Polyconvexity for Functions of a System of Closed Differential Forms

Miroslav Šilhavý
Institute of Mathematics, CAS
Žitná 25
11567 Prague 1
Czech Republic
e-mail: silhavy@math.cas.cz

Abstract

This paper deals with the weakened convexity properties, mult. ext. quasiconvexity,

 mult. ext. one convexity, and mult. ext. polyconvexity, ${ }^{\star}$ for integral functionals of the form$$
I\left(\omega_{1}, \ldots, \omega_{s}\right)=\int_{\Omega} f\left(\omega_{1}, \ldots, \omega_{s}\right) d x
$$

where $\omega_{1}, \ldots, \omega_{s}$ are closed differential forms on a bounded open set $\Omega \subset \mathbb{R}^{n}$. The main results of the paper are explicit descriptions of mult. ext. quasiaffine and mult ext. polyconvex functions. It turns out that these two classes consist, respectively, of linear and convex combinations of the set of all wedge products of exterior powers of the forms $\omega_{1}, \ldots, \omega_{s}$. Thus, for example, a function $f=f\left(\omega_{1}, \ldots, \omega_{s}\right)$ is mult. ext. polyconvex if and only if

$$
f\left(\omega_{1}, \ldots, \omega_{s}\right)=\Phi\left(\ldots, \omega_{1}^{q_{1}} \wedge \cdots \wedge \omega_{s}^{q_{s}}, \ldots\right)
$$

where q_{1}, \ldots, q_{s} ranges a finite set of integers and Φ is a convex function. An existence theorem for the minimum energy state is proved for mult. ext. polyconvex integrals. The polyconvexity in the calculus of variations and nonlinear elasticity are particular cases of mult. ext. polyconvexity. Our main motivation comes from electro-magneto-elastic interactions in continuous bodies. There the mult. ext. polyconvexity takes the form determined by an involved direct calculation in an earlier paper of the author [34].

AMS 2010 classification $49 \mathrm{~J} 99,74 \mathrm{~B} 10,74 \mathrm{~F} 15$

Acknowledgment This research was supported by RVO 67985840.

* I extrapolate the terminology of [4], which introduces the ext. quasiconvexity, ext. one convexity and ext. polyconvexity in the case of a single differential form.

Keywords \mathscr{A}-quasiconvexity, \mathscr{A}-quasiaffinity, \mathscr{A}-polyconvexity, differential forms, electro-magneto-elastic interactions, minimizers of energy, compensated compactness

Contents

1 Introduction . 2
2 Preliminaries: exterior calculus 7
$3 \mathscr{A}$-quasiconvexity theory . 10
4 Characterization of mult. ext. affine functions (proof) 12
5 Existence of minimizers of energy under mult. ext. polyconvexity 18
6 Example A: Classical calculus of variations and nonlinear elasticity 22
7 Example B: Electro-magneto-elastostatics 24
8 References . 25

1 Introduction

The objective of this paper is to examine the weakened convexity properties for integral functionals depending on several closed differential forms. Such integrals are of interest in continuum mechanics, particularly in nonlinear elasticity and nonlinear electro-magneto-elasticity, as will be outlined below in this introduction and explained in detail in the subsequent exposition. By the weakened convexity properties we mean the triplet of closely related notions of quasiconvexity, rank one convexity, and polyconvexity. The mathematical principles of these were set by Morrey [24-25] and applied in continuum mechanics in the pioneering work by Ball [1]. These works deal with the functionals

$$
I(u)=\int_{\Omega} f(\nabla u(x)) d x
$$

where Ω is a bounded open subset of $\mathbb{R}^{n}(n=3$ in nonlinear elasticity) and $u=$ (u_{1}, \ldots, u_{s}) is an s-tuple of scalar functions on Ω ($s=3$ in nonlinear elasticity; u is the deformation of the elastic body). It is well-known that the weakened convexity properties of f are directly related to the main qualitative properties of the functional $I(\cdot)$, such as the existence of minima, stability etc.

The framework of the present paper is broader than that of [24-25, 1] inasmuch as we consider integral functionals

$$
\begin{equation*}
I(\omega)=\int_{\Omega} f(\omega(x)) d x \tag{1.1}
\end{equation*}
$$

where Ω is as before and

$$
\begin{equation*}
\omega=\left(\omega_{1}, \ldots, \omega_{s}\right) \tag{1.2}
\end{equation*}
$$

is an s-tuple of differential forms on Ω that are closed in the sense that their exterior derivatives satisfy

$$
\begin{equation*}
d \omega_{1}=\ldots=d \omega_{s}=0 \tag{1.3}
\end{equation*}
$$

on Ω. The forms in (1.2) are given by

$$
\omega_{\alpha}=\sum_{1 \leq i_{1}<\cdots<i_{k_{\alpha}} \leq n} \omega_{(\alpha) i_{1} \cdots i_{k_{\alpha}}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k \alpha}},
$$

where k_{α} is the degree of ω_{α} and $\omega_{i_{1} \cdots i_{k \alpha}}^{\alpha}$ are the components of ω_{α}. ${ }^{\star}$ Throughout the paper we assume that the integrand

$$
\begin{equation*}
f: \wedge^{k} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{\infty\} \tag{1.4}
\end{equation*}
$$

is a continuous function defined on the product

$$
\wedge^{k}:=\wedge^{k_{1}} \times \cdots \times \wedge^{k_{s}}, \quad \boldsymbol{k}=\left(k_{1}, \ldots, k_{s}\right)
$$

of the spaces Λ^{k} of k-vectors on \mathbb{R}^{n}. The reader is referred to Section 2 for the terminology and notation for the exterior algebra and analysis employed here.

Our version of the weakened convexity properties is embodied in the following definition and in Definition 3.5 in Section 3.
1.1 Definitions Let $Q=(0,1)^{n}$ and let $C_{\mathrm{per}}^{\infty}\left(\mathbb{R}^{n}, \wedge^{k}\right)$ be the set of all infinitely differentiable Q-periodic Λ^{k}-valued maps on \mathbb{R}^{n}. An integrand $f: \Lambda^{k} \rightarrow \overline{\mathbb{R}}$ is said to be
(i) mult. ext. quasiconvex if

$$
\int_{Q} f(\omega+\psi(x)) d x \geq f(\omega)
$$

for every $\omega \in \Lambda^{k}$ and every $\psi \in C_{\text {per }}^{\infty}\left(\mathbb{R}^{n}, \Lambda^{k}\right)$ such that

$$
d \psi_{\alpha}=0 \quad \text { on } \quad \mathbb{R}^{n} \text { and } \int_{Q} \psi_{\alpha}(x) d x=0
$$

(ii) mult. ext. quasiaffine if f takes only finite values and both f and $-f$ are mult. ext. quasiconvex;
(iii) mult. ext. polyconvex if there exists a finite number of mult. ext. quasiaffine functions f_{1}, \ldots, f_{q} and a convex lower semicontinuous function $\Phi: \mathbb{R}^{q} \rightarrow \mathbb{\mathbb { R }}$ such that

$$
f(\omega)=\Phi\left(f_{1}(\omega), \ldots, f_{q}(\omega)\right)
$$

for each $\omega \in \wedge^{k}$.
The main results of this paper are the determination of all mult. ext. quasiaffine and mult. ext. polyconvex functions stated in Theorems 1.2 and 1.3, respectively. The proofs apply the \mathscr{A}-quasiconvexity $[19,28-29,35,11]$ to the differential constraints (1.3).

We introduce the following notation. If φ is an s-vector and q a nonnegative integer we denote by

$$
\varphi^{q}=\underbrace{\varphi \wedge \cdots \wedge \varphi}_{p \text { times }}
$$

the exterior power of φ, which is an $q k$-vector. If $\boldsymbol{q}=\left(q_{1}, \ldots, q_{s}\right)$ is an s-tuple of nonnegative integers and $\omega \in \Lambda^{k}$, we denote by ω^{q} the covector of degree

[^0]$$
\operatorname{deg}(\boldsymbol{q}):=\sum_{\alpha=1}^{s} q_{\alpha} k_{\alpha}
$$
defined by
$$
\omega^{q}=\omega_{1}^{q_{1}} \wedge \cdots \wedge \omega_{S}^{q_{S}}
$$

Finally, we define the set of admissible exponents by

$$
\operatorname{Adm}(\boldsymbol{k})=\left\{\boldsymbol{q}: \operatorname{deg}(\boldsymbol{q}) \leq n \text { and } q_{i} \leq 1 \text { if } i \in(1, \ldots, s) \text { is odd }\right\}
$$

Since $\varphi^{q}=0$ if either k is odd and $q \geq 2$ or if $q k>n$ [see (2.2) $]$, the power ω^{q} is nonzero only for $\boldsymbol{q} \in \operatorname{Adm}(\boldsymbol{k})$.
1.2 Theorem An integrand f is mult. ext. quasiaffine if and only if it is given by

$$
\begin{equation*}
f(\omega)=\sum_{q \in \operatorname{Adm}(k)} \alpha_{q} \cdot \omega^{q} \tag{1.5}
\end{equation*}
$$

for each $\omega \in \Lambda^{\boldsymbol{k}}$, where $\boldsymbol{\alpha}_{\boldsymbol{q}} \in \Lambda^{\operatorname{deg}(\boldsymbol{q})}$ for each $\boldsymbol{q} \in \operatorname{Adm}(\boldsymbol{k})$.
The centered dot in (1.5) is the scalar product of covectors defined in Section 2. To determine the set of all independent quasiaffine functions

$$
\omega \mapsto \omega^{q}, \quad \boldsymbol{q} \in \operatorname{Adm}(\boldsymbol{k})
$$

one has to form all possible nonvanishing mutual products

$$
1, \quad \omega_{\alpha}, \quad \omega_{\beta} \wedge \omega_{\gamma}, \quad \omega_{\beta} \wedge \omega_{\gamma} \wedge \cdots
$$

of the elements of the list

$$
\omega_{1}, \quad \omega_{2}, \quad \ldots, \quad \omega_{s}
$$

the repetitions of the same element being admitted, and the indices α, β, \ldots ordered in a nondecreasing way to avoid products which differ by a sign.
1.3 Theorem An integrand f is mult. ext. polyconvex if and only if it is given by

$$
\begin{equation*}
f(\omega)=\Phi\left(\omega^{q_{1}}, \ldots, \omega^{q_{r}}\right) \tag{1.6}
\end{equation*}
$$

for each $\omega \in \Lambda^{k}$, where $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}$ is a fixed collection of distinct, nonzero elements of $\operatorname{Adm}(\boldsymbol{k})$ and $\Phi: \wedge^{\operatorname{deg}\left(\boldsymbol{q}_{1}\right)} \times \cdots \times \wedge^{\operatorname{deg}\left(\boldsymbol{q}_{r}\right)} \rightarrow \overline{\mathbb{R}}$ is a convex lower semicontinuous function.
1.4 Remark The weakened convexity notions for integrands depending on differential forms have been investigated previously, but not with all fullness.
(i) A recent work [4] of Bandyopadhyay, Dacorogna \& Sil deals with the weakened convexity notions in the special case of a function f of a single differential form. Their definitions are slightly different but equivalent to the present ones; their terminology is ext. quasiconvexity, ext. quasiaffinity, ext. polyconvexity, ext. one convexity and ext. one affinity. Using different methods, the authors obtain the particular case of the representations (1.5) and (1.6) for a single form.
(ii) The paper by Iwaniec \& Lutoborski [21] treats null lagrangians and polyconvex functions of a collection of differential forms ω as in the present paper. However, there are two major differences. First, while the logic of the present paper and of [4]
are similar since they derive the representations (1.5) and (1.6) from the quasiaffinity of the integrand, the reference [21] treats the expressions of the type (1.5) and (1.6) as definitions of null lagrangians and polyconvex functions. Secondly, the classes of these functions in [21] are smaller than those in the present paper. The difference comes from the fact that [21] uses only expansions that contains simple products of the subsets of the list $\omega_{1}, \ldots, \omega_{s}$, but not repetitions, i.e., powers of the forms, cf. [21; Eq. (1.5)]. *

The case of several differential forms treated in the present paper has been motivated by the desire to encompass the classical calculus of variations with several unknowns, nonlinear elasticity and electro-magneto-elasticity; areas that remain outside the scope of [4]. Referring to Sections 6 and 7 for details, we now outline these motivations.
1.5 Example (Polyconvexity in nonlinear elasticity) We here derive a well-known result using the present formalism. The nonlinear elastic body is described by the total energy functional

$$
I(u)=\int_{\Omega} W(F) d x
$$

where $\Omega \subset \mathbb{R}^{3}$ is the reference configuration of the elastic body, $u: \Omega \rightarrow \mathbb{R}^{3}$ is the deformation function, $F=\nabla u$ is the deformation gradient

$$
F=\nabla u=\left[F_{\alpha i}\right]_{1 \leq \alpha, i \leq 3} \text { where } F_{\alpha i}=u_{\alpha, i}
$$

and f is the density of the stored energy. The framework of differential forms (1.1)(1.3) is obtained by putting $s=n=3$ and writing ${ }^{\star}$ 夫

$$
\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \text { and } f(\boldsymbol{\omega})=W(F)
$$

where

$$
\begin{equation*}
\omega_{\alpha}:=F_{\alpha i} d x_{i} . \tag{1.7}
\end{equation*}
$$

The forms ω_{α} are closed since the definition $F=\nabla u$ gives the integrability condition $\operatorname{curl} F=0$, which is equivalent to $d \omega_{\alpha}=0$.

