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Šárka Nečasová A model of radiative flow



Hypotheses and stability result

Diffusion limits in a model of radiative flow (B. Ducomet, S.N.)

Low Mach number limit in a model of radiative flow (B. Ducomet,
S.N.)

Low Mach number limit for a model of accretion disk (D.Donatelli,
B.Ducomet,S.N.)

Inviscid incompressible limits on expanding domains (E.Feireisl, S.N.,
Y.Sun)
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Hypotheses and stability result

General questions

Compressible vs. incompressible

Is air compressible? Is it important?
Is the physical space bounded or unbounded?

Viscous vs. inviscid

What is turbulence?
Do extremely viscous fluids exhibit turbulent behavior?

Effect of rotation

Does it matter that the Earth rotate?
Is the rotation fast or slow? Is it important?
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Hypotheses and stability result

The scaling effect

Characteristic values and scaling

X ≈ X

Xchar

Scaling of derivatives

∂t ≈
1

Tchar
∂t

∂x ≈
1

Lchar
∂x
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Hypotheses and stability result

Gaseous stars in astrophysics

The effect of coupling between the macroscopic description of
the fluid and the statistical character of the motion of the
massless photons.
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Hypotheses and stability result

Thermostatic variable

mass density % = %(t, x)

Motion

macroscopic velocity u = u(t, x)
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(compressible) Navier-Stokes system

Claude Louis
Marie Henri
Navier [1785-1836]

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS + %f George Gabriel
Stokes [1819-1903]

Isaac Newton
[1643-1727]

Newton’s rheological law

S = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI



Hypotheses and stability result

Compressible Navier-Stokes system with radiation

Equation of continuity

∂t%+ divx(%u) = 0

Equation of motion

∂t(%u) + divx(%u⊗ u) +∇xp(%) = µ∆xu + λ∇xdivxu + ~SF
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Hypotheses and stability result

Radiative transfer equation

1

c
∂t I + ~ω · ∇x I = S , c is speed of light

S = σa(B − I ) + σs

(
1

4π

∫
S2

I d~ω − I

)
~SF = (σa + σs)

∫ ∞

0

∫
S2

~ωI d~ω dν.

Radiative intensity

the radiative intensity I = I (t, x , ω, ν), depending on the direction
ω ∈ S2,
S2 ⊂ R3 the unit sphere,
the frequency ν ≥ 0.
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Hypotheses and stability result

Hypothesis

Isotropy. The coefficients σa, σs are independent of ~ω.

Grey hypothesis The coefficients σa, σs are independent of ν.

B = B(ν, %) measures the departure from equilibrium

is a barotropic equivalent of the Planck function

b the frequency average of B(ν, %)

b(%) :=

∫ ∞

0

B(ν, %) dν.
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Hypotheses and stability result

boundary conditions

u|∂Ω = 0

I (t, x , ~ω, ν) = 0 for (x , ~ω) ∈
{

(x , ~ω)
∣∣∣ (x , ~ω) ∈ ∂Ω× S2, ~ω · ~n ≤ 0

}
,
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Hypotheses and stability result

Scaled equations

Scaling

X ≈ X

Xchar

Mass conservation

[Sr]∂t%+ divx(%u) = 0

Momentum balance

[Sr]∂t(%u) + divx(%u⊗ u) +

[
1

Ma2

]
∇xp(%)

=

[
1

Re

]
(∆xu + λ∇xdivxu) + (external forces)
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Hypotheses and stability result

Transport of radiative intensity

Sr

C
∂t I + ω · ∇x I = S =

= Lσa (B − I ) + LLsσs

(
1

4π

∫
S2

I dω − I

)
.

Šárka Nečasová A model of radiative flow



Hypotheses and stability result

Characteristic numbers - Strouhal number

Čeněk Strouhal
[1850-1922]

Strouhal number

[Sr] =
lengthchar

timecharvelocitychar

Scaling by means of Strouhal number is used in the study of the long-time
behavior of the fluid system, where the characteristic time is large
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Hypotheses and stability result

Mach number

Ernst Mach [1838-1916]

Mach number

[Ma] =
velocitychar√

pressurechar/densitychar

Mach number is the ratio of the characteristic speed to
the speed of sound in the fluid. Low Mach number limit,
where, formally, the speed of sound is becoming infinite,
characterizes incompressibility
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Hypotheses and stability result

Reynolds number

Osborne Reynolds
[1842-1912]

Reynolds number

[Re] =
densitycharvelocitycharlengthchar

viscositychar

High Reynolds number is attributed to turbulent flows, where the
viscosity of the fluid is negligible
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Hypotheses and stability result

Radiation dimensionless numbers

C =
c

Uref

L = Lref σa,ref , Ls =
σs,ref

σa,ref

P =
Lref νref Sref

c ρref U2
ref

,
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Hypotheses and stability result

Target system

Incompressible limit

Low Mach number ⇒ compressible → incompressible

Fast rotation

Low Rossby number ⇒ 3D motion → 2D motion

Inviscid limit

High Reynolds number ⇒ viscous flow → inviscid flow

Diffusion limit

compressible Navier-Stokes system with radiation → compressible
Navier-Stokes system with diffusion
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Hypotheses and stability result

Diffusion limit

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu)+(
εσa +

1

ε
σs

) ∫ ∞

0

∫
S2

ωI dω dν.
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Hypotheses and stability result

Transport of radiative intensity

ε∂t I + ω · ∇x I = εσa (B − I ) +
1

ε
σs

(
1

4π

∫
S2

I dω − I

)

Asymptotic limit(formal)

c ≈ 1

ε
, σa ≈ εσa(%), σs ≈

1

ε
σs(%),
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Hypotheses and stability result

Limit system

Continuity equation

∂t%+ divx(%u) = 0

Momentum equation

∂t(%u)+divx(%u⊗u)+∇x

(
p(%) +

1

3
N

)
= µ∆u+(λ+µ)∇xdivxu

Diffusion equation

∂tN − divx(
1

σs(%)
∇xN) = σa(%)(b(%)− N),

b(%) =

∫ ∞

0

B(%, ν) dν
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Hypotheses and stability result

Preparing the initial data

Ill prepared initial data

%(0, ·) = %+ ε%
(1)
0,ε, u(0, ·) = u0,ε{

%
(1)
0,ε

}
ε>0

bounded in L2 ∩ L∞

{u0,ε}ε>0 bounded in L2

Well prepared initial data

%
(1)
0,ε → 0 in L2 as ε→ 0

u0,ε → u0 in L2 as ε→ 0, divxu0 = 0
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Fundamental issues

Solvability of the primitive system

The primitive system should admit (global) in time solutions for any
choice of the scaling parameters and any admissible initial data

Solvability of the target system

The target system should admit solutions, at least locally in time;
the solutions are regular

Stability

The family of solutions to the primitive system should be stable with
respect to the scaling parameters



Assumptions

Assumption on the pressure

p is a C 1 function on [0,∞) such that p(0) = 0,

p′(ρ) > 0 for all ρ > 0, such that

p′(z)

ργ−1
= p∞ > 0, γ >

3

2
.

