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Žitna 25, 11567 Praha 1, Czech Republic (gogatish@math.cas.cz)
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Let ρ be a monotone quasinorm defined on M+, the set of all non-negative
measurable functions on [0,∞). Let T be a monotone quasilinear operator on M+.
We show that the following inequality restricted on the cone of λ-quasiconcave
functions

ρ(Tf) � C1

(∫ ∞

0
fpv

)1/p

,

where 1 � p � ∞ and v is a weighted function, is equivalent to slightly different
inequalities considered for all non-negative measurable functions. The case 0 < p < 1
is also studied for quasinorms and operators with additional properties. These
results in turn enable us to establish necessary and sufficient conditions on the
weights (u, v, w) for which the three weighted Hardy-type inequality(∫ ∞

0

(∫ x

0
fu

)q

w(x)dx

)1/q

� C1

(∫ ∞

0
fpv

)1/p

,

holds for all λ-quasiconcave functions and all 0 < p, q � ∞.

Keywords: Quasilinear operator; integral inequality; Lebesgue space; weight; Hardy
operator; quasiconcave functions; monotone functions

2010 Mathematics subject classification: Primary 26D10; 26D15; 26D07

1. Introduction

Many papers were recently devoted to the study of weighted inequalities of classical
operators restricted on the cones of quasi-monotone and quasiconcave functions. For
the cone of quasi-monotone functions, which plays an important role in the study of
Lorentz spaces, see for instance [1,8,33] and the recent survey [13], as well as the
literature given there. The weighted inequalities restricted on the cones of quasi-
concave functions were considered in the papers [9–11,18,19,23,25,28,31,32,
34], but some answers are not always satisfactory. Quasiconcave functions play an
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important role in real interpolation theory (see, for instance, the recent survey [30]
and the literature given there). The weighted inequalities restricted on the cone of
quasiconcave functions are closely related to the problems on optimal spaces in the
embedding theory for Sobolev, Besov, and Calderón spaces, and Bessel and Riesz
potentials, etc. (see, for example, [6,7,14,16,17,20–22,24]).

Almost from the beginning, the method of reduction has been a fundamental tool
in the study of the weighed inequalities in Lebesgue spaces. In this approach, a given
inequality on monotone functions is reduced to some inequality on non-negative
functions, which is more easily characterized than the original one. The Sawyer
duality principle [33], which applies for 0 < p � ∞ and ρ(f) = ‖f‖q,w (weighted
Lebesgue norm), 1 � q � ∞, is one of the universal tools in the method of reduc-
tion for positive linear operators. The Sawyers duality theorem was extended for the
first time to the cone of quasiconcave functions in [23,36], but this result was not
satisfactory and more explicit formulas were obtained in [10,11] (see also [9,39]).
Using this duality argument, weighted inequalities restricted on the cone of quasi-
concave functions were reduced to some inequality on non-negative functions (see
[9,31]). This duality principle only applies to a linear operator T , ρ(f) = ‖f‖q,w

and 1 � q � ∞. Recently, in [32], the weighted Hardy-type inequality, restricted on
the cone of quasiconcave functions, was characterized by reducing them to iterated
Hardy inequalities.

The main results of our paper are given in §§ 3, 4 and 5, where we propose a new
method of reduction of an inequality for monotone quasilinear operators and for
general monotone quasinorms, restricted on the cone of quasiconcave functions, to
some inequality on the cone of non-negative functions. Our approach is somehow
an extension of the ideas from the paper [13] to the setting of λ-quasiconcave
functions, where the cone of monotone functions was considered. Due to the new
result of Kŕepela [27], we can avoid the technical part, which was the main difficult
part in [13].

Using these reduction theorems we give in § 5.2, the complete characterization
of the three weighted Hardy-type inequality(∫ ∞

0

(∫ x

0

fu

)q

w(x)dx

)1/q

� C1

(∫ ∞

0

fpv

)1/p

,

restricted on the cone of λ-quasiconcave functions for all 0 < p, q � ∞. Our char-
acterizations, in some cases, are more easily verifiable than the ones in the existing
literature.

2. Preliminaries

We denote the set of all non-negative measurable functions on [0,∞) by M+.
Throughout the paper, u, v and w are weights, which are non-negative measurable

functions on [0,∞). ‖ · ‖q,w stands for the weighted Lebesgue quasinorm of measur-
able functions on [0,∞). That is, ‖f‖q,w = (

∫∞
0

|f(x)|qw(x) dx)1/q, if 0 < q < ∞,
and ‖f‖q,w = ess supx∈[0,∞) |f(x)|w(x), if q = ∞, for any measurable function f
on [0,∞). When the weight w is the constant function equal to 1, we write ‖ · ‖q

instead of ‖ · ‖q,w. If p = ∞, the expression (
∫∞
0

fpv)1/p, f ∈ M+, is understood as
ess supx∈[0,∞) f(x)v(x).
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Weighted norm inequalities on the cone of λ-quasiconcave functions 3

Expressions like 0 · ∞ are taken to be 0. The notation A � B means the inequality
A � cB with a constant c depending only on insignificant parameters. We shall write
A ≈ B in place of A � B � A or A = cB. We let Z denote the set of all integers and
let χE denote the characteristic function (indicator) of a subset E of [0,∞). New
quantities are defined using the symbols := and =: . We also set p′ := p/(p − 1)
for 1 < p < ∞, p′ := 1 for p = ∞, p′ := ∞ for p = 1, and r := pq/(p − q) for 0 <
q < p < ∞. By letters A, B, C with indices (say, C1, C2, . . .) we denote constants,
which may differ in different assertions even if they have the same indices.

Throughout the paper, we sometimes refer to f(t) as the function f itself and
not to the image of t by f .

Definition 2.1. Let λ > 0. We say that a non-negative function h is λ-quasiconcave
if h is equivalent to a non-decreasing function on (0,∞) and h(t)

tλ is equivalent to
a non-increasing function on (0,∞). We denote by Ωλ the family of λ-quasiconcave
functions. We say that h is quasiconcave when λ = 1 and we write that h ∈ Ω.

λ-quasiconcave functions have been treated, in one way or another, by several
authors (cf. e.g. [3,28] or [4]).

Remark 2.2. (i) It will be useful to note that

h ∈ Ωλ if, and only if,
tλ

h(t)
∈ Ωλ.