Referring to Theorem 1.2 and to the rule that follows it, we obtain the complete list of mult. ext. quasiaffine functions by taking all mutual products of ω_{1}, ω_{2}, and ω_{3} of degree ≤ 3 (since $n=3$). This gives the constant 0 -form equal to 1 and the forms

$$
\begin{equation*}
\omega_{\alpha}, \quad \omega_{\beta} \wedge \omega_{\gamma}, \quad \text { and } \quad \omega_{1} \wedge \omega_{2} \wedge \omega_{3}, \tag{1.8}
\end{equation*}
$$

where $1 \leq \alpha \leq 3$ and $1 \leq \beta<\gamma \leq 3$. Each 1-form and each 2-form has three independent components while each 3 -form one component. Thus the forms in (1.8) represent $3 \times 3+3 \times 3+1=19$ independent components.

The function f is mult. ext. polyconvex if and only if it is expressible as a convex function of the elements of the list (1.8). Formulas (6.3) and (6.4) (below) show

[^1]that the elements of the list (1.8) are in a linear one-to-one correspondence with the elements of the list
\[

$$
\begin{equation*}
F, \quad \operatorname{cof} F, \quad \operatorname{det} F . \tag{1.9}
\end{equation*}
$$

\]

Thus the mult. ext. polyconvexity is equivalent to Ball's polyconvexity [1]

$$
W(F)=\Psi(F, \operatorname{cof} F, \operatorname{det} F)
$$

where Ψ is a convex function.
1.6 Example (Electro-magneto-elastostatics) The electro-magneto-elastic interactions have recently received much theoretical attention in view of the technological application of electro- or magneto-sensitive elastomers. These are smart materials whose mechanical properties change instantly by the application of an electric or magnetic fields.

One can model the electro- or magneto-sensitive elastomers as nonlinear electro-magneto-elastic materiakls. Then the total energy is the sum of the energy of the body, the energy of the vacuum electromagnetic field in the exterior of the body, and the term corresponding to the loads. Only the first term is of interest here, which takes the form

$$
I(u, D, B)=\int_{\Omega} W(F, D, B) d x
$$

where Ω, u, and F are as in Example 1.5 and $D: \Omega \rightarrow \mathbb{R}^{3}$ and $B: \Omega \rightarrow \mathbb{R}^{3}$ are the referential (lagrangean) electric displacement and magnetic induction which satisfy

$$
\operatorname{div} D=0, \quad \operatorname{div} B=0 \quad \text { in } \Omega .
$$

We write

$$
\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right) \text { and } f(\boldsymbol{\omega})=W(F, D, B),
$$

where ω_{1}, ω_{2}, and ω_{3} are as in Example 1.5 and ω_{4} and ω_{5} are 2-forms given by

$$
\begin{equation*}
\omega_{4}=\frac{1}{2} \varepsilon_{i j k} D_{i} d x_{j} \wedge d x_{k}, \quad \omega_{5}=\frac{1}{2} \varepsilon_{i j k} B_{i} d x_{j} \wedge d x_{k} \tag{1.10}
\end{equation*}
$$

where $\varepsilon_{i j k}$ is the permutation symbol. Both ω_{4} and ω_{5} are closed since

$$
\operatorname{div} D=\operatorname{div} B=0 \quad \Leftrightarrow \quad d \omega_{4}=d \omega_{5}=0
$$

as will be shown in Section 7. Thus we have the format (1.1)-(1.3) with $s=5$. A complete list of quasiaffine functions of ω consists of the identity term 1 , the mechanical terms in (1.8) as before, and the electromagnetic and mechanic-electromagnetic terms

$$
\begin{equation*}
\omega_{4}, \quad \omega_{5}, \quad \text { and } \quad \omega_{\alpha} \wedge \omega_{4}, \quad \omega_{\alpha} \wedge \omega_{5}, \tag{1.11}
\end{equation*}
$$

where $1 \leq \alpha \leq 3$. The list (1.11) involves $2 \times 3+3 \times 2=12$ scalar components and hence the combination of (1.8) and (1.11) shows that there are $19+12=31$ independent non-constant mult. ext. quasiaffine functions. It will be explained in Subsection 7 that the forms (1.11) are in a one-to-one correspondence with the terms

$$
D, \quad B, \quad F D, \quad F B .
$$

Combining this with the results of Subsection 1.5 , we conclude that the mult. ext. polyconvexity for electro-magneto-elasticity reads

$$
W(F, D, B)=\Psi(F, \operatorname{cof} F, \operatorname{det} F, D, B, F D, F B)
$$

where Ψ is a convex function. This form of polyconvexity was determined by a direct calculation in [34].

This paper is organized as follows. Section 2 presents an index-free approach to the exterior algebra and analysis. Section 3 introduces the central convexity concepts of the \mathscr{A}-quasiconvexity theory. Section 4 is devoted to the proof of the main result of the paper, i.e., Theorem 1.2. Section 5 presents a sample-type existence theorem for minimizers of the total energy under the mult. ext. polyconvexity; in contrast with the analogous result under mult. ext. quasiconvexity, the integrand may take infinite values. Section 6 shows that the classical calculus of variations and nonlinear elasticity may be viewed as particular cases of the present theory. Section 7 describes the mult. ext. polyconvexity for electro-magneto-elastostatics.

2 Preliminaries: exterior calculus

This section summarizes basic notions of exterior algebra and analysis in the extent needed in this paper. Since these needs are purely theoretical, I feel that it that it is preferable to adopt the index-free notation and definitions. I follow [6; Chapter 4] and [18; Chapters One \& Four] in taking this abstract attitude, with minor modifications. Bases and components with multiindices are introduced at the end of this section for comparison purposes.

The inner product in \mathbb{R}^{n} enables us to identify \mathbb{R}^{n} with its dual; consequently, we do not distinguish between vectors and covectors and between differential forms and multivector fields.

2.1 Alternating maps A map φ from the cartesian product $\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{k \text { times }}$ into \mathbb{R}

 is called k linear if for any i and any collection $v_{j} \in \mathbb{R}^{n}$ corresponding to all $j \neq i$, the map on \mathbb{R}^{n}, carrying x into$$
\varphi\left[v_{1}, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_{k}\right]
$$

is a linear map from \mathbb{R}^{n} into \mathbb{R}. We say that φ is alternating if it has the following three equivalent properties:

- we have

$$
\begin{equation*}
\varphi\left[v_{1}, \ldots, v_{k}\right]=0 \tag{2.1}
\end{equation*}
$$

whenever the collection v_{1}, \ldots, v_{k} contains at least two identical elements;

- we have (2.1) whenever the collection v_{1}, \ldots, v_{k} is linearly dependent;
- we have

$$
\varphi\left[v_{\pi(1)}, \ldots, v_{\pi(s)}\right]=\operatorname{sgn}(\pi) \varphi\left[v_{1}, \ldots, v_{k}\right]
$$

for each $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ and each permutation $\pi:\{1, \ldots, s\} \rightarrow\{1, \ldots, s\}$. We denote by \mathbb{P}_{k} the set of all such permutations and by $\operatorname{sgn}(\pi)$ the sign of $\pi \in \mathbb{P}_{k}$.
2.2 Theorem There exists an associative algebra \wedge^{*} with the product \wedge having the following properties:
(i) \wedge^{*} has the structure

$$
\wedge^{*}=\stackrel{n}{\oplus} \underset{k=0}{\oplus} \wedge^{k}
$$

where $\wedge^{k} \subset \wedge^{*}$ are subspaces with the property

$$
\text { if } a \in \wedge^{k} \text { and } b \in \wedge^{l} \text { then } a \wedge b=\wedge^{k+l}
$$

for any $k \geq 0, l \geq 0$ with $k+l \leq n$;
(ii) we have

$$
\wedge^{1}=\mathbb{R}^{n}
$$

(iii) for every alternating k linear map φ on \mathbb{R}^{n} there exists a unique linear form L on \wedge^{k} such that

$$
\varphi\left[v_{1}, \ldots, v_{k}\right]=L\left(v_{1} \wedge \cdots \wedge v_{k}\right)
$$

for each $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$.
We call \wedge^{*} the Grassmann algebra over \mathbb{R}^{n} and \wedge the exterior product. The elements of \wedge^{k} are called k-vectors or covectors of degree k. It is convenient to put

$$
\wedge^{k}=\{0\} \text { if } k<0 \text { or } k>n
$$

An alternative approach introduces the spaces \wedge^{k} first and then defines (often implicitly) \wedge^{*} as the direct sum.

We say that a k-vector $a \in \wedge^{k}$ is simple if

$$
a=\wedge_{i=1}^{k} v_{i}:=v_{1} \wedge \cdots \wedge v_{k}
$$

for some $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$.
2.3 Properties It is well-known that

$$
\operatorname{dim} \wedge^{k}=\binom{n}{k}, \quad \operatorname{dim} \wedge^{*}=2^{n}
$$

- for any $a \in \Lambda^{k}, b \in \Lambda^{l}$, any $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ and any $\pi \in \mathbb{P}_{k}$ we have

$$
\begin{equation*}
a \wedge b=(-1)^{k l} b \wedge a, \quad \wedge_{i=1}^{k} v_{\pi(i)}=\operatorname{sgn}(\pi) \wedge_{i=1}^{k} v_{i} \tag{2.2}
\end{equation*}
$$

- the inner product on \mathbb{R}^{n} extends uniquely to an inner product on \wedge^{*} with the following two properties:

$$
\begin{cases}\wedge^{k} \perp \wedge^{l} & \text { if } k \neq l \\ \left(\wedge_{i=1}^{k} u_{i}\right) \cdot\left(\wedge_{i=1}^{k} v_{i}\right)=\operatorname{det}\left[u_{i} \cdot v_{j}\right]_{1 \leq i, j \leq k} & \text { if } k=l\end{cases}
$$

where $u_{i}, v_{j} \in \mathbb{R}^{n}$;

- each alternating scalar k-form f on \mathbb{R}^{n} has a representation

$$
\begin{equation*}
f\left(v_{1}, \ldots, v_{k}\right)=a \cdot\left(v_{1} \wedge \cdots \wedge v_{k}\right) \tag{2.3}
\end{equation*}
$$

for all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ and some $a \in \wedge^{k}$.
One possibility to give an index-free definition of the exterior product is the following.
2.4 Theorem For each open subset Ω of \mathbb{R}^{n} there exists a unique linear map d from $C^{\infty}\left(\Omega, \wedge^{*}\right)$ into itself such that

$$
d(f a)=\nabla f \wedge a
$$

for every $a \in \wedge^{k}$ and every $f \in C^{\infty}(\Omega, \mathbb{R})$.
The operation d is called the exterior derivative. Here and below we use the standard notation: if Z is a finite-dimensional vector space then $C^{\infty}(\Omega, Z)$ denotes the set of all indefinitely differentiable Z-valued maps on Ω and by $C_{0}^{\infty}(\Omega, Z)$ the set of all indefinitely differentiable Z-valued maps on \mathbb{R}^{n} with compact support which is contained in Ω.