Assumptions on radiative quantities

0 ≤ σs(%), σa(%) ≤ c1,

σa(%)B
m(ν, %) ≤ h(ν), h ∈ L1(0,∞) for m = 1, 2,

for any % ≥ 0.



Weak formulation

Renormalized continuity equation∫ T

0

∫
Ω

((
%+ β(%)

)
∂tψ

)
dx dt

+

∫ T

0

∫
Ω

((
%+ β(%)

)
u · ∇xψ +

(
β(%)− β′(%)%

)
divxuψ

)
dx dt

= −
∫

Ω

(
%0 + β(%0)

)
ψ(0, ·) dx

satisfied for any ψ ∈ C∞
c ([0,∞)× Ω), and any β ∈ C∞[0,∞),

β′ ∈ C∞
c [0,∞).



Hypotheses and stability result

The momentum equation∫
Ω

%u(τ, ·)φ(τ, ·) dx −
∫

Ω

%0u0φ(0, ·) dx

=

∫ τ

0

∫
Ω

%u · ∂tφ+ %u⊗ u : ∇xφ+ pdivxφ− S : ∇xφ− ~SF ·φ dx dt,

for any φ ∈ C 1([0,T ]× Ω; R3) with φ|∂Ω = 0, any τ ∈ [0,T ].
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Definition of weak solution of primitive system

Weak solution

the density % is a non negative measurable function,

ρ ∈ Cweak(0,T ; Lγ(Ω))

u ∈ L2(0,T ;W 1,2(Ω)),

%u ∈ Cweak(0,T ; L
2γ

γ+1 (Ω; R3)),

p ∈ L1((0,T )× Ω),

I ∈ L∞((0,T )× Ω× S2 × (0,∞)),

I ∈ L∞(0,T ; L1(Ω× S2 × (0,∞))),



Existence of primitive system

Existence of weak solution

Ω ⊂ R3 be a bounded domain of class C 2,ν , ν > 0.

Assumptions on p, the transport coefficients σa, σs and the
equilibrium function B are satisfied

Let (%, ,u, I ) be a weak solution to radiative Navier-Stokes
system for (t, x) ∈ [0,T ]× Ω, and (ω, ν) ∈ S2 × R+ in the
sense of previous definition



Hypotheses and stability result

Class of regularity of primitive system

the density % is a non negative measurable function,

ρ ∈ Cweak(0,T ; Lγ(Ω))

u ∈ L2(0,T ;W 1,2(Ω)),

%u ∈ Cweak(0,T ; L
2γ

γ+1 (Ω; R3)),

p ∈ L1((0,T )× Ω),

I ∈ L∞((0,T )× Ω× S2 × (0,∞)),

I ∈ L∞(0,T ; L1(Ω× S2 × (0,∞))),
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Hypotheses and stability result

A finite energy weak solution∫
Ω

[
1

2
%|u|2(τ) + Π(%)(τ) + ER(τ)

]
dx

+

∫ τ

0

∫
Ω

[
µ|∇xu|2 + (λ+ µ)|divx u|2

]
dx dt

≤
∫

Ω

[
1

2

|~q|2

%0
+ Π(%0) + ER

0

]
dx dt +

∫ T

0

∫
Ω

SFu

,

ER(t, x) =
1

c

∫
S2

∫ ∞

0

I (t, x , ω, ν) dω dν

Π(%) = %

∫ %

1

p(z)

z2
dz

for a.e. τ ∈ (0,T ).
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Hypotheses and stability result

satisfying the integral identities for the continuity equation and the
momentum equations and the transport of radiative intensity
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Hypotheses and stability result

Global weak solutions

Barotropic case
P. L. Lions (98)
p(%) = %γ , γ ≥ 9/5

Generalization to a larger class of exponents γ > 3/2
E. Feireisl, A. Novotný and H. Petzeltová
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Hypotheses and stability result

Stability result

Main Theorem(B.Ducomet, Š.N.)

Ω ⊂ R3 be a bounded domain of class C 2,ν

Assumptions on p,radiative quantities

(%ε,uε, Iε) be a weak solution of rescaled system of equations

%0,ε → %0 in Lγ(Ω),

∫
Ω

(%u)0,ε

%0,ε
dx ≤ c ,

|I0,ε(·, ν)| ≤ h(ν), h ∈ L1 ∩ L∞(0,∞).
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Hypotheses and stability result

Convergence

Then up to subsequences

%ε → % in C ([0,T ]; L1(Ω)) and in Cweak([0,T ]; Lγ(Ω)),

uε → u weakly in L2(0,T ;W 1,2(Ω;R3)),

Iε → I weakly in *L∞(0,T ; Ω× S2 × (0,∞))
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Hypotheses and stability result

Limit system

where %,u, I is a weak solution satisfying

∂t%+ divx(%u) = 0

∂t(%u)+divx(%u⊗u)+∇x

(
p(%) +

1

3
N

)
= µ∆u+(λ+µ)∇xdivxu

∂tN−divx

(
1

σs(%)
∇xN

)
= σa(%)(b(%)−N), b(%) =

∫ ∞

0

B(%, ν) dν.
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Hypotheses and stability result

Pomraning

Mihalas and Weibel-Mihalas in the framework of special relativity.

astrophysics, laser applications (in the relativistic and inviscid case)
by Lowrie, Morel and Hittinger, Buet and Després

with a special attention to asymptotic regimes Dubroca and
Feugeas, Lin, Lin, Coulombel and Goudon
a simplified version of the system (non conducting fluid at rest) -
investigated by Golse and Perthame , where global existence was
proved by means of the theory of nonlinear semi-groups under very
general hypotheses.
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Hypotheses and stability result

Full system

The continuity equation

∂t%+ divx(%u) = 0 in (0,T )× Ω,

The momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + SF in (0,T )×Ω,

The energy equation

∂t

(
%

(
1

2
|u|2 + e(%, ϑ)

))
+ divx

(
%

(
1

2
|u|2 + e(%, ϑ)

)
u

)
+divx

(
pu + q− Su

)
= −SE in (0,T )× Ω,
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Hypotheses and stability result

The radiative intensity

1

c
∂t I + ω · ∇x I = S in (0,T )× Ω× (0,∞)× S2.

Sources

S := Sa,e + Ss , where

Sa,e = σa

(
B(ν, ϑ)− I

)
, Ss = σs

(
1

4π

∫
S2

I (·, ω) dω − I

)
,

SE =

∫
S2

∫ ∞

0

S(·, ν, ω) dν dω,

~SF (t, x) =
1

c

∫ ∞

0

∫
S2

ωS dω dν,

Šárka Nečasová A model of radiative flow



Hypotheses and stability result

Full system

Maxwell’s equation

∂e

∂%
=

1

%2

(
p(%, ϑ)− ϑ

∂p

∂ϑ

)
.