(ii) Some authors add the restriction h(t) = 0 if, and only if, t = 0 to the definition
of a quasiconcave function. However, the only difference is that our definition
recognizes the zero function as quasiconcave.

(iii) Note that any λ-quasiconcave function is necessarily equivalent to a continu-
ous function on (0,∞).

Example 2.3. (i) Given a compatible couple (X0,X1) of Banach spaces and
any f ∈ X0 + X1, K(f, ·;X0,X1) ∈ Ω, where K(·, ·;X0,X1) is the Peetre
K−functional defined for each f ∈ X0 + X1 and t > 0 by

K(f, t;X0,X1) = inf{‖f0‖X0 + t‖f1‖X1 : f = f0 + f1},

where the infimum is taken over all representations f = f0 + f1 of f with
f0 ∈ X0 and f1 ∈ X1.

(ii) Particular cases of the previous example are K(f, t;L1, L∞) =
∫ t

0
f∗(s) ds,

t > 0, where f∗ is the non-increasing rearrangement of the measurable func-
tion f ∈ L1 + L∞, and K(f, t;Lp,W

k
p ) ≈ min{1, t1/k}‖f‖p + ωk(f, t1/k)p,

t > 0, where ωk(f, ·)p is the k order p−modulus of smoothness of f .

(iii) For a given f ∈ Lp and k ∈ N, ωk(f, ·)p ∈ Ωk.
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4 A. Gogatishvili and J. S. Neves

(iv) Let 0 < p0 < p1 < ∞, 0 < q0 < q1 < ∞. Then the Calderón operator (cf. [2,
Chapter 3, definition 5.1])

(Sf∗)(t) =
∫ ∞

0

f∗(s)min
{

s1/p0

t1/q0
,
s1/p1

t1/q1

}
ds

s
, t > 0,

where f∗ is the non-increasing rearrangement of the measurable function f ,
satisfies for any fixed (appropriate) f , (Sf∗)(t) t1/q0 ∈ Ωλ with λ = 1/q0 −
1/q1.

Now we are going to define the Stieltjes transform which plays an important role
throughout the paper.

The Stieltjes transform Sλ, λ > 0, is defined for any f ∈ M+ by

Sλf(x) =
∫ ∞

0

f(t)
(x + t)λ

dt, x > 0.

Let λ > 0 and let f ∈ M+ be a fixed function. The function Sλf is non-increasing
and the function xλSλf(x) is non-decreasing, this means that the function xλSλf(x)
is λ-quasiconcave. We also have, for any x ∈ (0,∞),

Sλf(x) ≈
∫ ∞

0

min{x−λ, t−λ} f(t) dt

= x−λ

∫ x

0

f(t) dt +
∫ ∞

x

t−λf(t) dt

= λ x−λ

∫ x

0

tλ−1

∫ ∞

t

y−λf(y) dy dt

= λ

∫ ∞

x

t−λ−1

∫ t

0

f(y) dy dt. (2.1)

To prove our results, we need some useful identities for the Stieltjes transform.
This is given in the following lemma, which is of independent interest.

Lemma 2.4. Let λ and α be positive numbers and let f be a measurable function
positive a.e. in (0,∞) Then, for all x > 0,

(Sλf(x))α ≈ Sλα

(
(Sλf(t))α−1f(t)tλ(α−1)

)
(x), (2.2)

x−λα(Sλf(x))−α ≈ Sλα

(
(Sλf(t))−α−2t−λ−1

∫ t

0

f(y) dy

∫ ∞

t

y−λf(y) dy

)
(x)

+
1

(
∫∞
0

f(y) dy)α
+

x−λα

(
∫∞
0

y−λf(y) dy)α
(2.3)

Proof. [LHS (2.2) � RHS (2.2)] As function (·)λSλf(·) is non-decreasing and
function Sλf(·) is non-increasing, we have, for any x > 0,

Sλα

(
(Sλf(t))α−1f(t)tλ(α−1)

)
(x)
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� (xλSλf(x))−1x−λα

∫ x

0

(tλSλf(t))αf(t) dt

+ (Sλf(x))−1

∫ ∞

x

(Sλf(t))αt−λf(t) dt

� (Sλf(x))−1x−λ(α+1)

∫ x

0

(∫ t

0

f(y) dy

)α

f(t) dt

+ (Sλf(x))−1

∫ ∞

x

(∫ ∞

t

y−λf(y) dy

)α

t−λf(t) dt

� (Sλf(x))−1x−λ(α+1)

(∫ x

0

f(y) dy

)α+1

+ (Sλf(x))−1

(∫ ∞

x

y−λf(y) dy

)α+1

≈ (Sλf(x))−1(Sλf(x))α+1

= (Sλf(x))α. (2.4)

[RHS (2.2) � LHS (2.2)] Let 0 < ε < min(α, 1). Then, for any x > 0,

Sλα

(
(Sλf(t))α−1f(t)tλ(α−1)

)
(x)

�
(
xλSλf(x)

)α−ε
x−λα

∫ x

0

(tλSλf(t))ε−1f(t) dt

+ (Sλf(x))α−ε

∫ ∞

x

(Sλf(t))ε−1t−λf(t) dt

� (Sλf(x))α−εx−λε

∫ x

0

(∫ t

0

f(y) dy

)ε−1

f(t) dt

+ (Sλf(x))α−ε

∫ ∞

x

(∫ ∞

t

y−λf(y) dy

)ε−1

t−λf(t) dt

� (Sλf(x))α−εx−λε

(∫ x

0

f(y) dy

)ε

+ (Sλf(x))α−ε

(∫ ∞

x

y−λf(y) dy

)ε

≈ (Sλf(x))α−ε(Sλf(x))ε

= (Sλf(x))α. (2.5)

Therefore, (2.2) it now follows from (2.4) and (2.5).
[RHS (2.3) � LHS (2.3)] Again, as function (·)λSλf(·) is non-decreasing and
function Sλf(·) is non-increasing, we have, for any x > 0,

1
(
∫∞
0

f(y) dy)α
= lim

ξ→∞
1

(ξλSλf(ξ))α
� x−λα(Sλf(x))−α. (2.6)
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6 A. Gogatishvili and J. S. Neves

x−λα

(
∫∞
0

y−λf(y) dy)α
= x−λα lim

ξ→0

1
(Sλf(ξ))α

� x−λα(Sλf(x))−α. (2.7)

Sλα

(
(Sλf(t))−α−2t−λ−1

∫ t

0

f(y) dy

∫ ∞

t

y−λf(y) dy

)
(x)