A k-form on an open set $\Omega \subset \mathbb{R}^{n}$ is any map $\omega: \Omega \rightarrow \wedge^{k}$.

2.5 Properties We have:

- $d^{2}:=d \circ d=0$;
- the operator d maps smooth k forms into $k+1$ forms; it coincides with the usual gradient on 0 -forms, i.e., on scalar functions;
- if $\psi \in C^{\infty}\left(\Omega, \wedge^{k}\right)$ and $\omega \in C^{\infty}\left(\Omega, \wedge^{l}\right)$ then

$$
d(\psi \wedge \omega)=d \psi \wedge \omega+(-1)^{k} \psi \wedge d \omega
$$

Alternatively, these the properties can be used as a definition of the exterior derivative, equivalent to that in Theorem 2.4.
2.6 Definition Let $1 \leq p, q \leq \infty$ and $\omega \in L^{q}\left(\Omega, \wedge^{k}\right)$. We say that ω has the weak interior derivative in L^{q} if there exists a $\operatorname{div} \omega \in L^{q}\left(\Omega, \wedge^{k-1}\right)$ such that

$$
\int_{\Omega} \operatorname{div} \omega \cdot \chi d x=-\int_{\Omega} \omega \cdot d \chi d x
$$

for every $\chi \in C_{0}^{\infty}\left(\Omega, \wedge^{k-1}\right)$. We say that ω has the weak exterior derivative in L^{q} if there exists a $d \omega \in L^{q}\left(\Omega, \wedge^{k+1}\right)$ such that

$$
\int_{\Omega} \operatorname{div} \psi \cdot \omega d x=-\int_{\Omega} d \omega \cdot \psi d x
$$

for every $\psi \in C_{0}^{\infty}\left(\Omega, \wedge^{k+1}\right)$.
Alternatively, the divergence (or its multiple by a factor ± 1) is denoted by δ and called the interior derivative or codifferential. We use the standard notation: if Z is a finite-dimensional vector space and $1 \leq p \leq \infty$ then $L^{p}(\Omega, Z)$ is the space of all Z-valued maps on Ω that are Lebesgue integrable with power p.
2.7 Coordinate expressions If e_{1}, \ldots, e_{n} is an orthonormal basis in \mathbb{R}^{n} then

$$
\begin{equation*}
d \omega=\sum_{i=1}^{n} e_{i} \wedge \omega_{, i} \tag{2.4}
\end{equation*}
$$

Further, the k-vectors defined by

$$
e_{i_{1}, \ldots, i_{k}}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}, \quad 1 \leq i_{1}<\ldots<i_{k} \leq n,
$$

form an orthonormal basis in \wedge^{k}. A k-form ω on Ω has an expansion

$$
\begin{equation*}
\omega=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \omega_{i_{1}, \ldots, i_{k}} e_{i_{1}, \ldots, i_{k}}, \tag{2.5}
\end{equation*}
$$

where $\omega_{i_{1}, \ldots, i_{k}}$ are real-valued functions on Ω. Denote by $x_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the i-th coordinate function, i.e., the function which associates with any $x=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n} the number x_{i}. Noting that $d x_{i}=e_{i}$, one can rewrite (2.5) more standardly as

$$
\omega=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \omega_{i_{1} \cdots i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} .
$$

One has

$$
\begin{equation*}
d \omega=\sum_{j=11 \leq i_{1}<\cdots<i_{k} \leq n}^{n} \omega_{i_{1} \cdots i_{k}, j} d x_{j} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} . \tag{2.6}
\end{equation*}
$$

$3 \mathscr{A}$-quasiconvexity theory

The purpose of this section is to discuss the notions of \mathscr{A}-quasiaffinity, \mathscr{A}-polyconvexity and Λ-convexity. The \mathscr{A}-quasiconvexity theory has been introduced in [11] and further developed in many papers, most notably in [19]. Closely related is the compensated compactness theory [28-29]. The reader is referred to [7, 22-23] for more recent developments and additional literature.
3.1 The differential operator \mathscr{A} The following dimensions will be needed in the subsequent discussion:

$$
\begin{gathered}
n=\text { the number of independent variables, } x=\left(x_{1}, \ldots, x_{n}\right), \\
d=\text { the number of dependent variables, } z=\left(z_{1}, \ldots, z_{d}\right), \\
l=\text { the number of differential constrains. }
\end{gathered}
$$

Let $C_{\mathrm{per}}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{d}\right)$ denote the set of all infinitely differentiable Q-periodic maps z : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$. We shall consider the first-order differential constraint

$$
\begin{equation*}
\mathscr{A} z=0 \tag{3.1}
\end{equation*}
$$

on a map $z \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{d}\right)$ where

$$
\begin{equation*}
\mathscr{A} z=\sum_{i=1}^{n} A^{(i)} z_{, i} \tag{3.2}
\end{equation*}
$$

with $A^{(i)} \in \operatorname{Lin}\left(\mathbb{R}^{d}, \mathbb{R}^{l}\right), i=1, \ldots, n$. For each $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ define

$$
\mathbb{A}(\xi)=\sum_{i=1}^{n} \xi_{i} A^{(i)},
$$

which is an element of $\operatorname{Lin}\left(\mathbb{R}^{d}, \mathbb{R}^{l}\right)$, and make the standing assumption that the rank of $\mathbb{A}(\xi)$ is the same for all $\xi \neq 0$. The following set will play an important role:

$$
\Lambda=\left\{z \in \mathbb{R}^{d}: \mathbb{A}(\xi) z=0 \text { for some } \xi \in \mathbb{R}^{n}, \xi \neq 0\right\} .
$$

3.2 Definition A continuous function $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is said to be
(i) \mathscr{A}-quasiconvex if

$$
\int_{Q} f(z+w(x)) d x \geq f(z)
$$

for every $z \in \mathbb{R}^{d}$ and every $w \in C_{\text {per }}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{d}\right)$ such that

$$
\mathscr{A} w=0 \quad \text { on } \mathbb{R}^{n} \text { and } \int_{Q} w d x=0
$$

(ii) \mathscr{A}-quasiaffine if f takes only finite values and both f and $-f$ are \mathscr{A}-quasiconvex;
(iii) Λ-convex if

$$
f\left((1-t) z_{1}+t z_{2}\right) \leq(1-t) f\left(z_{1}\right)+t f\left(z_{2}\right)
$$

for every $t \in(0,1)$ and $z_{1}, z_{2} \in \mathbb{R}^{d}$ such that $z_{2}-z_{1} \in \Lambda$;
(iv) Λ-affine if it takes only finite values and both f and $-f$ are Λ-convex;
(v) \mathscr{A}-polyconvex if there exists a finite number of \mathscr{A}-quasiaffine functions f_{1}, \ldots, f_{q} and a convex lower semicontinuous function $\Phi: \mathbb{R}^{q} \rightarrow \overline{\mathbb{R}}$ such that

$$
f(z)=\Phi\left(f_{1}(z), \ldots, f_{q}(z)\right)
$$

for each $z \in \mathbb{R}^{d}$.
The following result is standard but central for the development that follows.
3.3 Theorem ([19; Proposition 3.4]) If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a continuous \mathscr{A}-quasiconvex function then f is Λ-convex; consequently, iff is continuous and \mathscr{A}-quasiaffine then f is Λ-affine.
3.4 Application to closed differential forms Naturally, to apply the \mathscr{A}-quasiconvexity theory to the situation described in Section 1, one identifies the variable z with ω and the differential constraint (3.1) with (1.3). Explicitly, if we define the sets Λ^{k+1} and \wedge^{k-1} by

$$
\wedge^{k \pm 1}:=\wedge^{k_{1} \pm 1} \times \cdots \times \wedge^{k_{s} \pm 1}
$$

then \mathscr{A} is a map from $C^{\infty}\left(\mathbb{R}^{n}, \Lambda^{k}\right)$ into $C^{\infty}\left(\mathbb{R}^{n}, \Lambda^{k+1}\right)$ defined by

$$
\mathscr{A} \omega=\left(d \omega_{1}, \ldots, d \omega_{s}\right)
$$

for any $\omega \in C^{\infty}\left(\mathbb{R}^{n}, \Lambda^{k}\right)$. Referring to (2.4), we find that the transformations $A^{(i)}$ occurring in (3.2) are linear maps from Λ^{k} into \wedge^{k+1} given by

$$
A^{(i)} \boldsymbol{\sigma}=\left(e_{i} \wedge \sigma_{1}, \ldots, e_{i} \wedge \sigma_{s}\right)
$$

for any $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{s}\right) \in \wedge^{k}$. Consequently, if $\xi \in \mathbb{R}^{n}$, then $\mathbb{A}(\xi)$ is the transformation from Λ^{k} into Λ^{k+1} given by

$$
\mathbb{A}(\xi) \boldsymbol{\sigma}=\xi \wedge \boldsymbol{\sigma}:=\left(\xi \wedge \sigma_{1}, \ldots, \xi \wedge \sigma_{s}\right) .
$$

The equation $\mathbb{A}(\xi) z=0$ occurring in the definition of the cone Λ reduces to $\xi \wedge \boldsymbol{\sigma}=$ 0 for any $\boldsymbol{\sigma} \in \Lambda^{k}$ where $\xi \in \mathbb{R}^{n}, \xi \neq 0$. It is easy to see that the element $\boldsymbol{\sigma}$ solves that equation if and only if it is of the form $\boldsymbol{\sigma}=\lambda \wedge \xi$ for some $\lambda \in \Lambda^{k-1}$ where

$$
\lambda \wedge \xi:=\left(\xi \wedge \lambda_{1}, \ldots, \xi \wedge \lambda_{s}\right)
$$

for any $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \in \Lambda^{k-1}$. Hence

$$
\Lambda=\left\{\lambda \wedge \xi \in \Lambda^{k}: \lambda \in \Lambda^{k-1}, \xi \in \mathbb{R}^{n}\right\}
$$

The \mathscr{A} quasiconvexity, quasiaffinity and polyconvexity in the sense of the general theory (Definitions 3.2(i), (ii), (v)) reduce to the mult. ext. quasiconvexity, quasiaffinity and polyconvexity introduced in Definitions 1.1. The Λ convexity and affinity take the following forms.
3.5 Definition An integrand f of type \boldsymbol{k} is said to be
(i) mult. ext. one convex if

$$
\begin{equation*}
f(\omega+t \lambda \wedge \xi) \leq(1-t) f(\omega)+t f(\omega+\lambda \wedge \xi) \tag{3.3}
\end{equation*}
$$

for every $t \in(0,1)$ and every $\omega \in \Lambda^{k}, \xi \in \mathbb{R}^{n}$, and $\lambda \in \Lambda^{k-\mathbf{1}}$.
(ii) mult. ext. one affine if f takes only finite values and both f and $-f$ are mult. ext. one convex, i.e., if (3.3) is replaced by

$$
\begin{equation*}
f(\omega+t \lambda \wedge \xi)=(1-t) f(\omega)+t f(\omega+\lambda \wedge \xi) \tag{3.4}
\end{equation*}
$$

4 Characterization of mult. ext. affine functions (proof)

The objective of this section is to prove Theorem 1.2, in the following slightly more detailed form. Recall the standing assumption that the integrand in (1.4) is a continuous function.
4.1 Theorem For an integrand f the following three conditions are equivalent:
(i) f is mult. ext. quasiaffine;
(ii) f is mult. ext. one affine;
(iii) f is given by (1.5) where $\boldsymbol{\alpha}_{\boldsymbol{q}} \in \wedge^{\operatorname{deg}(\boldsymbol{q})}$ for each $\boldsymbol{q} \in \operatorname{Adm}(\boldsymbol{k})$.

