, density,
temperature, pressure, energy, viscosity, conductivity)

Irefa Vrefy Oa,refs Os,refs

the reference radiative quantities (radiative intensity, frequency,
absorption and scattering coefficients).
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Sr - Lref : Ma — Uref , Re — Urefpref Lref’ Pe — Urefpref Lref
Tref Uref \/ Pref Pref Mref ﬂref’{ref

the Strouhal, Mach, Reynolds, Péclet (dimensionless) numbers
corresponding to hydrodynamics, and by

494

© Os, ref 2/(319 £
6277 ‘C:Lrefo—a,ref; Ly = 5 P = 337“37
Urer O a,ref h3C3 prererer

various dimensionless numbers corresponding to radiation.
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Hypotheses and stability result

Diffusion limit

Equilibrium diffusion regime
P = O(¢e)- a small amount of radiation is present
C = O(e71) -the flow is strongly under-relativistic
Ma=Sr=Pe=Re=1, P=¢,C=c1, Li=¢c’and L. =¢"1,
€0 +w- -Vl = la‘.,,(B—I)—i-gas (i/ Idw—l),
€ 4T )52
Oro + divy(ou) =0,
Ot(ou) + divy(ou ® u) + Vyp(o,9) — div, T = 0.
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Hypotheses and stability result

Entropy inequality

%/000/52%[' ()('J)r —Iog%}aa(/—B) dwdy
+€/000/52% n(/) )

n(+1  Cnl)+1
d

1, 1
— - = d. - -n/ dl.dv=0.
o Q(2 olul® + oe + R) x+€/0 /Dw n Ldv

os(I = 1) dwdv,
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Hypotheses and stability result

The “ non-equilibrium diffusion regime”
Ma=Sr=Pe=Re=1, P=¢,C=¢1, L=c?and L;=¢"L.

1 1
€8tl+w-vxlzsaa(8—l)+—os(—/ /dw—/),
1> 47T S2

0o + divy(ou) =0,
Ot(ou) + divy(ou ® u) + Vyp(p,9) — div,T = 0.
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q- Vo
<S Vil = g )

Qo\n—-

Ot (0s + esg) + divy (ous + qgr) + div, (%)
L n(1) n(B)
+5/0 /52; [Iog () + 1 — log (B)Jrl] o,(l — B) dwdv
)

1 [ 1 n(/) n( B
+5/0 /52 v [Iog n(+1 log () + 1 os(I = 1) dwdv.
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Hypotheses and stability result

The limit system—equilibrium system

Continuity equation

Oro + divy(ou) = 0,

The momentum equation

at(gu) —+ diVX(QU ® ll) = divxT(Q7 19)?

The energy equation

0r (0€(0,9)) + divy (e(o, H)u) + divy (K(0, F) V)
= S(0,9) : Viu — p(o,¥)divyu,

Radiative transfer

I = B(v, ).
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Hypotheses and stability result

Boundary condition

ulgpo =0, V¥ - nlspq =0,

Initial condition

(o(x, 1), u(x, £), 9(x, 1))],—g = (°(x), u’(x), ¥°(x))

The compatibility conditions

UO(X)|aQ = 0, Vﬁo o n|aQ =0.
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£(e,) = e(0,9) + E2, and K(9) = (V) — 5257 09 B(Y).

® existence of a global solution for the small data - Matsumura and
Nishida
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(2,0,9) be a given constant state with g > 0 and J > 0.
eo == ||00 — 0ll L= () + lIuoll 2 (@) + 190 — Il () + I Toll c2) + Vol 4
where Vj is the initial vorticity V;; = 0ju; — 0;u;j),

Ey := e + || Vxooll 2(@) + IVx0ollo@) + [|VxToll2(0),

for an arbitrary fixed a such that 3 < a < 6.