Stress tensor

S = µ

(
∇xu +∇t

xu−
2

3
divxu

)
+ η divxu I,

the shear viscosity coefficient µ = µ(ϑ) > 0 the bulk viscosity
coefficient η = η(ϑ) ≥ 0 are effective functions of the temperature

Fourier’s law

q = −κ∇xϑ,

the heat conductivity coefficient κ = κ(ϑ) > 0
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Hypotheses and stability result

Radiation quantities

the absorption coefficient σa = σs(ν, ϑ) ≥ 0,
the scattering coefficient σs = σs(ν, ϑ) ≥ 0

B(ν, ϑ) = 2hν3c−2
(
e

hν
kϑ − 1

)−1

– the radiative equilibrium function
h and k are the Planck and Boltzmann constants,
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Hypotheses and stability result

Hypothesis on pressure

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4, a > 0,

P : [0,∞) → [0,∞)

P ∈ C 1[0,∞), P(0) = 0, P ′(Z ) > 0 for all Z ≥ 0,

0 <
5
3P(Z )− P ′(Z )Z

Z
< c for all Z ≥ 0,

lim
Z→∞

P(Z )

Z 5/3
= p∞ > 0.

a
3ϑ

4- “equilibrium” radiation pressure.
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Hypotheses and stability result

Assumptions on viscosities

0 < c1(1 + ϑ) ≤ µ(ϑ), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c(1 + ϑ),

Assumption on heat conductivity coefficient

0 < c1(1 + ϑ3) ≤ κ(ϑ) ≤ c2(1 + ϑ3)

for any ϑ ≥ 0.

Assumptions on radiation quantities

0 ≤ σa(ν, ϑ), σs(ν, ϑ), |∂ϑσa(ν, ϑ)|, |∂ϑσs(ν, ϑ)| ≤ c1,

0 ≤ σa(ν, ϑ)B(ν, ϑ), |∂ϑ{σa(ν, ϑ)B(ν, ϑ)}| ≤ c2,

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞).
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Hypotheses and stability result

Weak formulation of renormalized continuity equation∫ T

0

∫
Ω

(b(%)∂tϕ+ b(%)u · ∇xϕ) dx dt

+

∫ T

0

∫
Ω

((
b(%)− b′(%)%

)
divxuϕ

)
dxdt

= −
∫

Ω

b(%0)ϕ(0, ·) dx

satisfied for any ϕ ∈ C∞
c ([0,T )× Ω), and any b ∈ C∞[0,∞),

b′ ∈ C∞
c [0,∞)
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Hypotheses and stability result

Weak formulation of the momentum equation∫ T

0

∫
Ω

(%u · ∂tϕ+ %u⊗ u : ∇xϕ+ pdivxϕ) dx dt

=

∫ T

0

∫
Ω

S : ∇xϕ+ SF · ϕ dx dt −
∫

Ω

(%u)0 · ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0,T )× Ω; R3).

u ∈ L2(0,T ;W 1,2
0 (Ω; R3)),
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Hypotheses and stability result

Entropy inequality∫ T

0

∫
Ω

(
%s∂tϕ+ %u · ∇xϕ+

q

ϑ
· ∇xϕ

)
dx dt

≤ −
∫

Ω

(%s)0ϕ(0, ·) dx

−
∫ T

0

∫
Ω

1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
ϕ dx dt

−
∫ T

0

∫
Ω

1

ϑ

(
u · SF − SE

)
ϕ dx dt

for any ϕ ∈ C∞
c ([0,T )× Ω), ϕ ≥ 0.
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Hypotheses and stability result

The total energy balance∫
Ω

(
1

2
%|u|2 + %e(%, ϑ) + ER

)
(τ, ·) dx

+

∫ τ

0

∫ ∫
∂Ω×S2, ω·n≥0

∫ ∞

0

ω · nI (t, x , ω, ν) dν dω dSx dt

=

∫
Ω

(
1

2%0
|(%u)0|2 + (%e)0 + ER,0

)
dx ,

ER(t, x) =
1

c

∫
S2

∫ ∞

0

I (t, x , ω, ν) dω dν.

ER,0 =

∫
S2

∫ ∞

0

I0(·, ω, ν) dω dν
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Hypotheses and stability result

Definition of weak solution

We say that %,u, ϑ, I is a weak solution of problem if

% ≥ 0, ϑ > 0 for a.a. (t, x)×Ω, I ≥ 0 a.a. in (0,T )×Ω×S2×(0,∞),

% ∈ L∞(0,T ; L5/3(Ω)), ϑ ∈ L∞(0,T ; L4(Ω)),

u ∈ L2(0,T ;W 1,2
0 (Ω; R3)), ϑ ∈ L2(0,T ;W 1,2(Ω)),

I ∈ L∞((0,T )×Ω×S2×(0,∞)), I (t, ·) ∈ L∞(0,T ; L1(Ω×S2×(0,∞))),

and if %, u, ϑ, I satisfy their weak formulation, together with the
transport equation .
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Hypotheses and stability result

Full system - the Navier - Stokes - Fourier system

Global existence of weak solution E. Feireisl et al.

Singular limits of full system for the Navier type of boundary
conditions-E. Feireisl, A. Novotný

Concept of weak- strong uniqueness- E. Feireisl, A. Novotný,
Y. Sun, B. J. Jin
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Hypotheses and stability result

Theorem(stability)

(B. Ducomet, E.Feireisl,Š. N.) Let Ω ⊂ R3 be a bounded Lipschitz
domain. Assume that the thermodynamic functions p, e, s,the
transport coefficients µ, λ, κ, σa, and σs satisfy the hypothesis.
Let {%ε,uε, ϑε, Iε}ε>0 be a family of weak solutions to our problem
in the sense of Definition of weak solution such that

%ε(0, ·) ≡ %ε,0 → %0 in L5/3(Ω),∫
Ω

(
1

2
%ε|uε|2 + %εe(%ε, ϑε) + ER,ε

)
(0, ·) dx

≡
∫

Ω

(
1

2%0,ε
|(%u)0,ε|2 + (%e)0,ε + ER,0,ε

)
dx ≤ E0,

∫
Ω

[%εs(%ε, ϑε) + sR(Iε)](0, ·) dx ≡
∫

Ω

(%s + sR)0,ε dx ≥ S0,

and
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Hypotheses and stability result

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(·, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).

Then
%ε → % in Cweak([0,T ]; L5/3(Ω)),

uε → u weakly in L2(0,T ;W 1,2
0 (Ω; R3)),

ϑε → ϑ weakly in L2(0,T ;W 1,2(Ω)),

and
Iε → I weakly-(*) in L∞((0,T )× Ω× S2 × (0,∞)),

at least for suitable subsequences, where {%,u, ϑ, I} is a weak solution of
our problem.
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Hypotheses and stability result

Simplified model SF = 0

The entropy of a photon gas

sR = −2k

c3

∫ ∞

0

∫
S2

ν2 [n log n − (n + 1) log(n + 1)] dωdν,

n = n(I ) = c2I
2hν3 is the occupation number

The radiative entropy flux

qR = −2k

c2

∫ ∞

0

∫
S2

ν2 [n log n − (n + 1) log(n + 1)]ω dωdν,

Entropy

∂ts
R + divxq

R = −k

h

∫ ∞

0

∫
S2

1

ν
log

n

n + 1
S dωdν =: ςR .
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Hypotheses and stability result

”Total Entropy”

∂t

(
%s + sR

)
+ divx

(
%su + qR

)
+ divx

(q

ϑ

)
= ς + ςR .

