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Abstract: (Max,+)-automata are weighted automata over the (max,+) semiring. In this paper we investi-
gate simulation like equivalences between (max,+)-automata. Since (max,+)-automata are nondetermin-
istic (weighted) automata, there exist extensions of bisimilarity properties that are weaker than equality
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is that they can be checked in polynomial time, while equality (as well as inequality) of formal power
series is undecidable. We show that a form of weak simulation can be used as a sufficient condition for
comparing the formal power series.
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1. INTRODUCTION

An important class of timed discrete-event systems Cassandras
and Lafortune (2008) can be modeled by (max,+)-automata,
which are weighted automata with weights (multiplicities) in
the (R∪{−∞},max,+) semiring. They have been introduced
in Gaubert (1995) as a model of Timed Discrete Event (dynam-
ical) Systems (TDES) exhibiting both synchronization of tasks
and resource sharing (choice) phenomena and moreover can be
nondeterministic.

It has been shown in Gaubert and Mairesse (1999) that (max,+)-
automata have a strong expressive power in terms of timed
Petri nets: every 1-safe timed Petri net can be represented by
special (max,+)-automata, called heap models. A compositional
approach to the modeling of timed Petri nets using (max,+)-
automata has been presented in Lahaye et al. (2015).

So far very limited effort has been devoted to the investigation
of partially observed (max,+)-automata. Similarly as for logical
automata, partial observations arise when some events can
not be monitored because of high cost of sensors or due to
technical reasons. Moreover, partial observations are also useful
as abstractions in hierarchical control of finite automata, where
natural projections consisting in abstracting some low level
events are less complex if observer property is satisfied. It is
to be expected that hierarchical control will also be useful for
timed systems.

The goal of this paper is twofold. Firstly, we will present some
results about partially observed weighted automata from the
computer science literature in the standard (max,+) algebraic
framework and extend them. Secondly, we will show that par-
tial observations are useful for approximated solutions of fun-
damental undecidable problems in (max,+)-automata, namely
equalities and comparisons of their behaviors, i.e. rational
(max,+)-formal power series. It is well known that equalities
as well as inequalities of (max,+) formal power series are un-
decidable in general Krob (1994). However, bisimulations and
simulations as stronger properties (implying respectively equal-
ities and inequalities of behaviors) are decidable in polynomial
time. For timed discrete-event systems, the latter properties

are however too strong. We show that after rendering different
subsets of events unobservable, proposed variants of the un-
derlying weak bisimulations and weak simulations are weaker
conditions than bisimulations and simulations, while they still
imply the equalities and inequalities of behaviors, i.e. (max,+)
formal power series.

2. ALGEBRAIC PRELIMINAIRES

In this section results and notations about (max,+) algebra,
(max,+)-automata, and Petri nets are introduced. The reader is
invited to consult the references Baccelli et al. (1992), Gaubert
(1992), and Gaubert (1995) for more complete treatement.

The semiring Rmax = (R∪{−∞},max,+) is commonly known
as (max,+) algebra (with a wrong use of the term algebra).
This semiring is called idempotent, because it has idempotent
addition, denoted by ⊕: a⊕ b = max(a,b). The conventional
addition plays the role of multiplication, denoted by a⊗b (or ab
when unambiguous). The zero element is denoted by ε (=−∞)
and the identity element is denoted by e (= 0). Idempotent
semirings are usually called dioids. If we add T =+∞ to Rmax,
the resulting dioid is complete (as an ordered set) and denoted
Rmax.

The set of square n×n matrices with coefficients in the (max,+)
algebra Rmax, endowed with usually defined matrix addition
and multiplication, also denoted by ⊕ and ⊗, is an idempotent
semiring, denoted Rn×n

max . The zero element is the matrix denoted
εn and exclusively composed of ε (=−∞). The identity element
In of Rn×n

max is the matrix with e (= 0) on the diagonal and
ε (=−∞) elsewhere. We will also work with non square m×n
matrices, where the multiplication is defined for matrices of
compatible sizes in the same way as in the classical linear
algebra. The transposed matrix of A is denoted by AT , where
AT

i j = A ji.