Here (i) \Rightarrow (ii) is a general assertion, Theorem 3.3, while (iii) \Rightarrow (i) will follow by a simple application of the Stokes theorem. The main task is the proof of (ii) \Rightarrow (iii), which will be divided into a sequence of lemmas. The proof starts in Lemma 4.3 which asserts certain antisymmetry of partial derivatives and shows that f is a polynomial in ω. Then we decompose the polynomial f into a sum of homogeneous polynomials $f_{\boldsymbol{q}}$ of various degrees in the components of ω. Each $f_{\boldsymbol{q}}$ inherits the mult. ext. one affinity from f. Next, we determine the forms of a homogeneous mult. ext. one affine polynomials in one variable form ω or two variables ω_{1}, ω_{2}. Putting these two particular results together in an iterative way, we obtain Item (iii) of Theorem 4.1.
4.2 Polynomials in ω A function $f: \Lambda^{k} \rightarrow \mathbb{R}$ is said to be a polynomial of degree m if it is of the form

$$
\begin{equation*}
f(\omega)=\sum_{j=0}^{m} f_{j}(\omega) \tag{4.1}
\end{equation*}
$$

$\omega \in \Lambda^{k}$, where

$$
f_{j}(\omega)=C_{j}[\underbrace{\omega, \ldots, \omega}_{j \text { times }}]
$$

with C_{j} a symmetric j-linear form on Λ^{k} for $j=0, \ldots, m$. Each f_{j} is called a homogeneous polynomial of degree j.
4.3 Lemma Any mult. ext. one affine integrand $f: \Lambda^{k} \rightarrow \mathbb{R}$ is a polynomial of degree $\leq n$; moreover, for any integer $j \geq 2$ and any $\omega \in \wedge^{k}$ the derivative $\mathrm{D}^{j} f(\omega)=\mathrm{D}^{j} f$ satisfies

$$
\begin{equation*}
\mathrm{D}^{j} f\left[\lambda_{1} \wedge \xi_{\tau(1)}, \ldots, \lambda_{j} \wedge \xi_{\tau(j)}\right]=\operatorname{sgn}(\tau) \mathrm{D}^{j} f\left[\lambda_{1} \wedge \xi_{1}, \ldots, \lambda_{j} \wedge \xi_{j}\right] \tag{4.2}
\end{equation*}
$$

for any $\lambda_{1}, \ldots, \lambda_{j} \in \Lambda^{k-1}, \xi_{1}, \ldots, \xi_{j} \in \mathbb{R}^{n}$, and $\tau \in \mathbb{P}_{j}$.
By Subsection 2.1, the alternating property (4.2) is equivalent to the condition

$$
\begin{equation*}
\mathrm{D}^{j} f\left(\lambda_{1} \wedge \xi_{1}, \ldots, \lambda_{j} \wedge \xi_{j}\right)=0 \tag{4.3}
\end{equation*}
$$

whenever ξ_{1}, \ldots, ξ_{j} are linearly dependent. In the broader context of the theory of compensated compactness, the analog of (4.3) is a necessary, and under the constant rank assumption also sufficient condition for the weak continuity of the composite function $u \mapsto f(u)$ (see [35; Theorem 18], [29; Theorem 3.4]). Alternatively, the analog of (4.3) is necessary for f to be quasiaffine in the context of higher-order variational problems (see [2; Theorem 3.4]) and of \mathscr{A}-quasiconvexity [11; Section 1.2]. Nevertheless we give complete proof of Lemma 4.3, if only since our proof is shorter.

Proof (Cf. [32; Proof of Propositions 13.5.2 and 13.5.3].) Let f be a mult. ext. one affine integrand of type \boldsymbol{k}. Prove first the assertion of the lemma under the additional assumption that f is infinitely differentiable.

Differentiating the mult. ext. one affinity condition (3.4) we obtain

$$
\mathrm{D}^{2} f\left[\lambda_{1} \wedge \xi, \lambda_{2} \wedge \xi\right]=0
$$

for any $\xi \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2} \in \Lambda^{k-1}$. As an easy consequence of the polarization identity (or by Subsection 2.1) we obtain

$$
\mathrm{D}^{2} f\left[\lambda_{1} \wedge \xi_{1}, \lambda_{2} \wedge \xi_{2}\right]+\mathrm{D}^{2} f\left[\lambda_{1} \wedge \xi_{2}, \lambda_{2} \wedge \xi_{1}\right]=0
$$

Differentiating the last identity $j-2$ times in the directions $\lambda_{3} \wedge \xi_{3}, \ldots, \lambda_{j} \wedge \xi_{j}$, we obtain

$$
\begin{aligned}
\mathrm{D}^{j} f\left[\lambda_{1} \wedge \xi_{1}, \lambda_{2} \wedge \xi_{2},\right. & \left.\ldots, \lambda_{j} \wedge \xi_{j}\right] \\
& +\mathrm{D}^{j} f\left[\lambda_{1} \wedge \xi_{2}, \lambda_{2} \wedge \xi_{1}, \ldots, \lambda_{j} \wedge \xi_{j}\right]=0
\end{aligned}
$$

This establishes (4.2) for the special case of the permutation τ which interchanges the first two indices in $\{1,2, \ldots, p\}$, and hence any two indices by the symmetry of partial derivatives. Since any permutation is a composition of these special permutations, one concludes that (4.2) holds generally.

Applying (4.2) with $j=n+1$ and fixing $\lambda_{1}, \ldots, \lambda_{n+1}$, we see that the $n+1$ form

$$
\left(\xi_{1}, \ldots, \xi_{n+1}\right) \mapsto \mathrm{D}^{n+1} f\left[\lambda_{1} \wedge \xi_{1}, \ldots, \lambda_{n+1} \wedge \xi_{n+1}\right]
$$

on \mathbb{R}^{n} is alternating and hence in vanishes. Since

$$
\operatorname{span}\left\{\lambda \wedge \xi: \lambda \in \Lambda^{k-1}, \xi \in \mathbb{R}^{n}\right\}=\Lambda^{k}
$$

we deduce that

$$
\mathrm{D}^{n+1} f\left[\sigma_{1}, \ldots, \sigma_{n+1}\right]=0
$$

for any $\sigma_{1}, \ldots, \sigma_{n+1} \in \Lambda^{k}$ by the $n+1$-linearity of $\mathrm{D}^{n+1} f$. Thus f is a polynomial of degree at most n.

This proves the lemma under the assumption that f is infinitely differentiable. If f is merely continuous, we approximate it by the sequence $f_{\rho}, \rho>0$, of mollifications of f. Clearly, the functions f_{ρ} are mult. ext. one affine also. Thus each f_{ρ} is a polynomial of degree $\leq n$ and hence the limit f is again a polynomial of degree $\leq n$.
4.4 Decomposition of f into homogeneous polynomials The notion of a polynomial as introduced in Subsection 4.2 applies to a function on any vector space V in place of Λ^{k}. We now use the fact that the arguments $\omega \in \Lambda^{k}$ are s-tuples of objects $\omega_{1}, \ldots, \omega_{s}$ which belong to vector spaces. This allows to decompose each homogeneous polynomial into smaller blocks of degree q_{1} in ω_{1}, of degree q_{2} in ω_{2}, \ldots If $\boldsymbol{q}=\left(q_{1}, \ldots, q_{s}\right)$ is an s-tuple of nonnegative integers, we say that a polynomial $g: \Lambda^{k} \rightarrow \mathbb{R}$ is homogeneous of degree \boldsymbol{q} if

$$
\begin{equation*}
g\left(t_{1} \omega_{1}, \ldots, t_{s} \omega_{s}\right)=t_{1}^{q_{1}} \cdots t_{s}^{q_{s}} g\left(\omega_{1}, \ldots, \omega_{s}\right) \tag{4.4}
\end{equation*}
$$

for any $\left(\omega_{1}, \ldots, \omega_{s}\right) \in \Lambda^{k}$ and any $t_{1}, \ldots, t_{s} \in \mathbb{R}$. Combining (4.4) with the assumption that g is a polynomial, one finds that g has a representation

$$
\begin{equation*}
g(\boldsymbol{\omega})=A[\underbrace{\omega_{1}, \ldots, \omega_{1}}_{q_{1} \mathrm{times}}, \ldots, \underbrace{\omega_{s}, \ldots, \omega_{s}}_{q_{s} \text { times }}] \tag{4.5}
\end{equation*}
$$

with A a multilinear form on

$$
\underbrace{\wedge^{k_{1}} \times \cdots \times \wedge^{k_{1}}}_{q_{1} \text { times }} \times \cdots \times \underbrace{\wedge^{k_{s}} \times \cdots \times \wedge^{k_{s}}}_{q_{s} \text { times }}
$$

of degree

$$
\begin{equation*}
j:=\sum_{i=1}^{s} q_{i} \tag{4.6}
\end{equation*}
$$

that is symmetric under permutations of the arguments belonging to the same brace in the right-hand side of (4.5). An easy argument based on a multinomial theorem shows that any homogeneous polynomial of degree j can be decomposed into a sum of homogeneous polynomials of degrees \boldsymbol{q} satisfying (4.6).

Thus by Lemma 4.3, any mult. ext. one affine integrand f has a representation

$$
\begin{equation*}
f(\omega)=\sum_{q \in \mathbf{P}(n)} f_{\boldsymbol{q}}(\omega) \tag{4.7}
\end{equation*}
$$

where each $f_{\boldsymbol{q}}$ is a \boldsymbol{q}-homogeneous polynomial, and the sum extends over the set $\mathrm{P}(n)$ of all s-tuples $\boldsymbol{q}=\left(q_{1}, \ldots, q_{s}\right)$ of nonnegative integers satisfying

$$
\sum_{i=1}^{s} q_{i} \leq n
$$

It is easy to see that each f_{q} is mult. ext. one affine separately. Indeed, if $\boldsymbol{t}=$ $\left(t_{1}, \ldots, t_{s}\right)$ is an s-tuple of real numbers and f is mult. ext. one affine then the function $f^{(t)}$, given by

$$
f^{(t)}\left(\omega_{1}, \ldots, \omega_{s}\right)=f\left(t_{1} \omega_{1}, \ldots, t_{s} \omega_{s}\right)
$$

$\omega \in \Lambda^{k}$, is mult. ext. one affine also. Indeed, the mult. ext. one affinity condition for $f^{(t)}$ reads

$$
f^{(t)}(\omega+t \lambda \wedge \xi)=(1-t) f^{(t)}(\omega)+t f^{(t)}(\omega+\lambda \wedge \xi)
$$

for every t, ω, ξ, and λ as in Definition 3.5. The scaling (4.4) provides
$\sum_{\boldsymbol{q} \in \mathrm{P}(n)} t_{1}^{q_{1}} \cdots t_{s}^{s} f_{\boldsymbol{q}}(\omega+t \lambda \wedge \xi)=\sum_{\boldsymbol{q} \in \mathbf{P}(n)} t_{1}^{q_{1}} \cdots t_{s}^{s}\left((1-t) f_{\boldsymbol{q}}(\omega)+t f_{\boldsymbol{q}}(\omega+\lambda \wedge \xi)\right)$.
This is an equality of two polynomials in the scalar variables t_{1}, \ldots, t_{s}. Equating the coefficients, we obtain the mult. ext. one convexity of $f_{\boldsymbol{q}}$:

$$
f_{q}(\omega+t \lambda \wedge \xi)=(1-t) f_{q}(\omega)+t f_{q}(\omega+\lambda \wedge \xi) .
$$

Thus it suffices to examine the mult. ext. one convexity of each $f_{\boldsymbol{q}}$ separately. However, we shall split the considerations into subcases further. We realize that the specific form on the mult. ext. one convexity in the s-tuple $\omega=\left(\omega_{1}, \ldots, \omega_{s}\right)$ implies the mult. ext. one convexity in any subgroup of the group of variables $\omega_{1}, \ldots, \omega_{s}$.