ςR =:

SE

ϑ
− k

h

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(B)

n(B) + 1

]
σa(B − I ) dωdν

−k

h

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(Ĩ )

n(Ĩ ) + 1

]
σs(Ĩ − I ) dωdν,

ς =:
1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
− SE

ϑ
,
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Lref , Tref , Uref , ρref , ϑref , pref , eref , µref , κref ,

the reference hydrodynamical quantities (length, time, velocity, density,
temperature, pressure, energy, viscosity, conductivity)

Iref , νref , σa,ref , σs,ref ,

the reference radiative quantities (radiative intensity, frequency,
absorption and scattering coefficients).
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Sr :=
Lref

Tref Uref
, Ma =

Uref√
ρref pref

, Re =
Uref ρref Lref

µref
, Pe =

Uref pref Lref

ϑref κref
,

the Strouhal, Mach, Reynolds, Péclet (dimensionless) numbers
corresponding to hydrodynamics, and by

C =
c

Uref
, L = Lref σa,ref , Ls =

σs,ref

σa,ref
, P =

2k4
Bϑ

4
ref

h3c3 ρref eref
,

various dimensionless numbers corresponding to radiation.
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Diffusion limit

Equilibrium diffusion regime

P = O(ε)- a small amount of radiation is present

C = O(ε−1) -the flow is strongly under-relativistic

Ma = Sr = Pe = Re = 1, P = ε, C = ε−1, Ls = ε2 and L = ε−1,

ε ∂t I + ω · ∇x I =
1

ε
σa (B − I ) + εσs

(
1

4π

∫
S2

I dω − I

)
,

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ)− divxT = 0.
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Entropy inequality

∂t (%s + εsR)+divx (%us + qR)+ divx

(q

ϑ

)
≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)

+
1

ε

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(B)

n(B) + 1

]
σa(I − B) dωdν

+ε

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(Ĩ )

n(Ĩ ) + 1

]
σs(I − Ĩ ) dωdν,

d

dt

∫
Ω

(
1

2
%|u|2 + %e + ER

)
dx +

1

ε

∫ ∞

0

∫
Γ+

ω · n I dΓ+dν = 0.
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The “ non-equilibrium diffusion regime”

Ma = Sr = Pe = Re = 1, P = ε, C = ε−1, L = ε2 and Ls = ε−1.

ε ∂t I + ω · ∇x I = εσa (B − I ) +
1

ε
σs

(
1

4π

∫
S2

I dω − I

)
,

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ)− divxT = 0.
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∂t (%s + εsR) + divx (%us + qR) + divx

(q

ϑ

)
≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)

+ε

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(B)

n(B) + 1

]
σa(I − B) dωdν

+
1

ε

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(Ĩ )

n(Ĩ ) + 1

]
σs(I − Ĩ ) dωdν.
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The limit system–equilibrium system

Continuity equation

∂t%+ divx(%u) = 0,

The momentum equation

∂t(%u) + divx(%u⊗ u) = divxT(%, ϑ),

The energy equation

∂t (%E(%, ϑ)) + divx (%e(%, ϑ)u) + divx (K(%, ϑ)∇xϑ)

= S(%, ϑ) : ∇xu− p(%, ϑ)divxu,

Radiative transfer

I = B(ν, ϑ).
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Boundary condition

u|∂Ω = 0, ∇ϑ · n|∂Ω = 0,

Initial condition

(%(x , t), u(x , t), ϑ(x , t))|t=0 =
(
%0(x), u0(x), ϑ0(x)

)
,

The compatibility conditions

u0(x)|∂Ω = 0, ∇ϑ0 · n|∂Ω = 0.
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E(%, ϑ) = e(%, ϑ) + B(ϑ)
% , and K(ϑ) = κ(ϑ)− 1

3σa(ϑ) ∂ϑB(ϑ).

existence of a global solution for the small data - Matsumura and
Nishida
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(%, 0, ϑ) be a given constant state with % > 0 and ϑ > 0.

e0 := ‖%0−%‖L∞(Ω) + ‖u0‖H1(Ω) + ‖ϑ0−ϑ‖H1(Ω) + ‖T0‖L2(Ω) + ‖V0‖L4(Ω),

where V0 is the initial vorticity Vij = ∂jui − ∂iuj),

E0 := e0 + ‖∇x%0‖L2(Ω) + ‖∇x%0‖Lα(Ω) + ‖∇xT0‖L2(Ω),

for an arbitrary fixed α such that 3 < α < 6.
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The non-equilibrium diffusion regime,
Navier-Stokes-Rosseland system

Continuity equation

∂t%+ divx(%u) = 0,

The momentum equation

∂t(%u) + divx(%u⊗ u) = divxT(%, ϑ),

Energy equation

∂t (%e(%, ϑ)) + divx (%e(%, ϑ)u) + divx (κ(ϑ)∇xϑ)

= S(%, ϑ) : ∇xu− p(%, ϑ)divxu− σa(ϑ)[B(ϑ)− N],
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Diffusion equation

∂tN − 1

3
divx

(
1

σs(ϑ)
∇xN

)
= σa(ϑ) (B(ϑ)− N) .

Boundary equations

u|∂Ω = 0, ∇ϑ · n|∂Ω = 0,

N :=

∫ ∞

0

I0 dν

N|∂Ω = 0.

Initial conditions

(%(x , t), u(x , t), ϑ(x , t),N(x , t))|t=0 =
(
%0(x), u0(x), ϑ0(x),N0(x)

)
,
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The compatibility conditions

u2|∂Ω = 0, ∇ϑ0 · n|∂Ω = 0, N0
∣∣
∂Ω

= 0.

N0(x) =

∫ ∞

0

∫
S2

I 0(x , ν, ω) dω dν

.
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Strong solution of the limit system for small data

Let (%, 0, ϑ,N) be a given constant state with % > 0, ϑ > 0 and
N = B(ϑ).

e0 := ‖%0 − %‖L∞(Ω) + ‖u0‖H1(Ω) + ‖ϑ0 − ϑ‖H1(Ω) + ‖N0 − N‖H1(Ω)

+‖T0‖L2(Ω) + ‖V0‖L4(Ω),

and
E0 := e0 + ‖∇x%

0‖L2(Ω) + ‖∇x%
0‖Lα(Ω) + ‖∇xT0‖L2(Ω),

for an arbitrary fixed α such that 3 < α < 6.
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Given three numbers % ∈ R+, ϑ ∈ R+ and E ∈ R+ we define OH
ess the set

of hydrodynamical essential values essH

OH
ess :=

{
(%, ϑ) ∈ R2 : %

2 < % < 2%, ϑ
2 < ϑ < 2ϑ

}
,OR

ess the set of

radiative essential values essR
OR

ess :=
{

ER ∈ R : E
2 < ER < 2E

}
,withOess := OH

ess ∪ OR
ess , and their

residual counterparts res
OH

res := (R+)2\OH
ess , OR

res := R+\OR
ess , Ores := (R+)3\Oess .
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Theorem(Equilibrium case):

Ω ⊂ R3 be a bounded domain of class C 2,ν .

The thermodynamic functions p, e, s satisfy hypotheses,

P ∈ C 1[0,∞) ∩ C 2(0,∞),

the transport coefficients µ, λ, κ, σa, σs and the equilibrium
function B satisfy hypothesis, B ∈ C 1.