We need a concept of Boolean residuation (also called relative
residuation in Damljanovic et al. (2014)) that is not usual in the
literature on (max,+)-linear systems. Residuation theory allows
defining ’pseudo-inverses’ of some isotone maps ( f is isotone



if a� b⇒ f (a)� f (b)) defined on ordered sets, such as dioids
(see Baccelli et al. (1992), 4.4.4).
Definition 1. An isotone map f : D → C , where D and C
are complete dioids, is said to be residuated if there exists an
isotone map h : C →D such that

f ◦h� IdC and h◦ f � IdD , (1)
where IdC and IdD are identity maps of C and D respectively.
Recall that h is unique, it is denoted f ] and called residual of f .

Residuals of isotone maps correspond to extremal solutions of
inequalities. If f is residuated then ∀y ∈ C , the least upper
bound of subset {x ∈ D | f (x) � y} exists and belongs to this
subset. This greatest solution is equal to f ](y).
Theorem 2. In a complete dioid D the isotone map Ra : x 7→ x⊗
a is residuated. The greatest solution of x⊗a � b exists and is
equal to Ra

](b), also denoted b◦/a. This ’quotient’ satisfies the
following formulæ

(x◦/a)⊗a� x, ( f .1) (x⊗a)◦/a� x. ( f .2)

We will need residuation of matrix multiplication.

The residuated mapping of the left matrix multiplication, i.e. the
greatest solution X to the inequality A⊗X ≤ B is denoted A ◦\B.
Recall from Baccelli et al. (1992) that for matrices A ∈ Dm×n

and B ∈ Dm×p over a complete dioid D , where the infimum is
denoted by ∧ we have

X = A ◦\B ∈Dn×p : (A ◦\B)i j = ∧m
k=1Aki ◦\Bk j.

Similarly, the residuated mapping of the right multiplication,
i.e. the greatest solution Y to the inequality Y ⊗C≤ F for given
matrices C ∈ Dm×n and F ∈ D p×n is denoted F◦/C. We recall
from Baccelli et al. (1992) that

Y = F◦/C ∈D p×m : (F◦/C)i j = ∧n
k=1Fik◦/C jk.

Now we are ready to recall relative (Boolean) right residuals
from Damljanovic et al. (2014).
Definition 3. (Boolean right residuation)
Given matrices A ∈ Rm×n

max and B ∈ Rm×p
max , the Boolean right

residual, A ◦\B ∈ Rn×p
max , is defined as

(A ◦\BB)i j =

{
e = 0, if ∀k = 1, . . . ,m : Aki ≤ Bk j,
ε =−∞, otherwise.

Note that Boolean right residuation can be defined in an equiv-
alent way using residuation of the canonical injection of the
Boolean semiring B = (ε,e,⊕,⊗), where⊕ is logical ”or” and
⊗ is logical ”and ”, to Rmax denoted by I : B → Rmax. Then
B is a complete subdioid of the dioid Rmax and the residuated
mapping I] : Rmax→B exists and is defined for r ∈ Rmax by

I](r) =
{

e = 0, if r ≥ 0,
ε =−∞, otherwise.

Now it can be observed that A ◦\BB = I](A ◦\B). Similarly,
Boolean left residual can be defined by A◦/BB = I](A◦/B).
Otherwise stated, Boolean residuation is nothing else, but the
residuation of the following composed mapping: the canonical
injection I composed with matrix multiplication.

(Max,+)-automata are recalled below.
Definition 4. ((Max,+)-automaton)
A (max,+)-automaton G is a quintuple (Q,A,α,µ,β ) with

• Q and A are resp. finite sets of states and of events;
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Fig. 1. A (max,+)-automaton.

• α ∈ R1×|Q|
max is a vector of initial delays: αq 6= ε means the

state q ∈ Q is initial with the intial delay given by αq,
while αq = ε means that q is not an initial state;

• µ : A∗ → R|Q|×|Q|max is a (monoid) morphism given by the
family of matrices µ(a) ∈ R|Q|×|Q|max , a ∈ A: for a sequence
w = a1a2 . . .an ∈ A∗, we have

µ(w) = µ(a1a2 . . .an) = µ(a1)µ(a2) . . .µ(an);

• β ∈ R|Q|×1
max is a vector of final delays: βq 6= ε means the

state q ∈ Q is final with the final delay given by βq, while
βq = ε means that q is not a final state;

We recall that µ : A∗→R|Q|×|Q|max is a (monoid) morphism means
that for all a,b ∈ A we have µ(ab) = µ(a)⊗ µ(b), which can
be naturally extended to a finite number of factors and from
events to sequences (words) as well. An example of a (max,+)-
automaton is displayed on figure 1. There are two states which
are both initial and final: 1 and 6 and no other states are neither
initial nor final. The final states are displayed with double
circles. We use a convention that initial and final delays are not
added if they are equal to e = 0.