≈ x−λα

∫ x

0

t−λ−1
∫ t

0
f(y) dy

∫∞
t

y−λf(y) dy(
t−λ

∫ t

0
f(y)dy +

∫∞
t

y−λf(y)dy
)α+2 dt

+
∫ ∞

x

tλ−1
∫ t

0
f(y)dy

∫∞
t

y−λf(y) dy(∫ t

0
f(y) dy + tλ

∫∞
t

y−λf(y) dy
)α+2 dt

� x−λα

∫ x

0

t−λ−1
∫ t

0
f(y) dy(

t−λ
∫ t

0
f(y) dy +

∫∞
t

y−λf(y) dy
)α+1 dt

+
∫ ∞

x

tλ−1
∫∞

t
y−λf(y)dy(∫ t

0
f(y) dy + tλ

∫∞
t

y−λf(y) dy
)α+1 dt

� x−λα(
x−λ

∫ x

0
f(y) dy +

∫∞
x

y−λf(y) dy
)α

+
1(∫ x

0
f(y) dy + xλ

∫∞
x

y−λf(y) dy
)α

≈ x−λα(Sλf(x))−α. (2.8)

From (2.6), (2.7) and (2.8) it now follows that RHS (2.3) � LHS (2.3).
[LHS (2.3) � RHS (2.3)] Let x ∈ (0,∞). Then,

x−λα(Sλf(x))−α

≈
∫ x

0

f(y) dy(xλSλf(x))−α−1

+ x−λα

∫ ∞

x

y−λf(y) dy(Sλf(x))−α−1

=
∫ x

0

f(y) dy

[
(xλSλf(x))−α−1 − lim

ξ→∞
(ξλSλf(ξ))−α−1

]
+ x−λα

∫ ∞

x

y−λf(y) dy

[
(Sλf(x))−α−1 − lim

ξ→0
(Sλf(ξ))−α−1

]
+
∫ x

0

f(y) dy lim
ξ→∞

(ξλSλf(ξ))−α−1

+ x−λα

∫ ∞

x

y−λf(y) dy lim
ξ→0

(Sλf(ξ))−α−1
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�
∫ x

0

f(y) dy

∫ ∞

x

tλ−1
∫∞

t
y−λf(y) dy(∫ t

0
f(y) dy + tλ

∫∞
t

y−λf(y) dy
)α+2 dt

+ x−λα

∫ ∞

x

y−λf(y) dy

∫ x

0

t−λ−1
∫ t

0
f(y) dy(

t−λ
∫ t

0
f(y) dy +

∫∞
t

y−λf(y) dy
)α+2 dt

+
1(∫∞

0
f(y) dy

)α +
x−λα(∫∞

0
y−λf(y) dy

)α
�
∫ ∞

x

tλ−1
∫ t

0
f(y) dy

∫∞
t

y−λf(y) dy(∫ t

0
f(y) dy + tλ

∫∞
t

y−λf(y) dy
)α+2 dt

+ x−λα

∫ x

0

t−λ−1
∫ t

0
f(y) dy

∫∞
t

y−λf(y) dy(
t−λ

∫ t

0
f(y) dy +

∫∞
t

y−λf(y) dy
)α+2 dt

+
1(∫∞

0
f(y) dy

)α +
x−λα(∫∞

0
y−λf(y) dy

)α
≈ Sλα

(
(Sλf(t))−α−2t−λ−1

∫ t

0

f(y) dy

∫ ∞

t

y−λf(y) dy

)
(x)

+
1(∫∞

0
f(y) dy

)α +
x−λα(∫∞

0
y−λf(y) dy

)α .

�

3. Monotone quasilinear operators and Reduction Theorems

An operator T : M+ → M+ is called a monotone quasilinear operator if

(i) T (λf) = λTf for all λ � 0 and f ∈ M+;

(ii) T (f + g) � c(Tf + Tg) for all f, g ∈ M+, where c is a positive constant
independent of f and g;

(iii) Tf(x) � cTg(x) for almost every x ∈ [0,∞), if f(x) � g(x) for almost every
x ∈ [0,∞), where c is a positive constant independent of f and g.

We refer to [12] for examples of such operators.
A mapping ρ : M+ → [0,∞) is called a monotone quasinorm if

(a) ρ(λf) = λρ(f) for all λ � 0 and f ∈ M+;

(b) ρ(f + g) � c(ρ(f) + ρ(g)) for all f, g ∈ M+, where c is a positive constant
independent of f and g;

(c) ρ(f) � cρ(g) for almost every x ∈ [0,∞), if f(x) � g(x) for almost every x ∈
[0,∞), where c is a positive constant independent of f and g.
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8 A. Gogatishvili and J. S. Neves

In the next theorem and in what follows, 1 denotes the constant function equal
to 1 in [0,∞).

Theorem 3.1. Let λ > 0 and 1 � p < ∞. Let ρ be any monotone quasinorm and
let T : M+ → M+ be a monotone quasilinear operator. Then the inequality

ρ(Tf) � C1

(∫ ∞

0

(f(t))pv(t) dt

)1/p

, f ∈ Ωλ, (3.1)

holds if, and only if, the following three inequalities are valid:

ρ

(
T

(∫ x

0

h + xλ

∫ ∞

x

t−λh

))

� C2

⎛⎜⎜⎜⎝
∫ ∞

0

hp(x)
xλp(1−p)

(∫ x

0
tλpv

)1−p (∫∞
x

v
)1−p(∫ x

0

tλpv + xλp

∫ ∞

x

v

)1−2p dx

⎞⎟⎟⎟⎠
1/p

, h ∈ M+; (3.2)

ρ(T (1)) � C3

(∫ ∞

0

v

)1/p

; (3.3)

ρ(T (xλp)) � C4

(∫ ∞

0

xλpv(x) dx

)1/p

. (3.4)

Proof. Let 1 � p < ∞. Necessity. Let h ∈ M+ be such that
∫∞
0

h(x)
(1+x)λ dx < ∞.

Then f(·) = (·)λSλh(·) ∈ Ωλ. Using (3.1), (2.1), lemma 2.4 and Stieltjes inequalities
of [15, proposition 4.6], when 1 < p < ∞, and Fubini’s Theorem, when p = 1, we
obtain

ρ

(
T

(∫ x

0

h + xλ

∫ ∞

x

t−λh

))

� C

(∫ ∞

0

(∫ x

0

h + xλ

∫ ∞

x

t−λh

)p

v(x) dx

)1/p

� C

(∫ ∞

0

hp(x)
xλp(1−p)

(∫ x

0
tλpv

)1−p (∫∞
x

v
)1−p(∫ x

0
tλpv + xλp

∫∞
x

v
)1−2p dx

)1/p

.