Let (%ε,uε, ϑε, Iε) be a weak solution to the scaled radiative
Navier-Stokes system for (t, x , ω, ν) ∈ [0,T ]× Ω× S2 × R+,
supplemented with the boundary conditions and the initial
conditions (%0,ε,u0,ε, ϑ0,ε, I0,ε)
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such that

%ε(0, ·) = %0 + ε%
(1)
0,ε, uε(0, ·) = u0,ε, ϑε(0, ·) = ϑ0 + εϑ

(1)
0,ε,

where (%0,u, ϑ0) ∈ H3(Ω) are smooth functions such that (%0, ϑ0) belong
to the set OH

ess , where % > 0, ϑ > 0, are two constants and∫
Ω
%

(1)
0,ε dx = 0,

∫
Ω
ϑ

(1)
0,ε dx = 0.
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Suppose also that

u0,ε → u0 strongly in L∞(Ω; R3),

%
(1)
0,ε → %

(1)
0 strongly in L2(Ω),

ϑ
(1)
0,ε → ϑ

(1)
0 strongly in L2(Ω),

I
(1)
0,ε → I

(1)
0 strongly in L∞((0,T )× Ω× (0,∞)).

Then up to subsequences

%ε → % strongly in L∞(0,T ; L
5
3 (Ω)),

uε → u strongly in L2(0,T ;W 1,2(Ω; R3)),

ϑε → ϑ strongly in L∞(0,T ; L4(Ω)),

where (%,u, ϑ) is the smooth solution of the equilibrium decoupled
system on [0,T ]× Ω and I (t, x , ν, ω) = B(ν, ϑ(t, x)), with initial data
(%0,u0, ϑ0).

Šárka Nečasová A model of radiative flow



Hypotheses and stability result

Theorem (Non-equilibrium):

Ω ⊂ R3 be a bounded domain of class C 2,ν .

Assume that the thermodynamic functions p, e, s,
P ∈ C 1[0,∞) ∩ C 2(0,∞),

the transport coefficients µ, λ, κ, σa, σs satisfy hypothesis
together with B ∈ C 1.

Let (%ε,uε, ϑε, Iε) be a weak solution to the scaled radiative
Navier-Stokes system for (t, x , ω, ν) ∈ [0,T ]× Ω× S2 × R+,
supplemented with the boundary conditions and the initial
conditions (%0,ε,u0,ε, ϑ0,ε, I0,ε) such that
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%ε(0, ·) = %0 + ε%
(1)
0,ε, uε(0, ·) = u0,ε, ϑε(0, ·) = ϑ0 + εϑ

(1)
0,ε,

Iε(0, ·) = I0 + εI
(1)
0,ε ,

where the functions (%0,u, ϑ0) and x → I0(x , ω, ν) belong to H3(Ω) and
are such that (%0, ϑ0,ER(I0)) belong to the set Oess , where
% > 0, % > 0,ER > 0 are three constants and∫
Ω
%

(1)
0,ε dx = 0,

∫
Ω
ϑ

(1)
0,ε dx = 0,

∫
Ω

I
(1)
0,ε dx = 0.
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Suppose also that

u0,ε → u0 strongly in L∞(Ω; R3),

%
(1)
0,ε → %

(1)
0 strongly in L2(Ω),

ϑ
(1)
0,ε → ϑ

(1)
0 strongly in L2(Ω),

I
(1)
0,ε → I

(1)
0 strongly in L∞((0,T )× Ω× (0,∞)).

Then up to subsequences

%ε → % strongly in L∞(0,T ; L
5
3 (Ω)),

uε → u strongly in L2(0,T ;W 1,2(Ω; R3)),

ϑε → ϑ strongly in L∞(0,T ; L4(Ω)),
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and
Nε → N strongly in L∞((0,T )× Ω),

where Nε =
∫∞
0

∫
S2 Iε dω dν and (%,u, ϑ,N) is the smooth solution of

the Navier-Stokes-Rosseland system on [0,T ]× Ω with initial data
(%0,u0, ϑ0,N0).
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ballistic free energy

HΘ(%, ϑ) = %e(%, ϑ)−Θ%s(%, ϑ),

radiative ballistic free energy

HR
Θ(I ) = ER(I )−ΘsR(I ).

relative entropy

E(%, ϑ|r ,Θ) := HΘ(%, ϑ)− ∂%HΘ(r ,Θ)(%−Θ)− HΘ(r ,Θ).
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∫
Ω

(
1

2
%ε|uε −U|2 + E (%ε, ϑε|r ,Θ) + εHR(Iε)

)
(τ, ·) dx

+

∫ τ

0

∫
Γ+

ω · nx Iε(t, x , ω, ν) dΓ dν dt

+

∫ τ

0

∫
Ω

Θ

ϑε

(
Sε : ∇xuε −

qε · ∇xϑε

ϑε

)
dx dt

+

∫ τ

0

∫
Ω

∫ ∞

0

∫
S2

Θ

ν

[
log

n(Iε)

n(Iε) + 1
− log

n(Bε)

n(Bε) + 1

]
σa

(j)
ε (Bε−Iε) dω dν dx dt

+

∫ τ

0

∫
Ω

∫ ∞

0

∫
S2

Θ

ν

[
log

n(Iε)

n(Iε) + 1
− log

n(Ĩε)

n(Ĩε) + 1

]
σs

(j)
ε (Ĩε−Iε) dω dν dx dt,≤

∫
Ω

1

2

(
%0,ε|u0,ε −U(0, ·)|2 + E (%0,ε, ϑ0,ε|r(0, ·),Θ(0, ·)) + εHR(I0,ε)

)
dx+R
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∫
Ω

(
1
2 %ε|uε − u|2 + E (%ε, ϑε|%, ϑ)

)
≤

{
∫
Ω

(
1
2

(
%0,ε|u0,ε − u(0, ·)|2 + E (%0,ε, ϑ0,ε|%(0, ·), θ(0, ·))+

εHR(I0,ε)
)
dx + e0}eK3t
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Suppose that e0 ≤ Cε2 and the initial data of the primitive system and
any of the target systems are close in the following sense

‖%0,ε−%0‖L2(Ω) ≤ Cε, ‖ϑ0,ε−ϑ0‖L2(Ω) ≤ Cε, ‖√%0,ε (u0,ε−u)‖L2(Ω;R3) ≤ Cε.
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Semi-relativistic model

Definition of function B

B(ν, ~ω,u, ϑ) =
2h

c2

ν3

e
hν
kϑ

(
1−α ~ω·~u

c

)
− 1

,

0 ≤ α(ϑ) ≤ 1 Remark: If |u|
c << 1 one recovers the standard

equilibrium Planck’s function B(ν, ϑ) = 2h
c2

ν3

e
hν
kϑ−1

.

Berthon, Buet, Coulombel, Depres, Dubois, Goudon, Morel,
Turpault

M1 Levermore model

α =
σa + σs

σa + 2σs
,
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σa(ϑ,u) = χ(|u|)σ̃a(ϑ) ≥ 0 and σs(ϑ) ≥ 0

χ(s) =

{
1 if s ≤ c ,
0 if s ≥ c + β,

for an arbitrary β > 0.