Note that morphism matrices correspond to transitions in the
following way: [µ(a)]qq′ 6= ε means that there exists a transition
from state q to state q′ labeled by event a and [µ(a)]qq′ is then
the duration of this transition. We call π a path from q0 to qm.
We denote σ(π) the product ⊗ of the weights along the path π ,
that is

σ(π) =
⊗

i=1,...,m

t(qi−1,ai,qi) =
⊗

i=1,...,m

[µ(ai)]qi−1,qi .

Let p,q ∈ Q and w ∈ A∗. We denote by p w
 q the set of paths

from p to q which are labeled by w. It can be shown that

[µ(a1a2 . . .am)]q0qm =
⊕

π∈q0
a1 ...am
 qm

σ(π) . (2)

A (max,+)-automaton is said to be deterministic if there is
a unique initial state and for all a ∈ A there is at most one
transition with label a from each state. This means that each line
of µ(a) contains at most one nonzero element (i.e. not equal to
ε =−∞).



The state of a (max,+)-automaton G is a vector x(w) ∈ R1×|Q|
max

that is defined for w ∈ A∗ as follows:
x(w) = α⊗µ(w) . (3)

The component of the state vector [x(w)]q is interpreted as
the date at which state q ∈ Q is reached after execution of
sequence of transitions w starting from an initial state (with the
convention that [x(w)]q = ε if state q is not reached from an
initial state using the input sequence w).

The elements of x are known as generalized daters, and they
are governed by recurrent equations

x(ε) = α,
x(wa) = x(w)µ(a). (4)

The behavior of a (max,+)-automaton is then defined as the
formal power series l(G) : A∗→ Rmax defined by

l(G)(w) = x(w)⊗β = α⊗µ(w)⊗β . (5)

The language of a (max,+)-automaton (i.e. the support of its
formal power series) contains the words w ∈ A∗ such that there
exists a final state q with [x(w)]q 6= ε .

3. PARTIALLY OBSERVED TDES AND THEIR
BEHAVIOURS

In this section, we investigate fundamental properties of nat-
ural projections for (max,+)-automata. We start with defining
natural projections. As usual in partially observed systems we
assume that the event set A is decomposed into observable event
subset Ao ⊆ A and unobservable event subset Auo = A\Ao. We
recall that natural projection P : A∗→ A∗o is a homomorphism
(of free monoids) defined as P(a) = ε (ε here denotes the empty
string), for a∈ Auo, and P(a) = a, for a∈ Ao. The inverse image
of P is defined for w ∈ A∗o as P−1(w) = {s ∈ A∗ | P(s) = w}, i.e.
it outputs a language (set of words).

A major problem with partially observed quantitative (e.g.
timed or probabilistic) DES such as (max,+)-automata is that
unobservable transitions still may have effects on the observ-
able quantitative behaviour of the system. Namely, we assume
that unobservable events can not be monitored, but still have
an observed duration. Therefore, given a (max,+) formal power
series we propose the following definition of natural projection.
Definition 5. (Projection of (max,+)-series)
For s : A∗→ Rmax we define Ps : A∗o→ Rmax by setting

Ps(w) =
⊕

v∈P−1(w)

s(v).

For instance, if s = 1a ⊕ 3aτ ⊕ 4aτa with Ao = {a} then
P(s) = 3a⊕ 4aa, because by definition v ∈ P−1(a) = {a,aτ}
and P(s)(a) = s(a)⊕ s(aτ) = 1⊕3 = 3.

Unlike logical automata, we define natural projection of
(max,+)-automata as nondeterministic automata. This is nat-
ural, because firstly (max,+)-automata as weighted automata
are nondeterministic (which distinguish them from Mealy au-
tomata with outputs in a semiring), and secondly, it is well
known that not all (max,+)-automata can be determinized. The
definition below consists simply in removing unobservable
events and the duration of unobservable events is putting for-
ward: it is added to the duration of (all) the next observable
events. We denote by µ(τ)∗ = (

⊕
a∈Auo µ(a))∗. Note that we

have due to the morphism property that µ(τ)∗ =
⊕

v∈A∗uo
µ(v).