Now, (3.2) and (3.3) follow from (3.1) with f = 1 and f(x) = xλ, respectively.
Sufficiency. Suppose that f ∈ Ωλ. Using lemma 2.4, we obtain

f(x) = f(x)(Sλp(tλpv)(x))2/p(Sλp(tλpv)(x))−2/p

≈ f(x)(Sλp(tλpv)(x))2/p

× x2λS2λ

(
(Sλp(tλpv)(y))−2/p−2y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt

)
(x)
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Weighted norm inequalities on the cone of λ-quasiconcave functions 9

+
f(x)(Sλp(tλpv)(x))2/px2λ(∫∞

0
tλpv(t)dt

)2/p
+

f(x)(Sλp(tλpv)(x))2/p(∫∞
0

v(t)dt
)2/p

≈ f(x)(S2λp(Sλp(tλpv)(y)y2λpv(y))(x))1/p

× x2λS2λ

(
(Sλp(tλpv)(y))−2/p−2y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt

)
(x)

+
f(x)(Sλp(tλpv)(x))2/px2λ(∫∞

0
tλpv(t)dt

)2/p
+

f(x)(Sλp(tλpv)(x))2/p(∫∞
0

v(t)dt
)2/p

� (Sλp(f(y)py−λpSλp(tλpv)(y)y2λpv(y))(x))1/p

× x2λS2λ

(
(Sλp(tλpv)(y))−2/p−2y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt

)
(x)

+
f(x)(Sλp(tλpv)(x))1/pxλ(∫∞

0
tλpv(t)dt

)1/p
+

f(x)(Sλp(tλpv)(x))1/p(∫∞
0

v(t)dt
)1/p

� xλSλ

(
(Sλp(f(z)pz−λpSλp(tλpv)(z)z2λpv(z))(y))1/p

× (Sλp(tλpv)(y))−2/p−2y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt

)
(x)

+
(Sλp(f(t)ptλpv)(x))1/pxλ(∫∞

0
tλpv(t)dt

)1/p
+

(Sλp(f(t)ptλpv)(x))1/p(∫∞
0

v(t)dt
)1/p

� xλSλ

(
(Sλp(f(z)pz−λpSλp(tλpv)(z)z2λpv(z))(y))1/p

× (Sλp(tλpv)(y))−2/p−2y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt

)
(x)

+
xλ
(∫∞

0
f(t)pv(t)dt

)1/p(∫∞
0

tλpv(t)dt
)1/p

+

(∫∞
0

f(t)pv(t)dt
)1/p(∫∞

0
v(t)dt

)1/p

Applying (i)–(iii), (a)–(c) and (3.2) with

h(y) = (Sλp(f(z)pz−λpSλp(tλpv)(z)z2λpv(z))(y))1/p

× (Sλp(tλpv)(y))−2/p−2y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt,

and also (3.3) and (3.4), we find that

LHS (3.1) �
(∫ ∞

0

Sλp(f(z)pz−λpSλp(tλpv)(z)z2λpv(z))(y)

×(Sλp(tλpv)(y))−2−2py−λp2−p

(∫ y

0

tλpv(t)dt

)p(∫ ∞

y

v(t)dt

)p
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10 A. Gogatishvili and J. S. Neves

×
yλp(1−p)(

∫ y

0
tλpv)1−p(

∫∞
y

v)1−p

(
∫ y

0
tλpv + yλp

∫∞
y

v)1−2p
dy)1/p

+
(∫ ∞

0

f(t)pv(t)
)1/p

≈
(∫ ∞

0

f(z)pz−λpSλp(tλpv)(z)z2λpv(z)

× Sλp

(
(Sλp(tλpv)(y))−3y−λp−1

∫ y

0

tλpv(t)dt

∫ ∞

y

v(t)dt

)
(z)dz

)1/p

+
(∫ ∞

0

f(t)pv

)1/p

≈
(∫ ∞

0

f(t)pv

)1/p

.

�

We can consider other values of p in the previous theorem provided (3.2) is replaced
by (3.5), as can be seen in the next result.

Theorem 3.2. Let λ > 0 and 0 < s � p < ∞. Let ρ be any monotone quasinorm,
and let T : M+ → M+ be a monotone quasilinear operator. Then the inequality
(3.1) holds if, and only if, (3.3), (3.4) and the inequality

ρ

(
T

((∫ x

0

h + xλ

∫ ∞

x

t−λh

)1/s
))

� C4

(∫ ∞

0

h(p/s)(x)
xλ(p/s)(1−p/s)

(∫ x

0
tλp/sv

)1−p/s (∫∞
x

v
)1−p/s(∫ x

0
tλp/sv + xλp/s

∫∞
x

v
)1−2p/s

dx

)1/p

, h ∈ M+,

(3.5)

are valid.

Proof. As f ∈ Ωλ if, and only if, fp/s ∈ Ωλp
s

, the inequality (3.1) is equivalent to

ρ(T (f1/s))s � Cs
1

(∫ ∞

0

(f(y))p/sv(y) dy

)s/p

, f ∈ Ωλp
s

. (3.6)

By using theorem 3.1 for the operator Tf(x) = T (f1/s) and the monotone quasi-
norm ρs, it results that (3.6) holds if, and only if, (3.3), (3.4) and (3.5) are
valid. �

For completeness, the next result deals with the case p = ∞.
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Weighted norm inequalities on the cone of λ-quasiconcave functions 11

Theorem 3.3. Let λ > 0. Let ρ be any monotone quasinorm and let T : M+ → M+

be a monotone quasilinear operator. Then the inequality

ρ(T (f)) � C1 ess sup
x∈[0,∞)

f(x)v(x)

holds for all f ∈ Ωλ if, and only if,

C5 := ρ

(
T

(
xλ

ess supy∈[0,∞) v(y)min(yλ, xλ)

))
< ∞.