The role of this cut-off is to deal with the singularity of B

In the “over-relativistic” regime (|u| ≥ c) we decide to decouple
matter and radiation.
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Entropy inequality

∂t (%s) + divx (%su) + divx

(
q
ϑ

)
≥

1
ϑ

(
S : ∇xu− q·∇xϑ

ϑ

)
− SE

ϑ + SF ·u
ϑ

=: ς,

where the first term of the right hand side

ςm := 1
ϑ

(
S : ∇xu− q·∇xϑ

ϑ

)
is the (positive) matter entropy

production.
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The formula for the entropy of a photon gas

sR = −2k

c3

∫ ∞

0

∫
S2

ν2 [n log n − (n + 1) log(n + 1)] dωdν,

n = n(I ) = c2I
2hα3ν3 is the occupation number.

The radiative entropy flux

qR = −2k

c2

∫ ∞

0

∫
S2

ν2 [n log n − (n + 1) log(n + 1)]ω dωdν,

The radiative transfer equation

∂ts
R + divxq

R = −k

h

∫ ∞

0

∫
S2

1

ν
log

n

n + 1
S dωdν =: ςR .
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The equilibrium-diffusion regime- Limit system

Ma = Sr = Pe = Re = P = 1,

C = ε−1, Ls = ε2 and L = ε−1,

Continuity equation

∂t%+ divx(%u) = 0,

Momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp = divxS,

Energy equation

∂t

(
1
2 %|u0|2 + %e

)
+ divx

((
1
2 %|u|

2 + %e + p
)
u + ~q− Su

)
= 0,
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Entropy equation

∂t (%s) + divx (%su) + divx

(
~q

ϑ

)
=

1

ϑ

(
S : ∇xu−

~q · ∇xϑ

ϑ

)
,

Radiation

I = B(ν, ϑ),

where p(%, ϑ) = p(%, ϑ) + a
3ϑ

4, e(%, ϑ) = e(%, ϑ) + a
%ϑ

4,

k(ϑ0) = κ(ϑ) + 4a
3σa
ϑ3, ~q = −k(ϑ)∇xϑ and %s = %s + 4

3aϑ3.
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Boundary conditions

u|∂Ω = 0, ∇ϑ · n|∂Ω = 0,

Initial conditions

(%(x , t), u(x , t), ϑ(x , t))|t=0 =
(
%0(x), u0(x), ϑ0(x)

)
,

for any x ∈ Ω,

Compatibility conditions

u0(x)|∂Ω = 0, ∇ϑ0 · n|∂Ω = 0.
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existence of unique solution for strong solution ( local (small time)
or global for (small data))

rigorous proof of singular limit using relative entropy inequality
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The non-equilibrium diffusion regime - limit system

Ma = Sr = Pe = Re = P = 1,

C = ε−1, L = ε2 and Ls = ε−1.

Continuity equation

∂t%+ divx(%u) = 0,

Momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp = divxS,

Total Energy

∂t

(
1

2
%|u0|2 + %e

)
+ divx

((
1

2
%|u|2 + %e + p

)
u + ~q− Su

)
= 0,
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Entropy equation

∂t (%s) + divx (%su) + divx

(
q
ϑ

)
=

1
ϑ

(
S : ∇xu− q·∇xϑ

ϑ

)
+ 1

3
∇xN·u

ϑ − σa(ϑ)
ϑ

(
aϑ4 − N

)
,
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Diffusion equation

∂tN − 1

3
divx

(
1

σs(ϑ)
∇xN

)
= σa(ϑ)

(
aϑ4 − N

)
,

where p = p + 1
3N, e = e + N

% and ~q = κ∇xϑ+ 1
3σs
∇xN

Boundary conditions

u|∂Ω = 0, ∇ϑ · n|∂Ω = 0, N|∂Ω = 0,

Initial conditions

(%(x , t), u(x , t), ϑ(x , t),N(x , t))|t=0 =
(
%0(x), u0(x), ϑ0(x),N0(x)

)
,

for any x ∈ Ω, with N0(x) =
∫∞
0

∫
S2 I 0(x , ν, ω) dω dν
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Compatibility conditions

u0|∂Ω = 0, ∇ϑ0 · n|∂Ω = 0, N0
∣∣
∂Ω

= 0.

N = aθ4
r .
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existence of unique solution for strong solution ( local (small time)
or global for (small data))

rigorous proof of singular limit using relative entropy inequality
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Crucial Lemma

Let (%(e),u(e), θ(e)) be the solution of problem full N-S-F with
radiation satisfying the conditions of Theorem 1 (equilibrium case)

and let (%(ne),u(ne), θ(ne), θ
(ne)
r ) be the solution of problem N-S-F

with radiation satisfying the conditions of Theorem 2 (non
equilibrium case) and choose (r ,U,Θ) = (%(e),u(e), θ(e)) in the

equilibrium case or (r ,U,Θ,Θr ) = (%(ne),u(ne), θ(ne), θ
(ne)
r ) in the

non equilibrium case.
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Relative entropy inequality∫
Ω

(
1

2
%ε|uε −U|2 + E (%ε, ϑε|r ,Θ) + HR(Iε)

)
(t, ·) dx

≤ 1

ε

[
Ce0 +

∫
Ω

(1

2
%0,ε|u0,ε −U(0, ·)|2+

E (%0,ε, ϑ0,ε|r(0, ·),Θ(0, ·)) + HR(I0,ε)
)
dxe

C′
ε t ,

where C and C′ are positive constant depending on (r ,U,Θ,Θr ) and
e0 is the same as in Theorems 1 and 2.
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NSFR with Electromagnetic field

∂t%+ divx(%u) = 0 in (0,T )× Ω, (1)

∂t(%u) + divx(%u⊗ u) +∇xp + %~χ× u

= divxS + %∇Ψ− %∇x |~χ× ~x |2 +~j × ~B in (0,T )× Ω, (2)

∂t (%e)+divx (%eu)+divxq = S : ∇xu−pdivxu+~j ·~E−SE in (0,T )×Ω,
(3)

1

c
∂t I + ω · ∇x I = S in (0,T )× Ω× (0,∞)× S2. (4)

∂t
~B + curlx(~B × u) + curlx(λ curlx ~B) = 0 in (0,T )× Ω. (5)

−∆Ψ = 4πG (η%+ g) in (0,T )× Ωε. (6)
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electric current - ~j electric field ~E
Ohm’s law

~j = σ(~E + u× ~B),

and Ampère’s law

ζ~j = curlx ~B,

where ζ > 0 is the (constant) magnetic permeability,
λ = λ(ϑ) > 0 is the magnetic diffusivity of the fluid.
We also assume that the system is globally rotating at uniform velocity χ
around the vertical direction ~e3

Ψ(t, x) = G

∫
Ω

K (x − y)(η%(t, y) + g(y)) dy ,

where K (x) = 1
|x| , and the parameter η may take the values 0 or 1: for

η = 1 selfgravitation is present and for η = 0 gravitation only acts as an
external field
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Boundary conditions:

u|∂Ω = 0, q · n|∂Ω = 0, ~B · ~n|∂Ω = 0, ~E × ~n|∂Ω = 0, (7)