Sarka Netasova A model of radiative flow



Hypotheses and stability result

The non-equilibrium diffusion regime,
Navier-Stokes-Rosseland system

Continuity equation

Oro + divy(ou) = 0,

The momentum equation

at(QU) —+ diVX(QU ® U) = diVXT(Q7 19)7

Energy equation

9¢ (0e(0,9)) + divy (0e(o,9)u) + divy (k(9)V1I)
= S(0,9) : Viu — p(o,¥)diveu — o,(9)[B(I) — N,
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Hypotheses and stability result

Diffusion equation

0N — % i (ﬁvx/v) — 0,(9) (B(9) = N).

Boundary equations

ulog =0, V¥ -nlsq =0,

N::/ Io dv
0

Nlyq = 0.

Initial conditions

(0(x, 1), u(x, 1), 9(x, 1), N(x, 1))],—o = (°(x), u’(x), ¥°(x), N°(x))
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Hypotheses and stability result

The compatibility conditions

u2|aQ =0, V’l90 . n|aQ =0, NO|aQ =0.

N°(x) :/ / 1°(x,v,w) dw dv
0o Js?
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® Strong solution of the limit system for small data

Let (2,0,7, N) be a given constant state with g > 0, J > 0 and
N — B(V).

e = [[0° — Bl =) + It 1) + 19° — Iy + IN® = N||1n(q)

T 2¢) + V0| 40

and
Eo = eo + [|[Vxe®llzg@) + IVx®llia(@) + IVXT |20,

for an arbitrary fixed a such that 3 < a < 6.
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Given three numbers g € Ry, J € R, and E € R, we define Of_ the set
of hydrodynamical essential values essH

o, = {(Q,ﬁ) eER? : 2<p<2p g <Y< 2@} ,OR_ the set of
radiative essential values essR

OR. = {ER €eR : E<ER< 2E}  WithOess := OH_U OR_, and their
residual counterparts res

07l = (RO, OF =R\OL, Ores = (R4)*\Oess.

res
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Hypotheses and stability result

Theorem(Equilibrium case):
e Q C R3 be a bounded domain of class C?*.
e The thermodynamic functions p, e, s satisfy hypotheses,
® P e C0,00) N C?(0,0),

o the transport coefficients u, A, K, 04, s and the equilibrium
function B satisfy hypothesis, B € C*.

Let (0, us, e, I.) be a weak solution to the scaled radiative
Navier-Stokes system for (t,x,w,v) € [0, T] x Q x 8% x R,
supplemented with the boundary conditions and the initial

conditions (0o,¢,Uo.c,Poes o)
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such that

0:(0,-) = 00 + 6@8.; u(0,-) =uge, 9:(0,-) =30+ 61982’

where (go,u,70) € H3(Q2) are smooth functions such that (go, ) belong
to the set O, where 5 > 0, ¥ > 0, are two constants and

essy

Jp ot dx =0, [ dx=o0.
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Suppose also that
up. — ug strongly in L=(Q;R?),

Qéljg — g(()l) strongly in LZ(Q),

1981’2 — 1981) strongly in L*(2),
Ié}a) — Iél) strongly in L*°((0, T) x Q x (0, c0)).

Then up to subsequences
0: — o strongly in L*°(0, T; L%(Q)),
u. — u strongly in L*(0, T; W?(Q; R%)),

9. — 9 strongly in L>(0, T; L*(Q)),

where (o, u,1) is the smooth solution of the equilibrium decoupled
system on [0, T] x Q and /(t, x,v,w) = B(v,9(t, x)), with initial data
(QO, Up, 190)

Sarka Netasova A model of radiative flow



Hypotheses and stability result

Theorem (Non-equilibrium):
e Q C R3 be a bounded domain of class C?*.
® Assume that the thermodynamic functions p, e, s,
P € C0,00) N C?(0,0),
o the transport coefficients u, A, K, 0,, o5 satisfy hypothesis
together with B € C1.
Let (oc,ue, U, I.) be a weak solution to the scaled radiative
Navier-Stokes system for (t,x,w,v) € [0, T] x Q2 x 8% x R,
supplemented with the boundary conditions and the initial
conditions (go,c,Uo ., Yo ¢, o) such that
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0:(0,) = g0 +all), u.(0,) =ug., V:(0,) = o + Vi)

0,e?