Proof. The proof easily follows from the following identity

ess sup
x∈[0,∞)

f(x)v(x) = ess sup
x∈[0,∞)

f(x)x−λ

(
ess sup
y∈[0,∞)

v(y)min(yλ, xλ)

)

and the fact that f defined by f(x) := xλ

ess supy∈[0,∞) v(y) min(yλ,xλ)
, x ∈ (0,∞),

belongs to Ωλ. Remark that ϕ defined by ϕ(x) := ess supy∈[0,∞) v(y)min(yλ, xλ) =

ess supy∈[0,∞) v(y)yλ min(1, xλ

yλ ), x ∈ (0,∞), belongs to Ωλ. Therefore, f(x) =
xλ

ϕ(x) ∈ Ωλ. �

4. p-convex (p-concave) monotone quasilinear operators

In this section, we characterize inequality (3.1) when the operator T has additional
properties, that is T is a p-convex monotone quasilinear operator. In this situation,
the conditions that characterize inequality (3.1) are much simpler.

When T is a p-concave monotone quasilinear operator, we are able to characterize
the converse inequality of (3.1).

Let T : M+ → M+ be a monotone quasilinear operator. T is called a p-convex
monotone quasilinear operator if there exists a constant M1 such that

T

(∑
n∈N

fn

)
� M1

(∑
n∈N

(Tfn)p

)1/p

(4.1)

for any sequence {fn}∞n=1 in M+.
A monotone quasinorm ρ is called a p-convex monotone quasilinear norm if there

exists a constant M2 such that

ρ

⎛⎝(∑
n∈N

(fn)p

)1/p
⎞⎠ � M2

(∑
n∈N

ρ(fn)p

)1/p

(4.2)

for any sequence {fn}∞n=1 in M+.
It is easy to see that (4.1) and (4.2) are true if we consider sums in Z and

sequences {fn}n∈Z in M+.
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12 A. Gogatishvili and J. S. Neves

Let f ∈ Ωλ. Then there exists a sequence {xn}n∈Z ⊂ [0,∞) such that

f(x) ≈
∑
n∈Z

min
(

f(xn), xλ f(xn)
xλ

n

)
. (4.3)

This estimate follows from [5, proposition 3.5] by using the simple observation that
f ∈ Ωλ if, and only if, f(x1/λ) ∈ Ω.

Observe that, for any r ∈ (0,∞),

f(x)r ≈
∑
n∈Z

min
(

f(xn), xλ f(xn)
xλ

n

)r

. (4.4)

Theorem 4.1. Let 0 < p, λ < ∞. Let T : M+ → M+ be a p-convex monotone
quasilinear operator and let ρ be a p-convex monotone quasinorm. Then the
inequality (3.1) is equivalent to the validity of the inequality

D := sup
t>0

ρ
(
T
(

(·)λ

tλ χ[0,t](·) + χ[t,∞)(·)
))

(
t−λp

∫ t

0
sλpv(s)ds +

∫∞
t

v(s)ds
)1/p

< ∞. (4.5)

Moreover,

C ≈ D.

Proof. The implication (3.1)⇒(4.5) follows by applying (3.1) to the test function
ft(s) := sλ

tλ χ[0,t](s) + χ[t,∞)(s), t > 0. Let us now show that (4.5)⇒ (3.1). It follows
from (4.3) and (4.1), that

(Tf) (x) ≈ T

(∑
n∈Z

min
(

f(xn), (·)λ f(xn)
xλ

n

))
(x)

�
(∑

n∈Z

(
T

(
min

(
f(xn), (·)λ f(xn)

xλ
n

)))p

(x)

)1/p

≈
(∑

n∈Z

f(xn)p

(
T

(
(·)λ

xλ
n

χ[0,xn](·) + χ[xn,∞)(·)
)

(x)
)p
)1/p

. (4.6)

Now, using (4.6), (4.2) and (4.5), we find

ρ(Tf) � ρ

⎛⎝(∑
n∈Z

f(xn)p

(
T

(
(·)λ

xλ
n

χ[0,xn](·) + χ[xn,∞)(·)
))p

)1/p
⎞⎠

�
(∑

n∈Z

f(xn)pρ

(
T

(
(·)λ

xλ
n

χ[0,xn](·) + χ[xn,∞)(·)
))p

)1/p
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Weighted norm inequalities on the cone of λ-quasiconcave functions 13

� D

(∑
n∈Z

f(xn)p

(
x−λp

n

∫ xn

0

sλpv(s)ds +
∫ ∞

xn

v(s)ds

))1/p

� D

(∑
n∈Z

(∫ xn

xn−1

f(s)pv(s)ds +
∫ xn+1

xn

f(s)pv(s)ds

))1/p

≈ D

(∫ ∞

0

fpv

)1/p

.

Consequently, C � D and (3.1) follows. �

We are able to study the converse inequality of (3.1), that is, inequality (4.9),
when T has additional properties. This will be done in what follows.

Let T : M+ → M+ be a monotone quasilinear operator. T is called a p-concave
monotone quasilinear operator if there exists a constant M3 such that(∑

n∈N

(Tfn)p

)1/p

� M3T

(∑
n∈N

fn

)
(4.7)

for any sequence {fn}∞n=1 in M+.
A monotone quasinorm ρ is called a p-concave monotone quasinorm if there exists

a constant M4 so that(∑
n∈N

ρ(fn)p

)1/p

� M4ρ

⎛⎝(∑
n∈N

(fn)p

)1/p
⎞⎠ (4.8)

for any sequence {fn}∞n=1 in M+.
Again, it is easy to see that (4.7) and (4.8) are true if we consider sums in Z and

sequences {fn}n∈Z in M+.
Now we study the converse inequality of (3.1), that is, inequality(∫ ∞

0

(f)pv

)1/p

� Cρ(Tf), f ∈ Ωλ. (4.9)

Theorem 4.2. Let 0 < p, λ < ∞. Let T : M+ → M+ be a p-concave monotone
quasilinear operator and let ρ be a p-concave monotone quasinorm. Then the
inequality (4.9) is equivalent to the validity of the inequality

D := sup
t>0

(
t−λp

∫ t

0
sλpv(s)ds +

∫∞
t

v(s)ds
)1/p

ρ
(
T
(

(·)λ

tλ χ[0,t](·) + χ[t,∞)(·)
)) < ∞. (4.10)

Moreover,

C ≈ D. (4.11)
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14 A. Gogatishvili and J. S. Neves

Proof. The implication (4.9)⇒(4.10) is clear. Let us now show (4.10)⇒(4.9). Using
(4.3), (4.4), (4.10), (4.8) and (4.7), we have(∫ ∞