I (t, x , ν, ω) = 0 for x ∈ ∂Ω, ω · n ≤ 0, (8)

where n denotes the outer normal vector to ∂Ω.
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Primitive system

ε∂t I + ω · ∇x I = σa (B − I ) + σs

(
1

4π

∫
S2

I dω − I

)
, (9)

∂t%+ divx(%u) = 0, (10)

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%, ϑ) + %~χ× u = divxS +

1

ε
%∇Ψ

−%∇x |~χ× ~x |2 +
1

ε2
~j × ~B

∂t

(
%e + εER

)
+ divx

(
%eu + FR

)
+ divxq = ε2S : ∇xu− pdivxu +~j · ~E

(12)

Šárka Nečasová A model of radiative flow



Hypotheses and stability result

∂t

(
%s + εsR

)
+ divx

(
%su + qR

)
+ divx

(q

ϑ

)
≥ ςε, (13)

with

ςε =
1

ϑ

(
ε2S : ∇xu−

q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)
+

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(B)

n(B) + 1

]
σa(I − B) dωdν

+

∫ ∞

0

∫
S2

1

ν

[
log

n(I )

n(I ) + 1
− log

n(Ĩ )

n(Ĩ ) + 1

]
σs(I − Ĩ ) dωdν,
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∂t
~B + curlx(~B × u) + curlx(λ curlx ~B) = 0, (14)

d

dt

∫
Ω

(
1

2
ε2 %|u|2 + %e + εER +

1

2ζ
|~B|2 − 1

2
ε%Ψ +

1

2
%|~χ× ~x |2

)
dx

+

∫ ∞

0

∫
Γ+

ω · nI dΓ+dν = 0 (15)

where Γ+ = {(x , ω) ∈ ∂Ω× S2 : ω · nx > 0}
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We consider the pressure in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4, a > 0, (16)

where P : [0,∞) → [0,∞) is a given function with the following
properties:

P ∈ C 1[0,∞), P(0) = 0, P ′(Z ) > 0 for all Z ≥ 0, (17)

0 <
5
3P(Z )− P ′(Z )Z

Z
< c for all Z ≥ 0, (18)

lim
Z→∞

P(Z )

Z 5/3
= p∞ > 0. (19)
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the specific internal energy e is

e(%, ϑ) =
3

2
ϑ

(
ϑ3/2

%

)
P

( %

ϑ3/2

)
+ a

ϑ4

%
, (20)

and the associated specific entropy reads

s(%, ϑ) = M
( %

ϑ3/2

)
+

4a

3

ϑ3

%
, (21)

with

M ′(Z ) = −3

2

5
3P(Z )− P ′(Z )Z

Z 2
< 0.
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0 < c1(1 + ϑ) ≤ µ(ϑ), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c(1 + ϑ), (22)

0 < c1(1 + ϑ3) ≤ κ(ϑ), λ(ϑ) ≤ c2(1 + ϑ3) (23)

for any ϑ ≥ 0. Moreover we assume that σa, σs , B are continuous
functions of ν, ϑ such that

0 ≤ σa(ν, ϑ), σs(ν, ϑ), |∂ϑσa(ν, ϑ)|, |∂ϑσs(ν, ϑ)| ≤ c1, (24)

0 ≤ σa(ν, ϑ)B(ν, ϑ), |∂ϑ{σa(ν, ϑ)B(ν, ϑ)}| ≤ c2, (25)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞). (26)

for all ν ≥ 0, ϑ ≥ 0, where c1,2,3 are positive constants.
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Target system

divxU = 0, (27)

%(∂tU+divx(U⊗U))+ ∇xΠ = divx(2µ D(~U))+
1

ζ
curlx ~B× ~B +~F (28)

∂t
~B + curlx(~B × ~U) + curlx(λ curlx ~B) = 0, (29)

divxB = 0, (30)

% cP(∂tΘ + divx(ΘU))− divx(κ∇Θ) = G , (31)

ω · ∇x I0 = σa (B − I0) + σs

(
Ĩ0 − I0

)
, (32)

ω ·∇x I1 =
(
σa∂ϑB +∂ϑσa(B− I0)+∂ϑσs(Ĩ0− I0)

)
Θ−σaI1 +σs

(
Ĩ1 − I1

)
,

(33)
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We finally consider the boundary conditions

U|∂Ω = 0, ∇Θ · n|∂Ω = 0, ~B · n|∂Ω = 0, curlx ~B × n|∂Ω = 0 (34)

for (27)-(31) and

I0(x , ν, ω) = 0 for x ∈ ∂Ω, ω · n ≤ 0 (35)

I1(x , ν, ω) = 0 for x ∈ ∂Ω, ω · n ≤ 0 (36)

for (32) and (33), and the initial conditions

U|t=0 = U0, Θ|t=0 = Θ0, ~B|t=0 = ~B0, I0|t=0 = I0,0, I1|t=0 = I1,0.
(37)
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Theorem:

Let Ω ⊂ R3 be a bounded domain of class C 2,ν . Assume that the
thermodynamic functions p, e, s satisfy hypotheses (16 - 21) with
P ∈ C 1[0,∞) ∩ C 2(0,∞), and that the transport coefficients µ, η, κ, λ,
σa, σs and the equilibrium function B comply with (22 - 26).
Let (%ε,uε, ϑε,Bε, Iε) be a weak solution of the scaled system (1 - 6) for
(t, x , ω, ν) ∈ [0,T ]× Ω× S2 × R+, supplemented with the boundary
conditions (7 - 8) and initial conditions (%0,ε,u0,ε, ϑ0,ε,B0,ε, I0,ε) given by

%ε(0, ·) = %+ε%
(1)
0,ε, uε(0, ·) = u0,ε, ϑε(0, ·) = ϑ+εϑ

(1)
0,ε, Iε(0, ·) = I+εI

(1)
0,ε ,

Bε(0, ·) = εB
(1)
0,ε,

where % > 0, ϑ > 0, I > 0 are constants and∫
Ω

%
(1)
0,ε dx = 0,

∫
Ω

ϑ
(1)
0,ε dx = 0,

∫
Ω

I
(1)
0,ε dx = 0,

∫
Ω

~B
(1)
0,ε dx = 0 for all ε > 0.
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Assume that

%
(1)
0,ε → %

(1)
0 weakly − (∗) in L∞(Ω),

u
(1)
0,ε → U0 weakly − (∗) in L∞(Ω; R3),

ϑ
(1)
0,ε → ϑ

(1)
0 weakly − (∗) in L∞(Ω),

I
(1)
0,ε → I

(1)
0 weakly − (∗) in L∞(Ω× S2 × R+),

B
(1)
0,ε → B

(1)
0 weakly − (∗) in L∞(Ω; R3),
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Then
ess sup

t∈(0,T )

‖%ε(t)− %‖
L

4
3 (Ω)

≤ Cε, (38)

and up to subsequences

uε → U weakly − (∗) in L2(0,T ;W 1,2(Ω; R3)), (39)

ϑε − ϑ

ε
= ϑ(1) → Θ weakly − (∗) in L2(0,T ;W 1,2(Ω)), (40)

Iε → I0 weakly − (∗) in L2(0,T ; L2(Ω× S2 × R+)), (41)