The advantage of projected automata defined as a nondeter-
ministic (max,+)-automata is that the projected automata can
be defined over the same state space as the original (max,+)-
automaton, which simplifies the algebraic manipulations with
them. We use the following definition.
Definition 6. (Projected (max,+)-automaton)
Let G = (Q,A,α,µ,β ) be a (max,+)-automaton and Ao ⊆ A
denotes the subset of observable events with associated natural
projection P : A∗ → A∗o. The projected (max,+)-automaton is
defined as PG = (Q,Ao,αP,µP,βP), where

• αP = α;
• µP : A∗o→R|Q|×|Q|max is a morphism with generators µP(a) =

µ(τ)∗⊗µ(a) for a ∈ Ao;
• βP = µ(τ)∗⊗β ;

Remark 7. (1) The above definition simply means that we do
not observe the occurrence of unobservable events, but we
keep track of the time that has elapsed when unobservable
events occur: we add the duration of (a sequence of)
unobservable events to the next observable event if it
exists or to the final delay of the previous observable
event if there is no observable event after this sequence
of unobservable events. The latter case typically occur in
the case of non live (finite) support languages.

(2) We recall at this point that a similar definition, associ-
ating an automaton A ∗ to an automaton A has already
appeared in Buchholz and Kemper (2003). The definition
therein has a serious drawback. The transition matrix is
defined as µP(a) = µ(τ)∗⊗ µ(a)⊗ µ(τ)∗. The definition
of A ∗ is based on the transition function rather than
morphism matrix and the matrix mapping corresponding
to the transition function of A ∗ is not a morphism from
a free monoid of observable words to the multiplicative
monoid of (max,+)-matrices. This is because the authors
define the transition function with the empty string (no
observation yet) as a transition function based on tran-
sitive closure of unobservable transitions, also known as
unobservable reach. However, the morphism property re-
quires that the empty word is mapped into the identity
matrix, which is not true in general. Hence, we prefer
definition above that enables to preserve the morphism
property of µP. Namely, we have that µP(ε) = I‖Q‖, the
(max,+)-identity matrix. It should be clear that due to
µ(τ)∗⊗ µ(τ)∗ = µ(τ)∗ both definitions lead to the same
projected automata, because in (max,+)-semiring we have
a∗⊗a∗ = a∗, ∀a, due to idempotency. The definition from
Buchholz and Kemper (2003) is given in the more gen-
eral setting of weighted automata, which include among
others probabilistic automata that are defined over a non
idempotent semiring.

(3) This construction based on µ(τ)∗ naturally requires an
assumption ensuring that µ(τ)∗ can be computed, e.g. that
there is no cycle of unobservable events.

It is easy to see that the behavior of a projected (max,+)-
automaton corresponds to the natural projection of its behavior
(associated (max,+)-formal power series). Namely, we have the
following property, which simply means that similarly as for
logical automata, the above definitions of natural projections
for max,+)-automata and for formal power series are compati-
ble with each other.
Proposition 8. For any w∈A∗o we have l(PG)(w)=P(l(G))(w).
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Fig. 2. G (left) and its projected automaton PG (right).

An example of a (max,+)-automaton G = (Q,A,α,µ,β ) to-
gether with its projected (max,+)-automaton

PG = (Q,Ao,αP,µP,βP),

is given on figure 2. In this example we have
αP = α = [0 ε] ,

µP(a) = µ(τ)∗⊗µ(a) =
[

0 ε
2 0

]
⊗
[

ε 1
ε ε

]
=

[
ε 1
ε 3

]
, and

βP = µ(τ)∗⊗β =

[
0 ε
2 0

]
⊗
[

0
0

]
=

[
0
2

]

3.1 Relations between (max,+)-automata

It is well known that most common relations between (max,+)-
automata consisting in comparing their behaviors in terms of
equality or inequality of their formal power series cannot be
used in practice, because equality as well as inequality of
rational formal power series are undecidable in general. On the
other hand, stronger behavioural equivalence, called simulation
relations between (max,+)-automata are decidable for weighted
automata as shown in Damljanovic et al. (2014).

Any relation R ⊆ Q×Q′ can be viewed as a Boolean matrix
B ∈ {ε,e}|Q|×|Q′|, where (q,q′) ∈ R iff Bq,q′ = e. We recall
an algebraic approach to simulations from Damljanovic et al.
(2014).
Definition 9. (Simulation of (max,+)-automaton)
A Boolean matrix B ∈ {ε,e}|Q|×|Q′| is called a (forward) simu-
lation between (max,+)-automata G = (Q,A,α,µ,β ) and G′ =
(Q′,A,α ′,µ ′,β ′) if the following inequalities hold true:

• α ≤ α ′⊗B,
• B⊗µ(a)≤ µ ′(a)⊗B and
• B⊗β ≤ β ′ .