10,-) = Io + el?

e

where the functions (o, u, ) and x — ly(x,w, ) belong to H3(2) and
are such that (0o, Yo, Er(lp)) belong to the set Oess, where

0>0, 0> 0,Eg > 0 are three constants and
Jood dx=0, [o8) dx=0, [, Y dx=0.
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Suppose also that
uo. — ug strongly in L=(Q;R3),
o5 — of!) strongly in L3(Q),
1961’23 — 9 strongly in L2(R),
/é}g — Iél) strongly in L*°((0, T) x © x (0, 00)).
Then up to subsequences
0: — o0 strongly in L>(0, T; L%(Q))7
u. — u strongly in L2(07 T; WI’Q(Q; IER3))7
9. — I strongly in L=(0, T; L*(Q)),
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and
N. — N strongly in L>°((0, T) x Q),

where N. = [ [q. l- dw dv and (g,u,9, N) is the smooth solution of
the Navier-Stokes-Rosseland system on [0, T] x Q with initial data

(00, uo, Yo, No).
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Hypotheses and stability result

ballistic free energy

He(o,7) = oe(o, V) — Oos(o, 1),

radiative ballistic free energy

HE (1) = ER(1) — esR(I).

relative entropy

E(p,9|r,©) = Ho(o,9) — 9,Ho(r,©)(0 — ©) — Ho(r, ©).
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/ (; o:|uc — U]? + £ (0-,9:|r, ©) +5HR(IE)> (r,) dx
9]

_i_/OT/Dw.nx/s(t,X,w,V) dr dv dt
[ [ (5T e
A R L e e R U CRAL R
L LT ["’g pETR (()71
5

3

o Y(I.—1.) dw dv dx dt, <

U(0, )2 + € (00,c,90.|r(0, ), ©(0, ) + eHR(l.c)) dx+R
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Jo (& 0clue — ul? + & (02,920, 9)) <

{fa (% (00.[uo,e = u(0,-)* + & (00,e, Fo,|0(0, ), 6(0, ) +

eHR(Ioﬁ)) dx + eg} ekt
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Suppose that ey < Ce? and the initial data of the primitive system and
any of the target systems are close in the following sense

[ 20,e —00ll122) < Cé, |90, —Doll12) < Cé, ||\/00,c (Uo,c—u)l2(@r3) < Ce.
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Hypotheses and stability result

Semi-relativistic model

Definition of function B

0 < o(?) < 1 Remark: If Iicl << 1 one recovers the standard

Gep , . 3
equilibrium Planck’s function B(v,9) = i—2+
ekd —1
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ca(9,u) = x(Ju])5a(¥) > 0 and o4(¥) >0

(s) = 1 if s<cg,
X\8) = 0 if s>c+p8,
for an arbitrary 5 > 0.

The role of this cut-off is to deal with the singularity of B

In the “over-relativistic” regime (|u| > ¢) we decide to decouple
matter and radiation.
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Hypotheses and stability result

Entropy inequality
O (0s) + divy (gsu) + divy (3) >

1 . _ V¥ )\ _ S SFu
ﬁ(S.VXu —19> 5 75

= §7
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Hypotheses and stability result

The formula for the entropy of a photon gas
R 2k [ 2
st = = v [nlogn— (n+ 1)log(n+ 1)] dwdv,
82

n=n(l)= 2ha3y3 is the occupation number.

The radiative entropy flux

2k [
——2/ / v [nlogn— (n+1)log(n + 1)]w dwdv,
0o Js2

The radiative transfer equation

D¢ + div,qF :——/ / Iog
S22V

5 dwdy =: R
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Hypotheses and stability result
The equilibrium-diffusion regime- Limit system
Ma=5Sr=Pe=Re=P =1,

C=c! Li=¢*and L=¢71,

Continuity equation
Oro + div,(ou) = 0,

Momentum equation

Ot(ou) + divy(ou ® u) + Vip = div,S,

Energy equation

d: (3 oluol® + ce) + divx ((3 olul* + ce + p) u+ G — Su) =0,
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Hypotheses and stability result