0

fp(x)v(x) dx

)1/p

≈
(∫ ∞

0

(∑
n∈Z

min
(

f(xn), xλ f(xn)
xλ

n

))p

dx

)1/p

=

(∑
n∈Z

f(xn)p

(
x−λp

n

∫ xn

0

xλpw(x) dx +
∫ ∞

xn

w(x) dx

))1/p

�
(∑

n∈Z

f(xn)pρ

(
T

(
(·)λ

xλ
n

χ(0,xn](·) + χ[xn,∞)(·)
))p

)1/p

=

(∑
n∈Z

ρ

(
T

(
min

(
f(xn),

(·)λf(xn)
xλ

n

)))p
)1/p

� ρ

⎛⎝(∑
n∈Z

(
T

(
min

(
f(xn),

(·)λf(xn)
xλ

n

)))p
)1/p

⎞⎠
� ρ

(
T

(∑
n∈Z

(
min

(
f(xn),

(·)λf(xn)
xλ

n

))))
≈ ρ(Tf),

and (4.11) follows. �

Remark 4.3. Let T : M+ → M+ be the operator defined by

Tf(x) =
∫ x

0

f(y)u(y) dy, x ∈ [0,∞), f ∈ M+.

Then T is a p-convex monotone quasilinear operator for p ∈ (0, 1] and it is a
p-concave monotone quasilinear operator for p � 1.

5. Characterization of the three weighted Hardy-type inequality
restricted on the cone of λ-quasiconcave functions

Let u, v and w be weights and let λ > 0. In this section, we fully characterize
the three weighted Hardy-type inequality restricted on the cone of λ-quasiconcave
functions, that is, we give the characterization of the following inequality(∫ ∞

0

(∫ x

0

fu

)q

w(x)dx

)1/q

� C1

(∫ ∞

0

fpv

)1/p

, (5.1)

for all f ∈ Ωλ, for all the values of the parameters p, q ∈ (0,∞].
We consider in what follows U(x) :=

∫ x

0
u(z)dz, Uλ(x) :=

∫ x

0
zλu(z)dz, U(x, y) :=∫ x

y
u(z)dz, V∗(x) :=

∫∞
x

v(z)dz, Vλp(x) :=
∫ x

0
zλpv(z)dz, Vλp(x) := x−λpVλp(x) +

V∗(x) and W∗(x) :=
∫∞

x
w(z)dz,
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Weighted norm inequalities on the cone of λ-quasiconcave functions 15

Firstly, we start with a reduction theorem in the case 0 < q < p � 1 for the three
weighted Hardy-type inequality restricted on the cone of λ-quasiconcave functions.

5.1. Reduction theorem in the case 0 < q < p � 1

Theorem 5.1. Let λ > 0, 0 < q < p � 1. The following are equivalent:

(i) Inequality (5.1), with the best constant C1, holds for all f ∈ Ωλ.

(ii) The following five inequalities are valid:(∫ ∞

0

(∫ x

0
Up(x, y)h(y) dy

)q/p

w(x) dx

)p/q

� Cp
2

∫ ∞

0
h(x)Vλp(x) dx, h ∈ M+,

(5.2)(∫ ∞

0

(∫ ∞

x
h(y) dy

)q/p

Uq
λ(x)w(x) dx

)p/q

� Cp
3

∫ ∞

0
h(x)Vλp(x) dx, h ∈ M+,

(5.3)(∫ ∞

0

(∫ x

0
Up

λ(y)y−λph(y) dy

)q/p

w(x) dx

)p/q

� Cp
4

∫ ∞

0
h(x)Vλp(x) dx, h ∈ M+,

(5.4)(∫ ∞

0

(∫ x

0
u

)q

w(x) dx

)1/q

� C5

(∫ ∞

0
v

)1/p

, (5.5)

(∫ ∞

0

(∫ x

0
yλu(y) dy

)q

w(x) dx

)1/q

� C6

(∫ ∞

0
yλpv(y) dy

)1/p

. (5.6)

(iii) The following two inequalities together with (5.5) and (5.6) are valid:(∫ ∞

0

(
sup

0<y<x
Up(x, y)

∫ y

0

h(z) dz

)q/p

w(x) dx

)p/q

� Cp
7

∫ ∞

0

h(x)Vλp(x) dx, h ∈ M+, (5.7)(∫ ∞

0

(
sup

0<y<x
Up

λ(y)
∫ ∞

y

z−λph(z) dz

)q/p

w(x) dx

)p/q

� Cp
8

∫ ∞

0

h(x)Vλp(x) dx, h ∈ M+. (5.8)

Moreover,

C1 ≈ C2 + C3 + C4 + C5 + C6 ≈ C5 + C6 + C7 + C8.

Proof. By theorem 3.2, for the operator Tf(x) =
∫ x

0
fu, the quasinorm ρ(f) =

‖f‖q,w (weighted Lebesgue norm), for any f ∈ M+, and s = p, we have that (5.1)
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16 A. Gogatishvili and J. S. Neves

holds if, and only if, the following three inequalities are valid(∫ ∞

0

(∫ x

0

(∫ y

0

h + yλp

∫ ∞

y

z−λph

)1/p

u(y)dy

)q

w

)p/q

� C

∫ ∞

0

h(x)
(∫ x

0

yλpv(y)dy + xλp

∫ ∞

x

v(y) dy

)
dx, h ∈ M+, (5.9)

(∫ ∞

0

(∫ x

0

u(y)dy

)q

w(x) dx

)1/q

� C

(∫ ∞

0

v

)1/p

, (5.10)

(∫ ∞

0

(∫ x

0

yλu(y) dy

)q

w

)1/q

� C

(∫ ∞

0

xλpv(x) dx

)1/p

. (5.11)

Using Minkowski inequality we obtain∫ x

0

(∫ y

0

h + yλp

∫ ∞

y

z−λph

)1/p

u(y) dy �
(∫ x

0

Up(x, y)h(y) dy

)1/p

+
(∫ ∞

x

h(y) dy

)1/p

Uλp(x)

+
(∫ x

0

Up
λ(y)y−λph(y) dy

)1/p

. (5.12)

We also have ∫ x

0

(∫ y

0

h + yλp

∫ ∞

y

z−λph

)1/p

u(y) dy

�
(

sup
0<y<x

Up(x, y)
∫ y

0

h(z) dz

)1/p

+
(

sup
0<y<x

Up
λ(y)

∫ ∞

y

z−λph(z) dz

)1/p

. (5.13)

As we know that (5.1) is equivalent with (5.9), (5.10) and (5.11), by inequality
(5.12) we have that (5.1) follows from (5.2), (5.3), (5.4), (5.5) and (5.6). Moreover,
C1 � C2 + C3 + C4 + C5 + C6.