We shall start the proof from the mult. ext. one convexity in a single homogeneous polynomial in one variable.
4.5 Lemma If $: \wedge^{k} \rightarrow \mathbb{R}$ is a mult. ext. one affine function given by

$$
f(\omega)=A[\underbrace{\omega, \ldots, \omega}_{q \text { times }}]
$$

where A is a q-linear form on $\underbrace{\Lambda^{k} \times \cdots \times \Lambda^{k}}_{q \text { times }}$, then there exists an $\alpha \in \wedge^{k q}$ such that

$$
\begin{equation*}
f(\omega)=\alpha \cdot \omega^{q} \tag{4.8}
\end{equation*}
$$

for every $\omega \in \wedge^{k}$.
Proof We shall prove this by evaluating the second derivative of f and employing the antisymmetry condition (4.2) with $j=2$. One finds that the second derivative $\mathrm{D}^{2} f(\omega)\left[\sigma_{1}, \sigma_{2}\right]$ at $\omega \in \wedge^{k}$ corresponding to the increments $\sigma_{1}, \sigma_{2} \in \wedge^{k}$ is given by

$$
\mathrm{D}^{2} f(\omega)\left[\sigma_{1}, \sigma_{2}\right]=q(q-1) A\left[\sigma_{1}, \sigma_{2}, \omega^{\prime}\right]
$$

where we abbreviate $\omega^{\prime}=(\omega, \ldots, \omega) \in \underbrace{\wedge^{k} \times \cdots \times \wedge^{k}}_{q-2 \text { times }}$. Assuming that the increments take the forms $\sigma_{1}=\lambda_{1} \wedge v_{k}, \sigma_{2}=\lambda_{2} \wedge v_{2 k}$, where $\lambda_{1}, \lambda_{2} \in \wedge^{k}$, and $v_{k}, v_{2 k} \in \mathbb{R}^{n}$, and employing antisymmetry condition (4.2), we obtain

$$
\begin{equation*}
A\left[\eta_{1} \wedge v_{k}, \eta_{2} \wedge v_{2 k}, \omega^{\prime}\right]=-A\left[\eta_{1} \wedge v_{2 k}, \eta_{2} \wedge v_{k}, \omega^{\prime}\right] \tag{4.9}
\end{equation*}
$$

This implies the same equation with $\omega^{\prime}=(\omega, \ldots, \omega)$ replaced by $\omega^{\prime}=\left(\omega_{3}, \ldots, \omega_{p}\right)$ where $\omega_{3}, \ldots, \omega_{p} \in \wedge^{k}$ by polarization. Putting $\eta_{1}=v_{1} \wedge \cdots \wedge v_{k-1}, \eta_{2}=$ $v_{k+1} \wedge \cdots \wedge v_{2 k-1}$, where v_{i} are vectors from \mathbb{R}^{n}, we deduce that the $2 k$-linear form carrying $\left(v_{1}, \ldots, v_{2 k}\right)$ into

$$
\begin{equation*}
A\left[v_{1} \wedge \cdots \wedge v_{k}, v_{k+1} \wedge \cdots \wedge v_{2 k}, \omega^{\prime}\right] \tag{4.10}
\end{equation*}
$$

is alternating. Indeed, the alternating property under permutations of v_{1}, \ldots, v_{k} follows from the alternating property of the wedge product $v_{1} \wedge \cdots \wedge v_{k}$; the alternating property under permutations of $v_{k+1}, \ldots, v_{2 k}$ follows similarly. Equation (4.9) provides the antisymmetry under the pairwise exchange $v_{k} \leftrightarrow v_{2 k}$. Since the permutations just described generate the group of all permutations of $v_{1}, \ldots, v_{2 k}$, the alternating property of (4.10) follows. One obtains in the same way that the $2 k$-linear form carrying $\left(v_{k+1}, \ldots, v_{3 k}\right)$ into

$$
A\left[\omega_{1}, v_{k+1} \wedge \cdots \wedge v_{2 k}, v_{2 k+1} \wedge \cdots \wedge v_{3 k}, \omega_{4}, \ldots, \omega_{p}\right]
$$

is alternating, etc. Hence the $k q$-form carrying $v_{1}, \ldots, v_{k q}$ into

$$
\begin{equation*}
A\left[v_{1} \wedge \cdots \wedge v_{k}, v_{k+1} \wedge \cdots \wedge v_{2 k}, \cdots, v_{k(q-1)} \wedge \cdots \wedge v_{k q}\right] \tag{4.11}
\end{equation*}
$$

is alternating. The representation theorem (2.3) provides the existence of a covector α of degree $k q$ such that the value in (4.11) is given by $\alpha \cdot\left(v_{1} \wedge \cdots \wedge v_{k q}\right)$. In particular, taking

$$
\left(v_{1}, \ldots, v_{k}\right)=\left(v_{k+1}, \ldots, v_{2 k}\right)=\ldots=\left(v_{k(q-1)}, \ldots, v_{k q}\right)
$$

and setting $\omega=v_{1} \wedge \cdots \wedge v_{k}$, we obtain

$$
f(\omega) \equiv A[\omega, \omega, \ldots, \omega]=\alpha \cdot \omega^{q}
$$

This establishes the representation (4.8) for each simple k-vector ω. The extension to general arguments ω follows by multilinearity.

Next we consider a homogeneous polynomial in two variables.
4.6 Lemma Let $f: \wedge^{k_{1}} \times \wedge^{k_{2}} \rightarrow \mathbb{R}$ be a mult. ext. one affine function given by

$$
\begin{equation*}
f(\boldsymbol{\omega})=A[\underbrace{\omega_{1}, \ldots, \omega_{1}}_{q_{1} \text { times }} \mid \underbrace{\omega_{2}, \ldots, \omega_{2}}_{q_{2} \text { times }}] \tag{4.12}
\end{equation*}
$$

for each $\omega=\left(\omega_{1}, \omega_{2}\right) \in \wedge^{k_{1}} \times \wedge^{k_{2}}$, with A a $q_{1}+q_{2}$-linear form on

$$
\underbrace{\wedge^{k_{1}} \times \cdots \times \wedge^{k_{1}}}_{q_{1} \text { times }} \times \underbrace{\wedge^{k_{2}} \times \cdots \times \wedge^{k_{2}}}_{q_{2} \text { times }}
$$

Then there exists an $\alpha \in \wedge^{q_{1} k_{1}+q_{2} k_{2}}$ such that

$$
\begin{equation*}
f\left(\omega_{1}, \omega_{2}\right)=\alpha \cdot\left(\omega_{1}^{q_{1}} \wedge \omega^{q_{2}}\right) \tag{4.13}
\end{equation*}
$$

for every $\left(\omega_{1}, \omega_{2}\right) \in \wedge^{k_{1}} \times \wedge^{k_{2}}$.
In (4.12) we separate the two groups of arguments by a vertical bar to ease the localization of the arguments in the proof.
Proof As in the preceding lemma, we prove this by evaluating the second derivative of f and employing the antisymmetry condition (4.2) with $j=2$. For our purpose it suffices to evaluate the second derivative

$$
\mathrm{D}^{2} f(\omega)[(\sigma, 0),(0, \tau)]
$$

corresponding to the increments $(\sigma, 0),(0, \tau) \in \wedge^{k_{1}} \times \wedge^{k_{2}}$. Then

$$
\mathrm{D}^{2} f(\omega)[(\sigma, 0),(0, \tau)]=q_{1} q_{2} A\left[\sigma, \omega_{1}^{\prime} \mid \tau, \omega_{2}^{\prime}\right]
$$

where we abbreviate $\omega_{i}^{\prime}=\left(\omega_{i}, \ldots, \omega_{i}\right), i=1,2$. Still more specially, we assume that the increments take the forms

$$
\sigma=\eta \wedge v_{k_{1}}, \quad \tau=\theta \wedge v_{k_{1}+k_{2}}
$$

where $\eta \in \wedge^{k_{1}-1}, \theta \in \wedge^{k_{2}-1}$, and $v_{k_{1}}, v_{k_{1}+k_{2}} \in \mathbb{R}^{n}$. The antisymmetry condition (4.2) under the exchange $v_{k_{1}} \leftrightarrow v_{k_{1}+k_{2}}$ gives

$$
A\left[\eta \wedge v_{k_{1}}, \omega_{1}^{\prime} \mid \theta \wedge v_{k_{1}+k_{2}}, \omega_{2}^{\prime}\right]=-A\left[\eta \wedge v_{k_{1}+k_{2}}, \omega_{1}^{\prime} \mid \theta \wedge v_{k_{1}}, \omega_{2}^{\prime}\right]
$$

The polarization provides the same equation with $\omega_{1}^{\prime}=\left(\rho_{2}, \ldots, \rho_{k_{1}}\right), \omega_{2}^{\prime}=$ $\left(\sigma_{2}, \ldots, \sigma_{k_{2}}\right)$. We now write $\eta=v_{1} \wedge \cdots \wedge v_{k_{1}-1}, \theta=v_{k_{1}+1} \wedge \cdots \wedge v_{k_{1}+k_{2}-1}$, and employ the same argument as that in the analogous part of the proof of Lemma 4.5. In this way we see that the $k_{1}+k_{2}$ form carrying ($v_{1}, \ldots, v_{k_{1}+k_{2}}$) into

$$
A\left[v_{1} \wedge \cdots \wedge v_{k_{1}}, \omega_{1}^{\prime} \mid v_{k_{1}+1} \wedge \cdots \wedge v_{k_{1}+k_{2}}, \omega_{2}^{\prime}\right]
$$

is alternating. Consequently, putting

$$
\begin{gathered}
\rho_{\alpha}=v_{k_{1}(\alpha-1)+1} \wedge \cdots \wedge v_{k_{1} \alpha}, \quad \alpha=1, \ldots, q_{1} \\
\sigma_{\beta}=v_{k_{1} q_{1}+k_{2}(\beta-1)+1} \wedge \cdots \wedge v_{k_{1} q_{1}+k_{2} \beta}, \quad \beta=1, \ldots, q_{2}
\end{gathered}
$$

we deduce that the expression

$$
A\left[\rho_{1}, \ldots, \rho_{k_{1}} \mid \sigma_{1}, \ldots, \sigma_{k_{2}}\right]
$$

is alternating under all permutations of the totality of vector arguments

$$
v_{1}, \ldots, v_{k_{1} q_{1}+k_{2} q_{2}}
$$

Using the representation theorem (2.3) in a way similar to that in the proof of Lemma 4.5 , we obtain the representation (4.13) if the arguments ω_{1} and ω_{2} are simple. Hence for general arguments by multilinearity.
4.7 Lemma Let $f_{q}: \wedge^{k} \rightarrow \mathbb{R}$ be a mult. ext. one affine function given by (4.5) with g identified with f_{q}. Then

$$
f_{q}(\omega)=\alpha_{q} \cdot \omega^{q}
$$

for all $\omega \in \wedge^{k}$ and some $\alpha_{q} \in \wedge^{\operatorname{deg}(q)}$.
Proof By applying Lemma 4.6 to every pair of variables $\omega_{\alpha}, \omega_{\beta}$ of $f(\omega)=$ $f\left(\omega_{1}, \ldots, \omega_{\alpha}, \ldots, \omega_{\beta}, \ldots, \omega_{s}\right)$, one obtains that the form

$$
\left(v_{1}, \ldots, v_{\operatorname{deg}(\boldsymbol{q})}\right) \mapsto A\left[v_{1} \wedge \cdots \wedge v_{k_{1}}, \ldots, v_{\operatorname{deg}(\boldsymbol{q})-k_{s}+1} \wedge \cdots \wedge v_{\operatorname{deg}(\boldsymbol{q})}\right]
$$

is alternating. The representation follows in the same way as in the preceding two lemmas.
4.8 Proof of the implication (ii) \Rightarrow (iii) in Theorem 4.1 This is a combination of Equation (4.7) and Lemma 4.7.
4.9 Proof of the implication (iii) \Rightarrow (i) in Theorem 4.1 Our goal is to prove that if f is a polynomial of the form (1.5), then we have

$$
\begin{equation*}
\int_{Q} f(\omega+\psi(x)) d x=f(\omega) \tag{4.14}
\end{equation*}
$$

for every $\omega \in \Lambda^{k}$ and every $\psi \in C_{\text {per }}^{\infty}\left(\mathbb{R}^{n}, \Lambda^{k}\right)$ such that

$$
\begin{equation*}
d \psi_{\alpha}=0 \quad \text { on } \mathbb{R}^{n} \text { and } \int_{Q} \psi_{\alpha}(x) d x=0 \tag{4.15}
\end{equation*}
$$