Entropy equation

O (08) + divy (osu) + divy <q

Radiation
I = B(v,9),

where p(o,9) = p(o,9) + 39%, e(0,9) = e(o,¥) + 20*,
k(o) = K(V) + 32 193 G = —k(9)Vy and gs = gs + Fav.
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Hypotheses and stability result

Boundary conditions

ulgpo =0, V¥ - nlpq =0,

Initial conditions

(Q(Xa t)v u(Xa t)) 19(X, t))|t=0 = («QO(X)a UO(X)» ﬁO(X)) )
for any x € Q,

Compatibility conditions

UO(X)|aQ = 0, Vﬁo o n|aQ =0.
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® existence of unique solution for strong solution ( local (small time)
or global for (small data))

® rigorous proof of singular limit using relative entropy inequality
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Hypotheses and stability result

The non-equilibrium diffusion regime - limit system

Ma=5Sr=Pe=Re=P =1,
C=c! L=¢?and L;=¢L.

Continuity equation

0ro + divy(ou) = 0,

Momentum equation

O¢(ou) + divy(ou ® u) + Vip = div,S,

Total Energy

1 1 N
O (5 olug|? + QE) + div, ((5 olul? + oe + p) u+q-— Su)
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Hypotheses and stability result

Entropy equation

¢ (0s) + divy (osu) + divy (

i (S VT q'z“?) +
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Hypotheses and stability result

Diffusion equation
1. 1

0N = L v, (V) = 0 0) a0 ),

where P=P+%N, e= e—&-% and d’:mvxﬁ—&—risva

Boundary conditions

ulog =0, VI -nlsgg =0, N|yq =0,

Initial conditions

(o(x, 1), u(x,t), 9(x,t), N(x,t))|,_o = (go(x), u’(x), 9°(x), NO(X))

for any x € Q, with N°(x) = [ [q. I°(x,v,w) dw dv
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Hypotheses and stability result

Compatibility conditions

u0|aQ =0, AV n|aQ =0, NO 59

N = a6?.
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® existence of unique solution for strong solution ( local (small time)
or global for (small data))

® rigorous proof of singular limit using relative entropy inequality
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Hypotheses and stability result

Crucial Lemma
Let (0(®), u(®) 9()) be the solution of problem full N-S-F with
radiation satlsfylng the conditions of Theorem 1 (equilibrium case)
and let (o(") ul"e) g(re) g "e)) be the solution of problem N-S-F
with radiation satlsfylng the conditions of Theorem 2 (non
equilibrium case) and choose (r, U, ©) = (o(®), u(®), 4(®)) in the
equilibrium case or (r,U,©,0,) = (o, u("e),9<"e>,9$”e)) in the
non equilibrium case.
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Hypotheses and stability result

Relative entropy inequality
1
/ (§ oc|uc — U2 + £ (02, 9:|r, ©) + HR(IE)> (t,-) dx
Q
1 1
<z - — K
= |:C60+/Q (290,s|u0,s U(Oa )| +

5 (IQO,E7 290,6

where C and C’ are positive constant depending on (r,U,®,©,) and
€y is the same as in Theorems 1 and 2.

r0,-),(0,-)) + HR(IO,E)) dxest,
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NSFR with Electromagnetic field

O0ro+dive(ou) =0 in (0, T) x Q, (1)

O¢(ou) + divy(ou @ u) + Vyp + oX X u
=diviS+ oVV — oV, [X x X2+ x B in(0,T)xQ, (2)

-

¢ (0e)+divy (oeu)+diveq = S : Vu—pdiveutj-E—Sg in (0, T)xQ,
©)

%(')t/—i—quXI:S in (0, T) x Q x (0,00) x S2. (4)

9B + curl, (B x u) + curl, (A curl,B) =0 in (0, T) x Q. (5)

— AV =47G(no+g) in(0,T) x Q.. (6)
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electric current - f electric field E
Ohm’s law .
Jj=0(E+uxB),

and Ampére’s law

(j_" = curly B ,

where ¢ > 0 is the (constant) magnetic permeability,

A = A(¥) > 0 is the magnetic diffusivity of the fluid.