Bε

ε
= B(1) → B weakly − (∗) in L2(0,T ;W 1,2(Ω; R3)), (42)

and

Iε − I

ε
= I (1) → I1 weakly − (∗) in L2(0,T ; L2(Ω× S2 × R+)), (43)

where (U,Θ,B, I0, I1) solves the system (27)-(33).
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compressible Navier-Stokes system:

∂t%+ divx(%u) = 0, (44)

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%) = νdivxS(∇xu), (45)

S(∇xu) = ∇xu +∇t
xu−

2

3
divxuI, (46)

the no-slip boundary condition

u|∂ΩM
= 0, (47)

ΩM ⊂ R3 is a smooth, bounded, simply connected domain.
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Kelliher, Lopes, and Nussenzveig-Lopes 2009

- the inviscid limit of the incompressible Navier-Stokes system on a family
of domains ΩM = MΩ, M →∞,
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We consider a family of domains {ΩM}M>0 enjoying the following
properties:

ΩM ⊂ R3 are simply connected, bounded C 2 domains, uniformly for
M →∞;

there exists ω > 0 such that{
x ∈ R3

∣∣∣ |x | < ωM
}
⊂ ΩM ; (48)

there exists β > 0 such that

|∂ΩM |2 ≤ βM2, (49)

where | · |2 denotes the standard two-dimensional Hausdorff measure.
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Our goal is to identify the triple singular limit, where

ε→ 0, ν → 0, while M →∞.
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p ∈ C [0,∞)∩C 3(0,∞), p(0) = 0, p′(%) > 0 for % > 0, lim
%→∞

p′(%)

%γ−1
= p∞,

(50)
where

γ >
3

2
. (51)
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We consider the ill-prepared initial data in the form

%(0, ·) = %0,ε = 1 + ε%
(1)
0,ε, u(0, ·) = u0,ε, (52)

%
(1)
0,ε → %

(1)
0 in L2(R3), u0,ε → u0 in L2(R3;R3) as ε→ 0. (53)
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We expect that
%→ 1, u → v,

where v is a solution of the incompressible Euler system

∂tv + v · ∇xv +∇xΠ = 0, divxv = 0 in R3. (54)
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The principal difficulties of a rigorous proof of such a scenario are:

The target Euler system is defined on R3 while the primitive system
(44 - 53) on ΩM , the solution v is not an admissible test function in
the relative entropy inequality.

The same problem occurs with the solutions of the associated
acoustic system.
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The class of finite energy weak solutions of the compressible
Navier-Stokes system (44-47) satisfying, besides the standard weak
formulation of the equations (44 - 46), the energy inequality∫

ΩM

[
1

2
%|u|2 +

1

ε2
H(%)

]
(τ, ·) + ν

∫ τ

0

∫
ΩM

S(∇xu) : ∇xu dt (55)

≤
∫

ΩM

[
1

2
%0,ε|u0,ε|2 +

1

ε2
H(%0,ε)

]
for a.a. τ > 0,

where we have set

H(%) = %

∫ %

1

p(z)

z2
dz .
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Solutions of the target system

u0 ∈ Cm(R3;R3) for a certain m > 4, supp[u0] compact in R3.

v(0, ·) = v0 = H[u0], (56)

where H denotes the standard Helmholtz projection onto the space of
solenoidal functions, possesses a smooth solution

v ∈ C k([0,Tmax);W
m−k,2(R3;R3)), k = 1, ..,m − 1 (57)

defined on a maximal time interval [0,Tmax), Tmax > 0.
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Acoustic system

Lighthill’s acoustic analogy

ε∂t
%− 1

ε
+ divx(%u) = 0,

ε∂t(%u) + p′(1)∇x
%− 1

ε
=

ε

[
νdivxS(∇xu)− divx(%u⊗ u)−∇x

(
p(%)− p′(1)

%− 1

ε
− p(1)

)]
,
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The acoustic system

ε∂ts + ∆Ψ = 0, ε∂t∇xΨ + a∇xs = 0, a = p′(1) > 0, (58)

the initial data

s(0, ·) = %
(1)
0 , ∇xΨ(0, ·) = ∇xΨ0 = u0 −H[u0]. (59)
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Main results

Theorem:
Let the pressure p satisfy the hypotheses (50), (51). Let {ΩM}M>0 be a
family of uniformly C 2-domains in R3 such that (48), (49) hold for
M = M(ε),

εM(ε) →∞ as ε→ 0. (60)

Let the initial data [%0,ε,u0,ε] for the compressible Navier-Stokes system
(44 - 47) be of the form

%(0, ·) = %0,ε = 1+ε%
(1)
0,ε, u(0, ·) = u0,ε, ‖%(1)

0,ε‖L2∩L∞(R3)+‖u0,ε‖L2(R3;R3) ≤ D.
(61)

In addition, suppose we are given functions u0, %
(1)
0 such that

u0 ∈ Cm(R3;R3), %
(1)
0 ∈ Cm(R3), ‖u0‖Cm(R3;R3)+‖%

(1)
0 ‖Cm(R3) ≤ D, m > 4,

(62)

supp[u0], supp[%
(1)
0 ] compact in R3. (63)

Šárka Nečasová A model of radiative flow



Hypotheses and stability result

Let Tmax > 0 be the life-span of the smooth solution v of the Euler
system (54), endowed with the initial datum v0 = H[u0], and let
0 < T < Tmax. Let [s,Ψ] be the solution of the acoustic system (58),
with the initial data (59). Then
there exists ε0 > 0 such that

∥∥∥√%(u−∇xΨ− v
)
(τ, ·)

∥∥∥
L2(ΩM ;R3)

+

∥∥∥∥(
%− 1

ε

)
(τ, ·)− s(τ, ·)

∥∥∥∥
L2+Lγ(ΩM )

(64)

≤ c(D,T , α)

[
‖u0,ε − u0‖L2(ΩM ;R3) +

∥∥∥%(1)
0,ε − %

(1)
0

∥∥∥
L2(ΩM )

+

(
ν + εα +

1

εM(ε)

)1/2
]
,

τ ∈ [0,T ], 0 < α < 1, and 0 < ε ≤ ε0,

for any weak solution [%,u] of the compressible Navier-Stokes system (44
- 47).
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Corollary

In addition to the hypotheses of Theorem 1, assume that

%
(1)
0,ε → %

(1)
0 in L2(R3), u0,ε → u0 in L2(R3;R3) as ε→ 0,

and
ν = ν(ε) → 0 as ε→ 0.

Then
ess sup

t∈(0,T )

‖%− 1‖L2+Lγ(K) → 0 as ε→ 0,

ess sup
t∈(δ,T )

∥∥∥√%(u− v
)
(t, ·)

∥∥∥
L2(K ;R3)

→ 0 as ε→ 0 (65)

for any 0 < δ < T and any compact K ⊂ R3.
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Reduction of dimension
A straight layer Ωε = ω × (0, ε), where ω is a 2-D domain. ε→ 0 in
N-S and N-S-F case

Singular limit on expanding domain with rotation

Introducing relative entropy inequality to numerical numerical
analysis T.Karper,A.Novotny, E.Feireisl

Coupling N-S-F with magnetic field

low Mach number limit in domain dependent on time

singular limit in fluid-structure interaction
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