We shall first prove the particular case $\omega=0$ in (4.14), i.e., that

$$
\int_{Q} \psi^{q}(x) d x=0
$$

for every $\boldsymbol{\psi} \in C_{\text {per }}^{\infty}\left(\mathbb{R}^{n}, \Lambda^{\boldsymbol{k}}\right)$ satisfying (4.15) and every $\boldsymbol{q} \in \operatorname{Adm}(\boldsymbol{k})$. The case $\boldsymbol{q}=\mathbf{0}$ being trivial, we assume $\boldsymbol{q} \neq 0$, i.e., at least one component of \boldsymbol{q} is nonzero. Suppose $q_{1} \geq 1$ for definiteness. Then

$$
\psi^{q}(x)=\psi_{1}(x) \wedge \psi^{q^{\prime}}(x)
$$

where $\boldsymbol{q}^{\prime}=\left(q_{1}-1, q_{2}, \ldots, q_{s}\right)$. By (4.15) with $\alpha=1$, there exists a $\varphi \in$ $C_{\text {per }}^{\infty}\left(\mathbb{R}^{n}, \wedge^{k_{1}}\right)$ such that $\psi_{1}=d \varphi$. Then $d\left(\varphi \wedge \psi^{q}(x)\right)=\psi^{q}(x)$ and hence the Stokes theorem gives

$$
\int_{Q} \psi^{q}(x) d x=\int_{Q} d\left(\varphi(x) \wedge \psi^{q}(x)\right) d x=\int_{\partial Q} v \wedge\left(\varphi(x) \wedge \psi^{q}(x)\right) d x
$$

where v is the outer normal to the boundary ∂Q. Noting that the boundary integral vanishes since $\varphi(x) \wedge \psi^{q}(x)$ is periodic, we have (4.14) in the case $\omega=0$.

We now prove (4.14) generally. Any function given by (1.5) is a polynomial in ω in the sense of (4.1). We shall give a proof by induction on the power m of f in (4.1). The case $m=0$ is immediate. Let $m \geq 1$. Fixing ψ, let $F: \Lambda^{k} \rightarrow \mathbb{R}$ be defined by

$$
F(\omega)=\int_{Q} f(\omega+\psi(x)) d x,
$$

$\omega \in \Lambda^{k}$. Then

$$
\begin{equation*}
\mathrm{D} F(\boldsymbol{\omega})[\boldsymbol{\sigma}]=\int_{Q} \mathrm{D} f(\boldsymbol{\omega}+\psi(x))[\boldsymbol{\sigma}] d x=\mathrm{D} f(\boldsymbol{\omega})[\boldsymbol{\sigma}] \tag{4.16}
\end{equation*}
$$

for each $\boldsymbol{\sigma} \in \Lambda^{k}$ by induction hypothesis since $\mathrm{D} f(\cdot)[\boldsymbol{\sigma}]$ is a polynomial of degree $m-1$. The integration of the equality of the two derivatives in (4.16) provides $F(\omega)=$ $f(\omega)+C$ for all $\omega \in \Lambda^{k}$ and some $C \in \mathbb{R}$; in particular $F(0)=f(0)+C$. The proof in the special case $\omega=0$ shows that $F(0)=f(0)$ and hence $F(\omega)=f(\omega)$ which is (4.14).

5 Existence of minimizers of energy under mult. ext. polyconvexity

In this section we present a simple theorem on the existence of a minimizer for an integral functional (5.1) with a mult. ext. polyconvex integrand. The only goal is to
show that the standard arguments of the direct method of the calculus of variations, well known in the case of the standard polyconvexity, can be modified to work also if mul. ext. polyconvexity is used. A more detailed treatment, with special cases, will be given elsewhere.

We introduce the following terminology and notation. We define the scalar product on Λ^{k} by putting

$$
\boldsymbol{\psi} \cdot \boldsymbol{\omega}=\sum_{\alpha=1}^{s} \psi_{\alpha} \cdot \omega_{\alpha}
$$

for every $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{s}\right), \boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{s}\right) \in \Lambda^{k}$. Furthermore, if $\boldsymbol{p}=$ $\left(p_{1}, \ldots, p_{s}\right)$ is a collection of numbers satisfying $1 \leq p_{\alpha} \leq \infty$, we introduce the Banach space

$$
L^{p}\left(\Omega, \Lambda^{k}\right)=L^{p_{1}}\left(\Omega, \wedge^{k_{1}}\right) \times \cdots \times L^{p_{s}}\left(\Omega, \wedge^{k_{s}}\right)
$$

with the norm

$$
|\omega|_{L^{p}\left(\Omega, \wedge^{k}\right)}=\sum_{\alpha=1}^{s}\left|\omega_{\alpha}\right|_{L^{p \alpha}\left(\Omega, \wedge^{k \alpha}\right)}
$$

We write

$$
\mathbf{d} \omega:=\left(d \omega_{1}, \ldots, d \omega_{s}\right), \quad \operatorname{div} \omega:=\left(\operatorname{div} \omega_{1}, \ldots, \operatorname{div} \omega_{s}\right)
$$

for any $\omega: \Omega \rightarrow \wedge^{k}$.
We shall minimize the integral functional

$$
\begin{equation*}
I(\omega)=\int_{\Omega}(f(\omega)-\boldsymbol{\phi} \cdot \boldsymbol{\omega}) d x \tag{5.1}
\end{equation*}
$$

depending on the collection $\omega=\left(\omega_{1}, \ldots, \omega_{s}\right)$ of closed differential forms on an open bounded region $\Omega \subset \mathbb{R}^{n}$. The external influences, such as the body forces and boundary tractions in elasticity, are modeled by the second term in the integral in (5.1). In that term, $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{S}\right): \Omega \rightarrow \Lambda^{k}$ is a prescribed function.

To formulate the assumptions, we let let p_{1}, \ldots, p_{s} be numbers in $(1, \infty)$, and consider the following conditions:
$\mathbf{H}_{1} f$ is a mult. ext. polyconvex (continuous) integrand;
$\mathbf{H}_{2} f$ satisfies

$$
f(\omega) \geq c\left(\left|\omega_{1}\right|^{p_{1}}+\ldots+\left|\omega_{s}\right|^{p_{s}}-1\right)
$$

for some $c>0$ and all $\left(\omega_{1}, \ldots, \omega_{s}\right) \in \Lambda^{k}$ where the numbers p_{1}, \ldots, p_{s} satisfy

$$
q_{1} / p_{1}+\ldots+q_{S} / p_{S} \leq 1 \text { for all }\left(q_{1}, \ldots, q_{S}\right) \in \operatorname{Adm}(\boldsymbol{k})
$$

$\mathbf{H}_{3} \boldsymbol{\phi} \in L^{p^{\prime}}\left(\Omega, \Lambda^{k}\right)$, where

$$
\boldsymbol{p}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{s}^{\prime}\right), \quad p_{\alpha}^{\prime}=p_{\alpha} /\left(p_{\alpha}-1\right)
$$

For the purpose of the treatment below, we define the domain \mathscr{D} of the functional I to be the set of all $\omega \in L^{p}\left(\Omega, \Lambda^{k}\right)$ which satisfy

$$
\begin{equation*}
\mathbf{d} \omega=\mathbf{0} \text { on } \Omega \tag{5.2}
\end{equation*}
$$

in the weak sense, see Definition 2.6.

It is not assumed that the integrand f is finite. Condition \mathbf{H}_{2} implies that f is bounded from below and thus the integral in (5.1) is well defined as a finite number or ∞. We denote by

$$
\operatorname{dom} f=\left\{\boldsymbol{\sigma} \in \wedge^{k}: f(\boldsymbol{\sigma})<\infty\right\}
$$

the effective domain of f. The assumed continuity of f (which is a part of the definition of an integrand) implies that $\operatorname{dom} f$ is an open subset of \wedge^{k}.

The following theorem presents an existence result for a minimizer of I under inhomogeneous Neumann's boundary conditions.

5.1 Theorem Suppose that Hypotheses $\mathbf{H}_{1}-\mathbf{H}_{3}$ hold. Then

(i) if I is not identically equal to ∞ on \mathscr{D} then I has a minimizer ω in \mathscr{D}, i.e., an element such that

$$
I(\omega) \leq I(\boldsymbol{\sigma})
$$

for all $\boldsymbol{\sigma} \in \mathscr{D}$;
(ii) each minimizer ω satisfies $f(\omega(x))<\infty$ for almost every $x \in \Omega$;
(iii) if f is differentiable on $\operatorname{dom} f$ and ω is a minimizer whose range is contained in a compact subset of $\operatorname{dom} f$ then we have the weak form of the Euler-Lagrange equations

$$
\begin{equation*}
\operatorname{div}\left(\mathrm{D}_{\boldsymbol{\omega}} f-\phi\right)=0 \quad \text { on } \mathbb{R}^{n}, \tag{5.3}
\end{equation*}
$$

where div denotes the weak divergence (Definition 2.6).

5.2 Remarks

- In contrast to Theorem 5.1, the existence theorem under the weaker condition of mult. ext. quasiconvexity requires finitely-valued integrand since the prerequisite lower semicontinuity theorem [19; Theorem 3.7] requires conditions of the type

$$
c_{1}\left(|\omega|^{p}-1\right) \leq f(\omega) \leq c_{2}\left(|\omega|^{p}-1\right)
$$

for some $p>1, c_{1}>0, c_{2}>0$ and all ω.

- Theorem 5.1 or its minor modifications contains the existence theorems in nonlinear elasticity [1] and in nonlinear electro-magneto-elasticity [34].
- The coercivity hypothesis \mathbf{H}_{2} may be unnecessarily strong in concrete cases. For example, in nonlinear elasticity (see Section 6, below), the unknown ω is a triplet 1-forms in $n=3$ and thus \mathbf{H}_{3} requires

$$
p_{1} \geq 3, \quad p_{2} \geq 3, \quad p_{3} \geq 3
$$

i.e., condituion of type

$$
W(F) \geq c\left(|F|^{p}-1\right), \quad p \geq 3
$$

where F is the deformation gradient. However, weaker coercivity conditions suffice to establish existence theorems in nonlinear elasticity [1, 27].