We also assume that the system is globally rotating at uniform velocity x
around the vertical direction &;

Y(t.x) = G [ Kl y)nale.n) + () .
where K(x) = ﬁ and the parameter 77 may take the values 0 or 1: for

1 = 1 selfgravitation is present and for n = 0 gravitation only acts as an
external field
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Boundary conditions:

—

uloa =0, q-njog =0, B-flag =0, E x filsg =0, (7)

I(t,x,v,w) =0 for x € 9Q, w-n <0, (8)

where n denotes the outer normal vector to 0f2.
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Primitive system

€6tl+w~vxl—oa(8—/)+as<1/ Idw—l), ©)
47 S2

B0+ divy(ou) = (10)

1 1
O¢(ou) + divy(ou @ u) + = Vxp(0,9) + oxX x u= div,S + EQV\U

LS 1- 5
—QVX|X><X|2+€—21>< B

O (Qe + 5ER) + divy (geu + FR) + diveq = €3S : V,u — pdiv,u +J_"- E
(12)
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81— (QS + ESR) I diVx (QSU aF CIR) = divx (%) 2 Ses (13)

AT q-Vd A =5
“=3 (5 SRRV 3 + Z|cur1XB\

with

1 n(B)
! [ 1 ~log g J 0a(I - B) dwdv

A
/ 11/[ 1_|°gn(,71)(l4)rl

ol
5

os(I = T) dwdv,
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Hypotheses and stability result

9, B + curl, (B x u) + curl (A curl,B) =0, (14)

1 5 1 1 =
—/ = &% olul® + oe +eER + = |B]? — 2oV + Zo|X¥ x X? | dx
o 2C 2 2

+/ / w-nl dlidv=0 (15)
o Jr.

where I, = {(x,w) € 9Q x §? : w-n, >0}
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Hypotheses and stability result

We consider the pressure in the form

Y a
p(Q7 19) = 195/2P (W) + 5194, a > 0,

where P : [0,00) — [0,00) is a given function with the following
properties:

P e C'0,00), P(0) =0, P'(Z) >0 forall Z>0,

SP(2) - P'(2)Z
Z

0< < cforall Z>0,

lim AZ)

Zﬁooﬁ:poo>0'
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Hypotheses and stability result

the specific internal energy e is

3 ?93/2 0 94
and the associated specific entropy reads
B 0 4393
5(9,19) =M (W) + ?F; (21)
with 5 )
2P(Z) - P'(2)Z
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Hypotheses and stability result

0<a(l+9)<u@), W) <c, 0 <n®) <cl+9),
0 < ca(l+9%) <k(0), A(®) < o1 +93)

for any 1 > 0. Moreover we assume that o,, os, B are continuous
functions of v, 9 such that

0 S O'a(V, 19)’ US(Va 19)7 |8190-3(V719)|? |8190-S(V?19)| S Cl’

0 < g.(v,9)B(v, 1), |09{c.(v,9)B(v,9)}| < ca,
oa(v,9), 05(v,0), 0.(v,9)B(v,9) < h(v), h e L}(0,0).

for all v > 0, ¥ > 0, where ¢ » 3 are positive constants.
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Hypotheses and stability result

Target system

div,U =0, (27)

~ 1 S 5 o
0(0:U+div, (U U))+ V, I = div, (21 ID)(U))+Zcur1XB>< B+F (28)

8B + curly (B x U) + curl,(X curl,B) = 0, (29)
div,B = 0, (30)

0 ¢p(0:© + divk(BU)) — div,(RVO) = G, (31)
W Vil = 72 (B =)+ (b~ ). (32)

WVl = (aaaﬂswﬁaa(s— o) +dgos (o — /0))e_aa/1+as (71 - /1) :
(33)
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Hypotheses and stability result

We finally consider the boundary conditions
Ulog =0, VO -njpg =0, B - njsg =0, curl B x njsg =0  (34)
for (27)-(31) and
lo(x,v,w) =0 for x € 0Q, w-n <0 (35)
h(x,v,w)=0for x € 9Q, w-n<0 (€9
for (32) and (33), and the initial conditions

Ult=o = Uo, ©lt=0 = ©0, Bli=o = Bo, hle=o=ho, hlt=o = hpo.
(37)
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Hypotheses and stability result

Theorem:

Let Q C R3 be a bounded domain of class C%¥. Assume that the
thermodynamic functions p, e, s satisfy hypotheses (16 - 21) with

P € C0,00) N C?(0,00), and that the transport coefficients y, 1, &, A,
02, 0s and the equilibrium function B comply with (22 - 26).