As usual, we say that G′ is simulated by G if there exists a
simulation between G and G′. Similarly, G and G′ are called
bisimilar if there exist two simulations: B between G and G′
and B̃ between G′ and G. Note that it is not necessary that B̃
is a transposed matrix (relation) of B. Hence, a bisimulation
is not simply defined by replacing the three inequalities in the
definition of a simulation by equalities, because it would be just
a special case of bisimulation, where B̃ = BT . However, if there
exists a Boolean matrix B ∈ {ε,e}|Q|×|Q′|such that the three
inequalities in Definition hold as equalities, then B is called a
bisimulation between G and G′.

The existence of a simulation relation between G and G′
requires that for all paths (q0,a1,q1) . . .(qn−1,an,qn) in G
there exists a path (q′0,a1,q′1) . . .(q

′
n−1,an,q′n) in G′ such that

µ(ai)qi−1qi ≤ µ(ai)q′i−1q′i
for all i = 1, . . . ,n. It should be clear

that if B exists then it comes that l(G)≤ l(G′), i.e. for all w∈A∗
we have that l(G)(w)≤ l(G′)(w).

In particular, if both G and G′ share the same set of states,
a diagonal relation (corresponding to the identity matrix) is
a simulation if α ≤ α ′, β ≤ β ′, and µ(a) ≤ µ ′(a). It should
be clear that simulation is too strong for (max,+)-automata if
one is rather interested in comparing the formal power series,
because it requires not only that all logical transitions possible
in one automaton are mimicked in the second one, but also
that the durations of all transitions in the first automaton are
smaller or equal to the durations of corresponding transitions
in the second automaton. This is clearly too strong, because in
manufacturing systems and other application areas it is much
more relevant to compare the execution times of completed
sequences (corresponding to words from underlying marked
languages) rather than the durations of individual events. In
fact, this is too restrictive to require that all events from a
sequence in one automaton have a duration smaller or equal to
the duration of matching event in the other automaton in order
to guarantee an inequality of two formal power series.

A natural possibility is then to replace simulation by weak
simulation. The following definition has been introduced in
Buchholz and Kemper (2003).
Definition 10. (Weak simulation between (max,+)-automata)
A relation R ⊆ Q× Q′ is called a (forward) weak simula-
tion between (max,+)-automata G = (Q,A,α,µ,β ) and G′ =
(Q′,A′,α ′,µ ′,β ′) if R is a simulation between PG and PG′.

Note that this definition is possible because of the same state
sets for the original and the projected (max,+)-automata. Since
simulations are stronger than inequalities of behaviors, it im-
mediately follows that existence of a weak simulation between
(max,+)-automata G and G′ implies that l(PG)≤ l(PG′), where
l(PG), l(PG′) : A∗o→Rmax are behaviors of projected automata.

The following algebraic characterization of weak simulation
between (max,+)-automata is straightforward from definition
4 by combining algebraic characterization of simulations in
definition 3.1 and definition 6 of projected automata.

Proposition 11. B ∈ {ε,e}|Q|×|Q′| is a (forward) weak simula-
tion between (max,+)-automata G = (Q,A,α,µ,β ) and G′ =
(Q′,A′,α ′,µ ′,β ′) if, and only if, the following inequalities hold
true:

• α ≤ α ′⊗B,
• B⊗µ(τ)∗⊗µ(a)≤ µ ′(τ)∗⊗µ ′(a)⊗B and
• B⊗µ(τ)∗⊗β ≤ µ(τ)∗⊗β ′

A fix-point algorithm for computing the largest simulations
(and bisimulations) has been presented in Damljanovic et al.
(2014). This algorithm can be adapted for computing the largest
weak simulations. Now we recast the algorithm from Daml-
janovic et al. (2014) for checking the existence of a simulation
between weighted automata G1 and G2. This algorithm consists
in fixpoint computation of the largest simulation. It is based
on the concept of Boolean residuation of matrices defined in
Definition 3. Boolean matrices Bi, i = 0,1,2, . . . below are
computed in a recursive way.