By inequality (5.13) we have that (5.7), (5.8), (5.5) and now (5.6) follows from
(5.1). Moreover, C1 � C7 + C8 + C5 + C6. By [12, theorem 4.2] we have C2 ≈ C7

and by [12, theorem 4.5] we obtain that C3 + C4 ≈ C8. �

5.2. Full characterization

We now obtain the complete characterization of inequality (5.1).

Theorem 5.2. Let 0 < λ, q, p < ∞. Then the inequality (5.1), with the best constant
C1, holds for every f ∈ Ωλ if, and only if, one of the following is satisfied:
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Weighted norm inequalities on the cone of λ-quasiconcave functions 17

(i) 0 < p � 1, p � q < ∞ and B1 < ∞, where

B1 := sup
x∈(0,∞)

(∫ x

0
Uq

λ(y)w(y)dy + Uq
λ(x)

∫∞
x

w(y)dy
)1/q(∫ x

0
yλpv(y)dy + xλp

∫∞
x

v(y)dy
)1/p

.

Moreover, in this case, C1 ≈ B1.

(ii) 0 < q < p � 1, 1/r = 1/q − 1/p and B2 + B3 + B4 + B5 + B6 + B7 < ∞,
where

B2 :=
(∫ ∞

0

Uq
λ(y)w(y)dy

)1/q (∫ ∞

0

yλpv(y)dy

)−1/p

,

B3 :=
(∫ ∞

0

Uq(y)w(y)dy

)1/q (∫ ∞

0

v(y)dy

)−1/p

,

B4 :=
(∫ ∞

0

W∗(x)r/pw(x) sup
0<y<x

(Ur
λ(y)yλrV−r/p

λp (y))dx

)1/r

,

B5 :=

(∫ ∞

0

(∫ x

0

Uq
λ(y)w(y)dy

)r/p

Uq
λ(x)w(x)V−r/p

λp (x)dx

)1/r

,

B6 :=
(∫ ∞

0

W∗(x)r/pw(x) sup
0<y<x

(Ur/p(x, y)V −r/p
λp (y))dx

)1/r

,

and

B7 :=

(∫ ∞

0

(∫ ∞

x

Uq(y, x)w(y)dy

)r/p

w(x) sup
0<y<x

(Uq(x, y)V−r/p
λp (y)) dx

)1/r

.

Moreover, in this case, C1 ≈ B2 + B3 + B4 + B5 + B6 + B7.

(iii) 1 < p � q < ∞, 1/p′ := 1 − 1/p and B2 + B3 + B8 + B9 + B10 + B11 < ∞,
where

B8 := sup
x∈(0,∞)

W
1/q
∗ (x)

(∫ x

0

Up′
λ (y)yλpVλp(y)V∗(y)V1−p′

λp (y)dy

)1/p′

,

B9 := sup
x∈(0,∞)

(∫ x

0

Uq
λ(y)w(y)dy

)1/q(∫ ∞

x

yλpVλp(y)V∗(y)V1−p′
λp (y)dy

)1/p′

,

B10 := sup
x∈(0,∞)

W
1/q
∗ (x)

(∫ x

0

Up′
(x, y)yλpVλp(y)V∗(y)V1−p′

λp (y)dy

)1/p′

,

and

B11 := sup
x∈(0,∞)

(∫ ∞

x

Uq(y, x)w(y)dy

)1/q(∫ x

0

yλpVλp(y)V∗(y)V1−p′
λp (y)dy

)1/p′

.

Moreover, in this case, C1 ≈ B2 + B3 + B8 + B9 + B10 + B11.
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18 A. Gogatishvili and J. S. Neves

(iv) 1 < q < p < ∞, 1/r = 1/q − 1/p and B2 + B3 + B12 + B13 + B14 + B15 <
∞, where

B12 :=

(∫ ∞

0
W

r/p
∗ (x)w(x)

(∫ x

0
Up′

λ (y)yλpVλp(y)V∗(y)V1−p′
λp (y)dy

)r/p′

dx

)1/r

,

B13 :=

(∫ ∞

0

(∫ x

0
Uq

λ(y)w(y)dy

)r/p

Uq
λ(x)w(x)

×
(∫ ∞

x
yλpVλp(y)V∗(y)V1−p′

λp (y)dy

)r/p′

dx

)1/r

,

B14 :=

(∫ ∞

0
W

r/p
∗ (x)w(x)

(∫ x

0
Up′

(x, y)yλpVλp(y)V∗(y)V1−p′
λp (y)dy

)r/p′

dx

)1/r

,

and

B15 :=

(∫ ∞

0

(∫ ∞

x
Uq(y, x)w(y)dy

)r/q (∫ x

0
yλpVλp(y)V∗(y)V1−p′

λp (y)dy

)r/q′

×

× xλpVλp(x)V∗(x)V1−p′
λp (x)dx

)1/r

.

Moreover, in this case, C1 ≈ B2 + B3 + B12 + B13 + B14 + B15.

(v) q = 1 < p < ∞ and B2 + B3 + B16 + B17 < ∞, where

B16 :=

(∫ ∞

0

(∫ x

0

yλW∗(y)u(y)dy

)p′

xλpVλp(x)V∗(x)V1−p′
λp (x)dx

)1/p′

,

and

B17 :=

(∫ ∞

0

(
xλ

∫ ∞

x

W∗(y)u(y)dy

)p′

xλpVλp(x)V∗(x)V1−p′
λp (x)dx

)1/p′

.

Moreover, in this case, C1 ≈ B2 + B3 + B16 + B17.

(vi) 0 < q < 1 < p < ∞ and B2 + B3 + B12 + B13 + B14 + B18 < ∞, where

B18 :=

(∫ ∞

0

(∫ ∞

x

Uq(y, x)w(y)dy

)r/p

w(x)

× sup
0<y<x

(
Uq(x, y)

(∫ y

0

zλpVλp(z)V∗(z)V1−p′
λp (z)dz

)r/p′)
dx

)1/r

.

Moreover, in this case, C1 ≈ B2 + B3 + B12 + B13 + B14 + B18.