Let (oc,uc, 9, Be, I.) be a weak solution of the scaled system (1 - 6) for
(t,x,w,v) €0, T] x Q x 82 x R, supplemented with the boundary
conditions (7 - 8) and initial conditions (g ¢, Uo s, Jo.c, Boc, lo.c) given by

0:(0,) = Bealt), ue(0,) = uge, 9e(0,-) = F+e5, 1(0,-) = T+elY,

Bs(Ov ) = 53823

where >0, ¥ > 0, | > 0 are constants and

/QOde—o /ﬁogdx_o/o}gdx:o,/ B dx =0 for all e > 0.
[9]
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Assume that

Hypotheses and stability result

Qgg — le) weakly — (%) in L*°(Q),
ul) — Uy weakly — (x) in L(;R3),

1982 — 1981) weakly — (%) in L>=°(Q),

1§D — Y weakly — (x) in L®(2 x 82 x Ry),
Bg{g — Bgl) weakly — (*) in L>=(Q; R3),
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Hypotheses and stability result

Then
=3l . <C
eSStGS(L(;?T)HQE() olly3q) < €&

and up to subsequences

u. — U weakly — (%) in L?(0, T; W?(Q; R?)),

-
€
I. — Iy weakly — (%) in L2(0, T; L*(Q x S? x Ry)),

=90 — O weakly — (x) in L2(0, T; W2(Q)),

Be _ BM) — B weakly — (%) in L2(0, T; WH2(Q; R3)),
5

=10 1 weakly — (x) in L2(0, T; [2(Q x 8? x R,)),

where (U, ©, B, I, I1) solves the system (27)-(33).
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Hypotheses and stability result

COMPRESSIBLE NAVIER-STOKES SYSTEM:

0o + divy(ou) =0,

1
Or(ou) + divx(ou @ u) + 5 Vip(0) = vdiv,S(Vyu),

2
S(Vxu) = Vyu + Viu — gdivxu]l,

ulaq, =0,

Qum C R® is a smooth, bounded, simply connected domain.
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Hypotheses and stability result

Kelliher, Lopes, and Nussenzveig-Lopes 2009

- the inviscid limit of the incompressible Navier-Stokes system on a family
of domains Qy = MQ, M — oo,
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Hypotheses and stability result

We consider a family of domains {Qu}n>0 enjoying the following
properties:

e Qu C R3 are simply connected, bounded C? domains, uniformly for
M — oo;

o there exists w > 0 such that
{x €R3 ‘ x| < wM} C Qum; (48)

o there exists § > 0 such that
|0Quml, < BM?, (49)

where | - |, denotes the standard two-dimensional Hausdorff measure.
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Hypotheses and stability result

Our goal is to identify the triple singular limit, where

e — 0, v— 0, while M — oo.
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Hypotheses and stability result

/

p € C[0,00)NC3(0,00), p(0) =0, p'(0) > 0for o >0, lim Pe)

00— Q'Y_l

= Poo;

(50)
where

V> = (51)
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Hypotheses and stability result

We consider the ill-prepared initial data in the form
0(0,-) =00 =1+ 6982, u(0,-) =,

ggg — le) in L2(R%), up. — ug in L*(R* R®) as ¢ — 0.
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Hypotheses and stability result

We expect that
0— 1L u—v,

where v is a solution of the incompressible Euler system

OV + v - Vv + V, M1 =0, divev =0 in R.
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Hypotheses and stability result

The principal difficulties of a rigorous proof of such a scenario are:

e The target Euler system is defined on R3 while the primitive system
(44 - 53) on Qy, the solution v is not an admissible test function in
the relative entropy inequality.