B0 = β ◦\Bβ ′,

Bi+1 = Bi∧
∧
a∈A

[
(µ ′(a)⊗BT

i )◦/
Bµ(a)

]T

Algorithm from Damljanovic et al. (2014) starts with computa-
tion of the Boolean matrix B0 = β ◦\Bβ ′. Then the sequence of



Boolean matrices is constructed recursively and at each step it is
checked whether Bi+1 = Bi. If this is the case then this fix-point
construction outputs matrix Bk for k = i as the largest Boolean
matrix, which satisfies the second and the third axioms (ii) and
(iii) of (forward) simulation, cf. Definition 3.1. It then suffices
to check if Bk satisfies the axiom (i) of Definition 3.1. If this is
the case, then Bk is the greatest forward simulation between G
and G′. In the opposite case there does not exist any forward
simulation between G and G′. Note that since the sequence
{Bi}i=0,1,... is descending and the set of Boolean matrices from
is clearly finite, the algorithm converges in at most O(|Q| ×
|Q′|) steps. The above fix-point computation of the largest
bisimulation is based on matrix/vector residuation, which is
well known to be equivalent to the dual (i.e. maximum replaced
by minimum) multiplication with the so called conjugate matrix
(i.e. transposed matrix with inversed coefficients) of Butkovic
(2010). It is well known that matrix multiplication requires at
most O(mn2) for non square matrices in Rm×n

max which include
Boolean matrices as well, and that this upper bound can be
improved. Altogether, it can be stated that the above algorithm
is of polynomial time complexity in the number of states of
the (max,+)-automata (i.e. the dimensions of the corresponding
matrices), because it only uses polynomial time operations on
Boolean and (max,+) matrices.

4. AN APPROXIMATE APPROACH TO COMPARING
BEHAVIORS

Some researchers have been interested in approximate solutions
to algorithmically unfeasible problems such as determinization
of (max,+)-automata. In this paper we are interested in semi-
decision procedures for checking inequalities between (max,+)
formal power series, a well known undecidable problem.

In this paper our approach goes against the traditional appli-
cation of weak simulations, which is a variant of simulation for
partially observed systems, where some internal (unobservable)
actions (denoted by τ in process algebra community) occur
in the system. We rather use weak simulations as a means to
weaken simulation as defined previously and which appears
as a too strong condition for a comparison purpose. However,
definition 4 stated above is not suitable for our purposes. The
main reason is that it does not distinguish between unobserv-
able events but considers only a single type of unobservable
transition, denoted by τ and called internal action. This is ac-
tually common to the computer science literature on process
algebras, where instead of different unobservable events there
is a single unobservable (internal) event denoted by τ .

A natural question is how to choose a subset of observable
events. Obviously, we want to render as much as possible
events unobservable in order to cope with the main issue
related to (strong) simulation, namely the requirement that all
related transitions must satisfy a given inequality, while for
inequality of formal power series it is sufficient that the total
weight of a path satisfy the inequality. However, due to the
term µ(τ)∗ used in (max,+)-automata with partial observations
we cannot choose too many events as unobservable, because
we exclude cycles labeled solely by unobservable events in
order to guarantee convergence in the computation of µ(τ)∗.
We can then consider different maximal sets of unobservable
events consisting in choosing one observable event per cycle or
equivalently, rendering unobservable all but one event in every
cycle. It should be stated that this approach naturally can not
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Fig. 3. (Max,+)-automata G1 (left) and G2 (right)

give an exact answer to the undecidable problem of checking
inequality of formal power series, but only a partial answer.
This is also related to the fact that cycles of unobservable events
that should be excluded.

We have already mentioned that the definition of weak simu-
lation is not suitable in our situation, because we do need to
distinguish between different unobservable events in order to
guarantee that existence of a weak simulation is sufficient for
comparing behaviors (formal power series). This is best seen
from the following example.

Let us consider two deterministic (max,+)-automata corre-
sponding to formal power series s1 = 1σ ⊕2σ ′ and s2 = 1σ ′⊕
2σ , where both events σ ′,σ ∈ A are unobservable. We have a
weak simulation (even weak bisimulation), because in µ(τ)∗
we take the maximum of µ(σ ′) and µ(σ), hence

µ1(τ)∗ = µ2(τ)∗ =
[

0 2
ε 0

]
.