Proof. The part (i) follows by theorem 4.1, applied to the operator Tf(x) =∫ x

0
f(y)u(y)dy and to the quasinorm ρ(f) = ρq(f) := ‖fw‖q, for any f ∈ M+, and

by using the fact that T satisfies (4.1) for every 0 < p � 1, and that ρq is a
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Weighted norm inequalities on the cone of λ-quasiconcave functions 19

p-convex monotone quasinorm for p � q by Minkowski inequality. The part (ii)
follows by theorem 5.1 and by applying [35, theorem 3.3] and [26, corollary 9].
Using theorem 3.1, we reduce (5.1) to the inequality for the integral operator with
Oinarov’s kernel. Then parts (iii) - (vi) follow by using the results of [29] or [38]
when q > 1, and the results of [35] and [27] when 0 < q < 1, and the reverse Hölder
inequality when q = 1. �

Remark 5.3. (i) The case λ = 1, p = q, w = v and u(t) = 1/t, t ∈ (0,∞), in the
previous theorem, was already obtained in [37, theorem 5.1].

(ii) The case 0 < p � 1, p � q < ∞, in the previous theorem, can also be obtained
as a special case of theorem 6.14 in [26], which was obtained in a different
way (see [26, 6.6.7, p. 333] for the contribution of several authors to such
result).

Theorem 5.4. Let 0 < λ, p < ∞. Then the inequality

ess sup
x∈(0,∞)

(∫ x

0

f(y)u(y)dy

)
w(x) � C1

(∫ ∞

0

(f(t))pv(t)dt

)1/p

,

with the best constant C1, holds for every f ∈ Ωλ if, and only if, one of the following
is satisfied:

(i) 0 < p � 1 and B19 < ∞, where

B19 := sup
x∈(0,∞)

ess supy∈(0,x) Uλ(y)w(y) + Uλ(x) ess supy∈(x,∞) w(y)(∫ x

0
yλpv(y)dy + xλp

∫∞
x

v(y)dy
)1/p

.

Moreover, in this case, C1 ≈ B19

(ii) 1 � p, 1/p′ := 1 − 1/p and B20 + B21 + B22 + B23 + B24 + B25 < ∞, where

B20 := ess sup
y∈(0,∞)

(Uλ(y)w(y))
(∫ ∞

0

zλpv(z)dz

)−1/p

,

B21 := ess sup
y∈(0,∞)

(U(y)w(y))
(∫ ∞

0

v(z)dz

)−1/p

,

B22 := sup
x∈(0,∞)

ess sup
y∈(x,∞)

w(y)
(∫ x

0

Up′
λ (z)zλpVλp(z)V∗(z)V1−p′

λp (z)dz

)1/p′

,

B23 := sup
x∈(0,∞)

ess sup
y∈(0,x)

(Uλ(y)w(y))
(∫ ∞

x

zλpVλp(z)V∗(z)V1−p′
λp (z)dz

)1/p′

,

B24 := sup
x∈(0,∞)

ess sup
y∈(x,∞)

w(y)
(∫ x

0

Up′
(x, z)zλpVλp(z)V∗(z)V1−p′

λp (z)dz

)1/p′

,

and

B25 := sup
x∈(0,∞)

ess sup
y∈(x,∞)

(U(y, x)w(y))
(∫ x

0

zλpVλp(z)V∗(z)V1−p′
λp (z)dz

)1/p′

.
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20 A. Gogatishvili and J. S. Neves

Moreover, in this case, C1 ≈ B20 + B21 + B22 + B23 + B24 + B25.

Proof. The part (i) follows by theorem 4.1, applied to the operator Tf(x) =∫ x

0
f(y)u(y)dy and to the quasinorm ρ(f) = ρ∞(f) := ‖fw‖∞, for any f ∈ M+,

and using the fact that T satisfies (4.1) for every 0 < p � 1, and ρ∞ is a p-convex
monotone quasinorm. Using theorem 3.1, we reduce (5.1) to the inequality for the
integral operator with Oinarov’s kernel. Then part (ii) follows by using the results
of [29] or [38]. �

From theorem 3.3 immediately follows.

Theorem 5.5. Let λ > 0 and 0 < q � ∞. Then,

(i) if 0 < q < ∞, the inequality

(∫ ∞

0

(∫ x

0

f(y)u(y) dy

)q

w(x) dx

)1/q

� C1 ess sup
x∈[0,∞)

f(x)v(x),

with the best constant C1, holds for all f ∈ Ωλ if, and only if, the following
is valid:

B26 :=

(∫ ∞

0

(∫ x

0

yλu(y)
ess supz∈(0,∞) v(z)min(zλ, yλ)

dy

)q

w(x)dx

)1/q

< ∞.

Moreover, C1 = B26.

(ii) if q = ∞, the inequality

ess sup
x∈[0,∞)

∫ x

0

f(y)u(y)dy w(x) � C1 ess sup
x∈[0,∞)

f(x)v(x),

with the best constant C1, holds for all f ∈ Ωλ if, and only if, the following
is valid:

B27 := ess sup
x∈[0,∞)

∫ x

0

yλu(y)
ess supz∈(0,∞) v(z)min(zλ, yλ)

dy w(x) < ∞.

Moreover, C1 = B27.

Remark 5.6. Using the results of § 5.2, we can extend the embedding theorems
for Besov spaces considered in the § 2.4 and 3.3. of [17]. We will consider this in a
future paper dedicated to the study of optimal embeddings.
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6. A remark on the symmetric version of the three weighted
Hardy-type inequality

Using a change of variable t 	→ y−1 twice and using the fact that f ∈ Ωλ if, and
only if, tλf(t−1) ∈ Ωλ, we get that the symmetric inequality of (5.1)(∫ ∞

0

(∫ ∞

x

fu

)q

w(x)dx

)1/q

� C1

(∫ ∞

0

fpv

)1/p

, (6.1)

holds for all f ∈ Ωλ if, and only if, the following inequality holds(∫ ∞

0

(∫ x

0

fũ

)q

w̃(x)dx

)1/q

� C2

(∫ ∞

0

fpṽ

)1/p

,

for every f ∈ Ωλ, where ũ(x) = x−λ−2u(x−1), w̃(x) = x−2w(x−1), ṽ(x) = x−λp−2

v(x−1) and C1 ≈ C2. Therefore, we can easily obtain the complete characterization
of the inequality (6.1) from theorems 5.2, 5.4 and 5.5.
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