e The same problem occurs with the solutions of the associated
acoustic system.
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Hypotheses and stability result

The class of finite energy weak solutions of the compressible
Navier-Stokes system (44-47) satisfying, besides the standard weak
formulation of the equations (44 - 46), the energy inequality

/QM B@Iu|2+ ;H(@)} (r,.)+y/07 [ S(Vyu) : V,u dt (55)

1 1
~00,c|uoc|* + z—:ZH(QO’E)} for a.a. 7 > 0,
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Hypotheses and stability result

Solutions of the target system

up € C™(R3; R®) for a certain m > 4, supp[uo] compact in R>.
V(Oa ) = Vo = H[UO]a (56)

where H denotes the standard Helmholtz projection onto the space of
solenoidal functions, possesses a smooth solution

v e CH([0, Tomax); W™ R2(R%: R3)), k=1,..,m—1 (57)

defined on a maximal time interval [0, Tmax), Tmax > 0.
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Hypotheses and stability result

Acoustic system

Lighthill's acoustic analogy

0—

1
€0y + divy(ou) =0,

-1
0, (ou) + p’(l)vxé’T =

& |vdivyS(Vyeu) — divy(ou ® u) — Vy (p(g) —p(1)%
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Hypotheses and stability result

The acoustic system

edis + AV =0, €9,V,V +aV,s =0, a=p'(1) > 0, (58)
the initial data

s(0,-) = ol!, V,W(0,-) = V,Wo = up — Hug].
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Hypotheses and stability result

Main results

Theorem:
Let the pressure p satisfy the hypotheses (50), (51). Let {Qpm}mso be a
family of uniformly C2-domains in R® such that (48), (49) hold for
M = M(e),

eM(e) — 0o as e — 0. (60)
Let the initial data [go.c, uo,c] for the compressible Navier-Stokes system
(44 - 47) be of the form

0(0,-) = 0o, = 1+e05, u(0,-) = o, [lo8lizniee(re)+ lUo.c l2(re;re) < D.
(61)

In addition, suppose we are given functions ug, g(()l) such that
Up € Cm(R3? R3)7 le) € Cm(R3)a HUO”C'"(R3;R3)+||Q(()1)HC’"(R3) <D, m>4,

()
supp|ug], supp[ggl)] compact in R3. (63)
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Hypotheses and stability result

Let Tiax > 0 be the life-span of the smooth solution v of the Euler
system (54), endowed with the initial datum vo = HJug], and let

0 < T < Tmax- Let [s, V] be the solution of the acoustic system (58),
with the initial data (59). Then

there exists €9 > 0 such that

@R H (Qg 1) () =s(r")

S C(D, T, a) |:||UO,€ - UOHLQ(QM;R3) + HQ(OIZ_ _ QE}I)

I+ <u+€“+8/wl(€))l/2] ;

T7€[0,T], 0<a<1, and 0 < e < &y,

H\/E(u v v) (r,)

12417 (Qu)
(64)

L2(Q2m)

for any weak solution [, u] of the compressible Navier-Stokes system (44
- 47).

Sarka Netasova A model of radiative flow



Hypotheses and stability result

Corollary

In addition to the hypotheses of Theorem 1, assume that

982 — 9(1) in L2(R3), Ug . — Ug in L2(R3; R3) ase — 0,

)
and
v=v(e) —0ase— 0.
Then
ess sup [0 — 1| 241vx) — 0ase — 0,
te(0,T)

ess sup H g(u—v) [ —0ase—0 65
te(8,T) Ve () L2(K;R?) (65)

forany 0 < § < T and any compact K C R3.
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Hypotheses and stability result

Reduction of dimension
A straight layer Q. = w x (0, €), where w is a 2-D domain. € — 0 in
N-S and N-S-F case

Singular limit on expanding domain with rotation

Introducing relative entropy inequality to numerical numerical
analysis T.Karper,A.Novotny, E.Feireisl

Coupling N-S-F with magnetic field
low Mach number limit in domain dependent on time

singular limit in fluid-structure interaction
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