However, it is not true that s1 ≤ s2, because s1(σ ′) = 2 > 1 =
s2(σ ′). Therefore, we present a stronger version of weak sim-
ulation, called label dependent weak bisimulation where µ(τ)∗
is replaced by µ(w) for all w ∈ A∗uo. Note that since we exclude
unobservable loops, the number of such unobservable words
is finite. Moreover, we will use this version of weak simula-
tion only as a sufficient condition for comparing behaviors of
(max,+)-automata and in many situations there will be natural
candidates for events that will be made unobservable for this
purpose.
Definition 12. (label dependent weak simulation)
B ∈ {ε,e}|Q|×|Q′| is a label dependent weak simulation between
(max,+)-automata G=(Q,A,α,µ,β ) and G′=(Q′,A′,α ′,µ ′,β ′)
if and only if for all w∈A∗uo the following inequalities hold true:

• α⊗µ(w)≤ α ′⊗µ ′(w)⊗B,
• B⊗µ(a)⊗µ(w)≤ µ ′(a)⊗µ ′(w)⊗B and
• B⊗β ≤ β ′.

Theorem 13. (Main result) Let there exist a label dependent
weak simulation between (max,+)-automata G and G′. Then
l(G)≤ l(G′).

5. EXAMPLE

Our approach is illustrated via the following example. Consider
two (max,+)-automata given in Fig. 3. These (max,+)-automata
correspond to timed Petri net models of manufacturing systems.
The timed Petri net corresponds to T-time Petri net (with tim-
ing associated to transitions) of figure 4, where the duration
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Fig. 6. A1 = G1‖M (left) and A2 = G2‖M (right)

of transitions a,b,c,d,c are 1,2,2,1,3 and 1,2,1,3,3, respec-
tively. This Petri net can be viewed as a synchronization of
two timed state graphs. The corresponding (max,+)-automata
given in Fig. 3 are then obtained using the synchronous product
technique described in Lahaye et al. (2015). These (max,+)-
automata are nondeterministic, because they have two initial
states and moreover there are two different transitions labeled
by c at state 1 and there are also two different transitions labeled
by d at states 2 and 5. Unfortunately, it is known from Lahaye
et al. (2015) that the (max,+)-automata have languages differ-
ent (larger than) from the languages of the original Petri nets.
Therefore, in order to have a meaningful example we need to
compute the synchronous product with the language of these
Petri nets, which is given by the marking automaton M on
figure 5.

The resulting (max,+)-automata A1 =G1‖M and A2 =G2‖M
that have the same behaviour as the original Petri nets G1 and
G2 are displayed on figure 6. The final states are displayed with
double circles. We see that there are two states which are both
initial and final: (1,1) and (6,1) and no other states are neither
initial nor final. We repeat the convention that initial and final
delays are not added if equal to e = 0.

It is easy to see that there is no simulation relation between A1
and A2. Indeed, the problem is that the transition labeled by c
has value 2 in A1, while it has value 1 in A2. Intuitively, this is
compensated by smaller duration of the event d in A1, namely
1, while the duration of d is A2 is equal to 3. Unfortunately,
there does not exist a formal algorithm to check that l(A1) ≤
l(A2), because these automata are nondeterministic due to non
unique initial states and nondeterministic transitions labeled by
c and d. However, since not all states are marked (final), the
total duration of the string cd from the initial state 11 is equal
to 3 in A1, while it equals 4 in A2, hence the required inequality
is satisfied for this marked string. Similarly the inequality
holds for larger strings. This can be made formal by using
weak bisimulation (considering event c as unobservable) and
Theorem 13 to conclude the claimed inequality. We compute
projected automata P(A1) and P(A2) according to definition 6,
where µ(τ)∗ is replaced by µ(c)∗. and verify that initial and
finite delays are equal and all the morphism matrices are equal
as well, except for µP,1(d) = µ1(c)∗ ⊗ µ1(d) and µP,2(d) =
µ2(c)∗⊗ µ2(d), because µP,1(d) ≤ µP,2(d). The conclusion is
there exists a simulation relation (namely the diagonal relation
given by the identity matrix I) from P(A1) to P(A2).

6. CONCLUSION

In this paper simulation like equivalences between (max,+)-
automata have been studied. We have shown how a variant
of weak simulation can be used as a partial solution to the
undecidability of inequalities between (max,+)-formal power
series.

We plan to investigate modular and hierarchical control of
(max,+) automata based on the concepts presented in this paper.
For specifications that do not share the modular structure with
the system it will be interesting to generalize the theory of
decomposability and conditional decomposability to (max,+)-
formal power series.
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