- Since the weak form of the Euler-Lagrange equation (5.3) holds on \mathbb{R}^{n}, it includes the inhomogeneous Neumann-type boundary conditions.
To prove the existence of the solution, we need the compensated compactness and the lower semicontinuity results in Theorems 5.3 and Theorem 5.5.
5.3 Theorem Let $\boldsymbol{q}=\left(q_{1}, \ldots, q_{s}\right) \in \operatorname{Adm}(\boldsymbol{k})$ and let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{s}\right), \boldsymbol{r}=$ $\left(r_{1}, \ldots, r_{s}\right)$ be s-tuples that satisfy

$$
1<p_{\alpha} \leq \infty, \quad r_{\alpha} \geq 1, \quad n p_{\alpha} /\left(n+p_{\alpha}\right)<r_{\alpha} \leq p_{\alpha}
$$

and

$$
\begin{equation*}
q_{1} / p_{1}+\ldots+q_{s} / p_{s} \leq 1 \tag{5.4}
\end{equation*}
$$

If $\omega_{j}, j=1, \ldots$, is a sequence in $L^{p}\left(\Omega, \wedge^{k}\right)$ and ω an element of $L^{p}\left(\Omega, \Lambda^{k}\right)$ such that ${ }^{\star}$

$$
\begin{equation*}
\omega_{j} \rightharpoonup \omega \text { as } j \rightarrow \infty \text { in } L^{p}\left(\Omega, \wedge^{k}\right) \tag{5.5}
\end{equation*}
$$

and

$$
\sup \left\{\left|\mathbf{d} \omega_{j}\right|_{L^{r}\left(\Omega, \wedge^{k+1}\right)}: j=1, \ldots\right\}<\infty
$$

then

$$
\begin{equation*}
\omega_{j}^{q} \stackrel{*}{\rightharpoonup} \omega \text { in } \mathscr{M}\left(\Omega, \wedge^{\operatorname{deg}(q)}\right) . \tag{5.6}
\end{equation*}
$$

If (5.4) holds with the strict inequality sign, then (5.6) can be strengthened to assert

$$
\omega_{j}^{q} \rightharpoonup \omega \text { in } L^{p}\left(\Omega, \wedge^{\operatorname{deg}(q)}\right)
$$

where p is defined by

$$
1 / p+q_{1} / p_{1}+\ldots+q_{s} / p_{s}=1 .
$$

5.4 Remarks

- Theorem 5.3 is due to Robbin, Rogers \& Temple [31; Theorem 1.1] and Iwaniec \& Lutoborski [21; Theorem 5.1].
The weak continuity of the exterior product of differential forms has been considered previously:
- In a forgotten result, Whitney [36; Chapter IX, Theorem 17A] establishes, in 1957, the case $s=2, \boldsymbol{k}=\left(k_{1}, k_{2}\right)$ arbitrary, $\boldsymbol{q}=(1,1)$ and $\boldsymbol{p}=\boldsymbol{r}=(\infty, \infty)$ of Theorem 5.3. This seems to be the first compensated compactness result ever proved. This, however, went unnoticed, as emphasized in my earlier paper [33]. Since the product of any elements of L^{∞} is in L^{∞}, an obvious iteration of Whitney's result provides the case of a general $s \geq 2, \boldsymbol{k}=\left(k_{1}, \ldots, k_{s}\right)$ and $\boldsymbol{p}=\boldsymbol{r}=(\infty, \ldots, \infty)$.
- The div-curl lemma by Murat [28] and Tartar [35] is $s=2, \boldsymbol{k}=(1, n-1)$, $\boldsymbol{p}=\boldsymbol{r}=\left(t, t^{\prime}\right), 1<t<\infty$.
5.5 Theorem (Reshetnyak [30], Ball \& Murat [3]) Let $\Phi: \mathbb{R}^{h} \rightarrow \overline{\mathbb{R}}$ be convex, lower semicontinuous and bounded below. If $\theta, \theta_{k} \in L^{1}\left(\Omega, \mathbb{R}^{h}\right)$ satisfy

$$
\theta_{k} \stackrel{*}{\rightharpoonup} \theta \text { in } \mathscr{M}\left(\Omega, \mathbb{R}^{h}\right)
$$

then

$$
\liminf _{j \rightarrow \infty} \int_{\Omega} \Phi\left(\theta_{k}\right) d x \geq \int_{\Omega} \Phi(\theta) d x .
$$

[^2]Proof of Theorem 5.1 (i): Let $\omega_{j} \in \mathscr{D}$ be a minimization sequence, which is bounded in $L^{p}\left(\Omega, \wedge^{k}\right)$ by \mathbf{H}_{2}. By reflexivity, there exists a subsequence, again denoted by ω_{j}, such that we have the weak convergence (5.5). Then

$$
\begin{equation*}
\omega_{j}^{q} \stackrel{*}{\rightharpoonup} \omega^{q} \text { in } \mathscr{M}\left(\Omega, \wedge^{\operatorname{dim}(r)}\right) \tag{5.7}
\end{equation*}
$$

for every $\boldsymbol{q} \in \operatorname{Adm}(\boldsymbol{k})$ by Theorem 5.3. By \mathbf{H}_{1} and Theorem 1.3 there exists a convex lower semicontinuous function $\Phi: \wedge^{\operatorname{deg}\left(q_{1}\right)} \times \cdots \times \wedge^{\operatorname{deg}\left(q_{r}\right)} \rightarrow \overline{\mathbb{R}}$ such that

$$
f(\omega)=\Phi\left(\omega^{q_{1}}, \ldots, \omega^{q_{r}}\right)
$$

or each $\omega \in \Lambda^{k}$, where $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}$ is a fixed collection of distinct, nonzero elements of $\operatorname{Adm}(\boldsymbol{k})$. By Theorem 5.5 and (5.7),

$$
\liminf _{j \rightarrow \infty} \int_{\Omega} \Phi\left(\omega_{j}^{q_{1}}, \ldots, \omega_{j}^{q_{r}}\right) d x \geq \int_{\Omega} \Phi\left(\omega^{q_{1}}, \ldots, \omega^{q_{r}}\right) d x
$$

i.e.,

$$
\liminf _{j \rightarrow \infty} \int_{\Omega} f\left(\omega_{j}\right) d x \geq \int_{\Omega} f(\boldsymbol{\omega}) d x
$$

As also

$$
\lim _{j \rightarrow \infty} \int_{\Omega} \phi \cdot \omega_{j} d x=\int_{\Omega} \phi \cdot \omega d x
$$

we have

$$
\liminf _{j \rightarrow \infty} I\left(\omega_{j}\right) \geq I(\omega) .
$$

Since the condition (5.2) survives the limit, we see that ω is in \mathscr{D} and thus it minimzes I on \mathscr{D}. The proof of (i) is complete.
(ii): Follows immediately form $I(\omega)<\infty$.
(iii): If $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \Lambda^{k}\right)$ then $\omega+t \psi \in \operatorname{dom} f$ for all sufficiently small $|t|$ by the hypothesis of (iii). Then

$$
\int_{\Omega} \psi \cdot\left(\mathrm{D}_{\omega} f-\phi\right) d x=0
$$

by a standard argument. Taking $\psi=\mathbf{d} \boldsymbol{\chi}$ and invoking Definition 2.6 we obtain (5.3).

6 Example A: Classical calculus of variations and nonlinear elasticity

The goal of this section is to discuss the relationship of the weakened convexity and affinity notions of this paper to their original counterparts from the calculus of variations.
6.1 The integrand and its variables The classical calculus of variations deals with the integral functionals of the form

$$
I\left(u_{1}, \ldots, u_{s}\right)=\int_{\Omega} f\left(\nabla u_{1}, \ldots, \nabla u_{s}\right) d x
$$

where Ω is a bounded open subset of \mathbb{R}^{n} as always and $u=\left(u_{1}, \ldots, u_{s}\right)$ is an s-tuple of scalar functions on Ω. We obtain the format (1.1)-(1.3) with

$$
\begin{equation*}
\omega_{\alpha}=u_{\alpha, i} d x_{i} . \tag{6.1}
\end{equation*}
$$

The forms ω_{α} are closed since the combination of (2.6) with $d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}$ provides

$$
d \omega_{\alpha}=\frac{1}{2}\left(\omega_{\alpha j, i}-\omega_{\alpha i, j}\right) d x_{i} \wedge d x_{j}=\frac{1}{2}\left(u_{\alpha, j i}-u_{\alpha, i j}\right) d x_{i} \wedge d x_{j}=0 .
$$

The domain of f is $\Lambda^{k}:=\underbrace{\Lambda^{1} \times \cdots \times \Lambda^{1}}_{s \text { times }}$.
6.2 Quasiconvexity and rank one convexity The reader is referred to [24-25, 1, 26] for the weakened notions of convexity in the calculus of variations. It is immediate that in the present case the mult. ext. quasiconvexity coincides with the quasiconvexity, mult. ext. quasiaffinity with the quasiaffinity derived from the quasiconvexity. Also the mult. ext. one convexity and mult. ext. one affinity coincide with the rank one convexity and rank one affinity, respectively. Indeed, the discussion in Subsection 3.4 shows that in the present case, the components of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ are real numbers, $\lambda_{\alpha} \in \mathbb{R}$. Thus $\lambda_{\alpha} \wedge \xi \equiv \lambda_{\alpha} \xi \in \mathbb{R}^{n}$ and $\lambda \wedge \xi=\left(\lambda_{1} \xi, \ldots, \lambda_{s} \xi\right)=\lambda \otimes \xi$. Thus Formulas in (3.3) and (3.4) from the definition of mult. ext. one convexity and mult. ext. one affinity coincide with those in the definition of the rank one convexity and rank one affinity, respectively.

We now turn to the central notion of this paper, polyconvexity.
6.3 Mult. ext. polyconvexity and Ball's polyconvexity According to the construction described after the statement of Theorem 1.2, the set of all nonconstant and nonzero mult. ext. quasiaffine integrands is the span of the list

$$
\begin{equation*}
\omega_{\alpha_{1}} \wedge \cdots \wedge \omega_{\alpha_{k}}, \quad 1 \leq k \leq r, \quad 1 \leq \alpha_{1}<\ldots<\alpha_{k} \leq m, \tag{6.2}
\end{equation*}
$$

where $r:=\min \{m, n\}$. An integrand $f: \Lambda^{k} \rightarrow \overline{\mathbb{R}}$ is mult. ext. polyconvex if it is a convex function of the forms occurring in (6.2). The standard rules for the exterior product and (6.1) show that

$$
\omega_{\alpha_{1}} \wedge \cdots \wedge \omega_{\alpha_{k}}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} M_{\alpha_{1}, \ldots, \alpha_{k} ; i_{1}, \ldots, i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

where for each $\alpha_{1}, \ldots, \alpha_{k}$ and i_{1}, \ldots, i_{k} we denote by

$$
M_{\alpha_{1}, \ldots, \alpha_{k} ; i_{1}, \ldots, i_{k}}=\operatorname{det}\left[u_{\alpha_{\mathfrak{a}}, i_{\mathfrak{b}}}\right]_{1 \leq \mathfrak{a}, \mathfrak{b} \leq k}
$$

the minor of the $n \times m$ matrix

$$
F:=\left[u_{\alpha, i}\right]_{1 \leq \alpha \leq m, 1 \leq i \leq n}
$$

corresponding to the rows and columns labeled by $\alpha_{1}, \ldots, \alpha_{k}$ and i_{1}, \ldots, i_{k}, respectively. This shows that the list of exterior products (6.2) is linearly isomorphic with the collection of all minors of the matrix F. Consequently, the mult. ext. polyconvexity coincides with the standard polyconvexity, defined as a convex function of minors of $F=\nabla u$; $[2,26]$.

Nonlinear elasticity [1] is a particular case $m=n=3$; then we have a convex function of $F, \operatorname{cof} F$ and $\operatorname{det} F$. Recalling that

$$
(\operatorname{cof} F)_{p q}=\frac{1}{2} \varepsilon_{p i j} \varepsilon_{q k l} F_{i k} F_{j l}, \quad \operatorname{det} F=\frac{1}{6} \varepsilon_{p i j} \varepsilon_{q k l} F_{p q} F_{i k} F_{j l}
$$

we obtain the following explicit relationship between the lists in (1.8) and (1.9):

$$
\begin{gather*}
\omega_{j} \wedge \omega_{k}=\frac{1}{2} \varepsilon_{j k q} \varepsilon_{q r s}(\operatorname{cof} F)_{p q} d x_{r} \wedge d x_{s}, \tag{6.3}\\
\omega_{1} \wedge \omega_{2} \wedge \omega_{3}=(\operatorname{det} F) d x_{1} \wedge d x_{2} \wedge d x_{3} . \tag{6.4}
\end{gather*}
$$

7 Example B: Electro-magneto-elastostatics

As mentioned in the introduction, the statics of electro- and magneto-sensitive elastomers has received considerable attention in recent years [8, 14-17, 9-10, 13, 20]. The main point in modeling these materials is the coupling of the nonlinear mechanical response with the electric or magnetic response. The goal of this section is to determine the mult. ext. polyconvexity corresponding to this case; the reader is referred to [34] for more details. Let $\Omega \subset \mathbb{R}^{n}$ where $n=2$ or 3 .

The basic electromagnetic variables are the referential (lagrangean) electric displacement D, magnetic induction B satisfying the static Maxwell's equations

$$
\operatorname{div} D=0, \quad \operatorname{div} B=0
$$

The mechanical variables are the deformation $u: \Omega \rightarrow \mathbb{R}^{n}$ and the deformation gradient $F=\nabla u$.

To formulate the constitutive equations, we note that many choices of independent/dependent variables are possible. We take the triplet (F, D, B) and start from the free energy function $f: \mathbb{M}^{n \times n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, i.e., $f=f(F, D, B)$.

The energy of the body is given by

$$
\begin{equation*}
I(u, D, B)=\int_{\Omega} f(F, D, B) d x \tag{7.1}
\end{equation*}
$$

the total energy then consists of this term plus the energy of the vacuum electromagnetic field in the exterior of Ω and the term describing the loads. The integral in (7.1) falls within the format (1.1) under the identifications which we now describe separately for $n=3$ and 2 .
7.1 Dimension three Here $s=5$ and the the variable $\omega=\left(\omega_{1}, \ldots, \omega_{5}\right)$ is formed by $\omega_{1}, \omega_{2}, \omega_{3}$ as in (1.7) and by ω_{4}, ω_{5} as in (1.10). That the forms ω_{1}, ω_{2}, ω_{3} are closed has been explained in Section 6. In the case of ω_{4} and ω_{5} Formula (2.6) provides

$$
d \omega_{4}=\frac{1}{2} \varepsilon_{i j k} D_{i, l} d x_{l} \wedge d x_{j} \wedge d x_{k}=D_{i, i} d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

because

$$
\frac{1}{2} \varepsilon_{i j k} d x_{l} \wedge d x_{j} \wedge d x_{k}=\delta_{i l} d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

and as a consequence of

$$
d x_{l} \wedge d x_{j} \wedge d x_{k}=\varepsilon_{l j k} d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

Referring to Theorem 4.1 and to the rule that follows it, we form the complete list of mult. ext. quasiaffine functions by taking all mutual products of $\omega_{1} \ldots, \omega_{5}$ of degree ≤ 3 (since $n=3$). This gives the set of differential forms which consists of the constant form of degree 0 equal to 1 identically and of the forms

$$
\begin{array}{cl}
\omega_{\alpha}, \quad \omega_{\beta} \wedge \omega_{\gamma}, \quad \omega_{1} \wedge \omega_{2} \wedge \omega_{3}, \quad 1 \leq \alpha \leq 3, \quad 1 \leq \beta<\gamma \leq 3 \\
\omega_{4}, \quad \omega_{5}, \quad \omega_{\alpha} \wedge \omega_{4}, \quad \omega_{\alpha} \wedge \omega_{5}, \quad 1 \leq \alpha \leq 3 . \tag{7.3}
\end{array}
$$

This is isomorphic to

$$
\begin{equation*}
F, \quad \operatorname{cof} F, \quad \operatorname{det} F, \quad D, \quad B, \quad F D, \quad F B . \tag{7.4}
\end{equation*}
$$

Indeed, it was shown in Section 6 that (7.2) is isomorphic to the first three members of (7.4); the first two members of (7.3) of course correspond to D and B, and for the remaining two members it suffices to note that

$$
\omega_{\alpha} \wedge \omega_{4}=(F D)_{\alpha} d x_{1} \wedge d x_{2} \wedge d x_{3}, \quad \omega_{\alpha} \wedge \omega_{5}=(F B)_{\alpha} d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

The list (7.4) was determined by a direct calculation in [34]. Thus the free energy $f=f(F, D, B)$ is mult. ext. polyconvex if and only if there exists a convex function Φ such that

$$
f(F, D, B)=\Phi(F, \operatorname{cof} F, \operatorname{det} F, D, B, F D, F B)
$$

for each $(F, D, B) \in \mathbb{M}^{n \times n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}[34$; Theorem 6.5].
7.2 Dimension two Then (7.1) takes the form (1.1) with $s=4$ and with the 1 -forms $\omega_{1}, \ldots, \omega_{4}$ given by

$$
\begin{gathered}
\omega_{\alpha}=F_{\alpha i} d x_{i}, \quad 1 \leq \alpha \leq 2 \\
\omega_{3}=D_{1} d x_{2}-D_{2} d x_{1}, \quad \omega_{4}=B_{1} d x_{2}-B_{2} d x_{1}
\end{gathered}
$$

The reader will have no difficulty to check that the list of mult. ext. quasiaffine functions is

$$
\omega_{1}, \quad \omega_{2}, \quad \omega_{3}, \quad \omega_{4}, \quad \omega_{\mathfrak{b}} \wedge \omega_{\mathfrak{c}}, \quad 1 \leq \mathfrak{b}<\mathfrak{c} \leq 4
$$

which is isomorphic to

$$
\begin{equation*}
F, \quad \operatorname{det} F, \quad D, \quad B, \quad F D, \quad F B, \quad D \times B . \tag{7.5}
\end{equation*}
$$

We note that the term $D \times B$ comes from the product $\omega_{3} \wedge \omega_{4}$, which is a 2-form in dimension 2, since ω_{3} and ω_{4} are 1-forms. This has no analog in dimension $n=3$ since the corresponding term $\omega_{4} \wedge \omega_{5}$ (where ω_{4}, ω_{5} are as in (1.10)), being a product of two 2 -forms, is a 4 -form in dimension 3, and hence $\omega_{4} \wedge \omega_{5}$ vanishes. From (7.5) one finds that $f=f(F, D, B)$ is mult. ext. polyconvex if and only if there exists a convex function Φ such that

$$
f(F, D, B)=\Phi(F, \operatorname{det} F, D, B, F D, F B, D \times B)
$$

[34; Theorem 6.5].

8 References

1 Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity Arch. Rational Mech. Anal. 63 (1977) 337-403
2 Ball, J. M., Currie, J. C.; Olver, P. J.: Null lagrangians, weak continuity and variational problems of any order J. Funct. Anal. 41 (1981) 135-174
3 Ball, J. M.; Murat, F.: $W^{1, p}$-quasiconvexity and variational problems for multiple integrals J. Funct. Anal. 58 (1984) 225-253
4 Bandyopadhyay, S.; Dacorogna, B.; Sil, S.: Calculus of variations with differential forms Journal of European Math. Soc. 17 (2015) 1009-1039
5 Bandyopadhyay, S.; Sil, S.: Exterior convexity and classical calculus of variations ESAIM: Control, Optimisation and Calculus of Variations 22 (2016) 338354
6 Bishop, R. L.; Crittenden, R. J.: Geometry of manifolds Academic press, New York 1964
7 Braides, A.; Fonseca, I.; Leoni, G.: \mathscr{A}-quasiconvexity: relaxation and homogenization ESAIM: Control, Optimisation and Calculus of Variations 5 (2000) 539-577

8 Brigadnov, I. A.; Dorfmann, L.: Mathematical modeling of magneto-sensitive elastomers Int. J. Solid Struct. 40 (2003) 4659-4674
9 Bustamante, R.: Transversely isotropic nonlinearly magnetoelastic solids Acta Mech. 210 (2010) 183-214
10 Bustamante, R.; Merodio, J.: Constitutive structure in coupled non-linear electroelasticity: Invariant descriptions and constitutive restrictions Int. J. Non-Linear Mech. 46 (2011) 1315-1323
11 Dacorogna, B.: Weak continuity and weak lower semicontinuity of non-linear functionals Springer, Berlin 1982
12 Dacorogna, B.; Fonseca, I.: A-B quasiconvexity and implicit partial differential equations Calc. of Var. PDE 14 (2002) 115-149
13 Destrade, M.; Ogden, R. W.: On magneto-acoustic waves in finitely deformed elastic solids Math. Mech. Solids 16 (2011) 594-604
14 Dorfmann, A.; Ogden, R. W.: Magnetoelastic modelling of elastomers Europ. J. Mech. A/Solids 22 (2003) 497-507

15 Dorfmann, A.; Ogden, R. W.: Nonlinear magnetoelastic deformations of elastomers Acta Mech. 167 (2004) 13-28
16 Dorfmann, A.; Ogden, R. W.: Nonlinear electroelasticity Acta Mech. 174 (2005) 167-183
17 Dorfmann, A.; Ogden, R. W.: Nonlinear electroelastic deformations J. Elasticity 82 (2005) 99-127
18 Federer, H.: Geometric measure theory Springer, New York 1969
19 Fonseca, I.; Müller, S.: \mathscr{A}-quasiconvexity, lower semicontinuity, and Young measures SIAM J. Math. Anal. 30 (1999) 1355-1390

20 Itskov, M.; Khiem, V. N.: A polyconvex anisotropic free energy function for electro- and magneto-rheological elastomers Mathematics and Mechanics of Solids 21 (2016) 1126-1137
21 Iwaniec, T.; Lutoborski, A.: Integral estimates for null-Lagrangians Arch. Rational Mech. Anal. 125 (1993) 25-79
22 Krämer, J.; Krömer, S.; Kružík, M.; Pathó, G.: A -quasiconvexity at the boundary and weak lower semicontinuity of integral functionals Advances in Calculus of Variations 10 (2015) 49-67

23 Matias, J.; Morandotti, M.; Santos, P. M.: Homogenization of functionals with linear growth in the context of \mathscr{A}-quasiconvexity Applied Mathematics and Optimization 72 (2015) 523-547

24 Morrey, Jr, C. B.: Quasi-convexity and the lower semicontinuity of multiple integrals Pacific J. Math. 2 (1952) 25-53
25 Morrey, Jr, C. B.: Multiple integrals in the calculus of variations Springer, New York 1966

26 Müller, S.: Variational Models for Microstructure and Phase Transitions In Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture notes in Math. 1713 S. Hildebrandt, M. Struwe (ed.), pp. 85-210, Springer, Berlin 1999

27 Müller, S.; Tang, Q.; Yan, B. S.: On a new class of elastic deformations not allowing for cavitation Ann. Inst. H. Poincaré, Analyse non linéaire 11 (1994) 217-243

28 Murat, F.: Compacité par compensation Ann. Scuola Normale Sup. Pisa Cl. Sci. S. IV 5 (1978) 489-507

29 Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothése de rang constant Ann. Scuola Normale Sup. Pisa Cl. Sci. S. IV 8 (1981) 68-102
30 Reshetnyak, Yu. G.: General theorems on semicontinuity and on convergence with a functional Siberian Math. J. 8 (1967) 801-816
31 Robbin, J. W.; Rogers, R. C.; Temple, B.: On weak continuity and the Hodge decomposition Trans. Amer. Math. Soc. 303 () 609-618
32 Šilhavý, M.: The mechanics and thermodynamics of continuous media Springer, Berlin 1997
33 Šilhavý, M.: Normal currents: structure, duality pairings and div-curl lemmas Milan Journal of Mathematics 76 (2008) 275-306
34 Šilhavý, M.: A variational approach to electro-magneto-elasticity: convexity conditions and existence theorems Math. Mech. Solids (2017) http://journals .sagepub.com/doi/metrics/10.1177/1081286517696536
35 Tartar, L.: Compensated compactness and applications to partial differential equations In Nonlinear Analysis and Mechanics: Heriot-Watt Symposium R. Knops (ed.), pp. 136-212, Longman, Harlow, 1979

36 Whitney, H.: Geometric integration theory Princeton University Press, Princeton 1957

[^0]: ${ }^{\star}$ Greek indices are used to label the components of ω and similar objects; Latin indices are used to label the components of x and the partial derivatives with respect to them. These two types of indices are tacitly assumed to run from 1 to s and from 1 to n, respectively, unless stated otherwise.

[^1]: * We also mention works by Dacorogna \& Fonseca [12] and Bandyopadhyay \& Sil [4-5].
 ** In this and the next subsections, both Greek and Latin indices run from 1 to 3; the summation convention applies to Latin indices.

[^2]: ${ }^{\star}$ Equation (5.5) denotes the weak (weak*) convergence of the components of ω_{j}, i.e., $\int_{\Omega} \psi \cdot \omega_{j} d x \rightarrow \int_{\Omega} \psi \cdot \omega d x$ for every $\psi \in L^{p^{\prime}}\left(\Omega, \Lambda^{k}\right)$. Similarly, (5.6) (below) denotes the weak convergence in the sense of measures, i.e., $\int_{\Omega} \gamma \cdot \omega_{j}^{q} d x \rightarrow \int_{\Omega} \gamma \cdot \omega^{q} d x$ for every $\gamma \in C_{0}\left(\Omega, \wedge^{\operatorname{deg}(q)}\right)$.

