Photosynthetica 2019, 57(1):113-120 | DOI: 10.32615/ps.2019.025

Coordinated changes in photosynthetic machinery performance and water relations of the xerophytic shrub Ziziphus lotus (L.) Lam. (Rhamnaceae) following soil drying

M. MARAGHNI1, M. GORAI1,2, K. STEPPE3, M. NEFFATI1, M.C. VAN LABEKE4
1 Laboratoire des Ecosystèmes Pastoraux et Valorisation des Plantes Spontanées et des Micro-organismes Associés, Institut des Régions Arides, Université de Gabès, 4119 Médenine, Tunisia
2 Unité de Valorisation des Biomolécules Actives, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, 4119 Médenine, Tunisia Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653,
3 9000 Ghent, Belgium
4 Department of Plant Production, Faculty of Bioscience Engineering Ghent University, Coupure links 653, 9000 Gent, Belgium

Aim of this study was to investigate the effect of water shortage in wild jujube plants, Ziziphus lotus (L.) Lam, and how it is related to its ecological success. All leaf anatomical traits were significantly affected following soil drying. Stressed plants displayed more negative stem water potential (ψw) and osmotic potential values of ca. -3.5 and -4.5 MPa, respectively, after 30 d. The relative water content declined although it still maintained high values (≥ 75%). The net photosynthetic rate, stomatal conductance, and transpiration rate were significantly inhibited as ψw decreased. However, the intrinsic water-use efficiency increased as water deficit was intensified; the difference became significant only after 30 d. As a consequence, the effective quantum yield of PSII photochemistry and the photochemical quenching coefficient significantly decreased although the maximal quantum yield of PSII photochemistry ratio remained statisticaly unchanged. Plants could maintain their water status sufficiently by increasing proline 1.7-fold and sucrose 1.8-fold in their leaves, respectively. The largest accumulation of both solutes may avoid photodamages at cellular level and play a critical role in maintaining osmotic adjustment.

Keywords: chlorophyll fluorescence; drought; gas exchange; osmotic adjustment; water relations..

Received: November 27, 2017; Accepted: July 20, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
MARAGHNI, M., GORAI, M., STEPPE, K., NEFFATI, M., & LABEKE, M.C. (2019). Coordinated changes in photosynthetic machinery performance and water relations of the xerophytic shrub Ziziphus lotus (L.) Lam. (Rhamnaceae) following soil drying. Photosynthetica57(1), 113-120. doi: 10.32615/ps.2019.025.
Download citation

References

  1. Arndt S.K., Clifford, S.C., Wanek, W. et al.: Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. - Tree Physiol. 21: 705-715, 2001. Go to original source...
  2. Aroca R., Porcel R., Ruiz-Lozano J.M.: Regulation of root water uptake under abiotic stress conditions. - J. Exp. Bot. 63: 43-57, 2012. Go to original source...
  3. Augé M.R., Stodola A.J.W., Moore J.L. et al.: Comparative dehydration tolerance of foliage of several ornamental crops. - Sci. Hortic.-Amsterdam 98: 511-516, 2003.
  4. Bacelar E.A., Correia C.M., Moutinho-Pereira J.M. et al.: Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. - Tree Physiol. 24: 233-239, 2004. Go to original source...
  5. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  6. Bates L.S., Waldren R.P., Teare I.K.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-208, 1973. Go to original source...
  7. Bosabalidis A.M., Kofidis G.: Comparative effects of drought stress on leaf anatomy of two olive cultivars. - Plant Sci. 163: 375-379, 2002. Go to original source...
  8. Boussadia O., Ben Mariem F., Mechri B. et al.: Response to drought of two olive tree cultivars (cv Koroneki and Meski). - Sci. Hortic.-Amsterdam 116: 388-393, 2008.
  9. Callister A.N., Arndt S.K., Adams M.A.: Comparison of four methods for measuring osmotic potential of tree leaves. - Physiol. Plantarum 127: 383-392, 2006. Go to original source...
  10. Ceccarelli S., Grando S. Maatougui M. et al.: Plant breeding and climate changes. - J. Agri. Sci. 148: 627-638, 2010. Go to original source...
  11. Changhai S., Baodi D., Qiao Y.Z.: Physiological regulation of high transpiration efficiency in winter wheat under drought conditions. - Plant. Soil. Eviron. 56: 340-347, 2010. Go to original source...
  12. Chapotin S.M., Razanameharizaka J.H., Holbrook N.M.: Baobab trees (Adan-sonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. - New. Phytol. 169: 549-559, 2006. Go to original source...
  13. Chaves M.M.: Effects of water deficits on carbon assimilation. - J. Exp. Bot. 42: 1-16, 1991. Go to original source...
  14. Choudhary R., Sankhla N., Trivedi S. et al.: Photosynthesis, chlorophyll fluorescence, osmoregulatory solutes and enzyme activities in ber (Ziziphus rotundifolia) under moisture stress. - Proc. Plant. Growth Regul. Soc. Am. 23: 206-210, 1996.
  15. Clifford S.C., Arndt S.K., Corlett J.E. et al.: The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). - J. Exp. Bot. 49: 967-977, 1998. Go to original source...
  16. Demming-Adams B., Adams III W.W., Barker D.H. et al.: Using Chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996.
  17. De Smedt S., Cuní Sanchez A., Van den Bilcke N. et al.: Functional responses of baobab (Adansonia digitata L.) seedlings to drought conditions: differences between western and south-eastern Africa. - Environ. Exp. Bot. 75: 181-187, 2012. Go to original source...
  18. Farrar J., Pollock C., Gallanger J.: Sucrose and the interaction of metabolism in vascular plants. - Plant Sci. 154: 1-11, 2000. Go to original source...
  19. Flexas J., Escalona J.M., Medrano H.: Water stress induces different photosynthesis and electron transport rate regulation in grapevine. - Plant Cell Environ. 22: 39-48, 1999. Go to original source...
  20. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthesic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  21. Gorai M., Maraghni M., Neffati M.: The relationship between phenological traits and water potential patterns of the wild jujube Ziziphus lotus in southern Tunisia. - Plant Ecol. Divers. 3: 273-280, 2010. Go to original source...
  22. Gorai M., Laajili W., Santiago L.S. et al.: Rapid recovery of photosynthesis and water relations following soildrying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments. - Environ. Exp. Bot. 109: 113-121, 2015. Go to original source...
  23. Gorantla M., Babu P.R., Lachagari V.B.R. et al.: Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. - J. Exp. Bot. 58: 253-265, 2007. Go to original source...
  24. Kala S., Godara A.K., Sehrawat S.K. et al.: Effect of moisture stress on leaf water potential, osmotic potential and relative water content in Ziziphus species. - Haryana J. Hort. Sci. 36: 210-211, 2007.
  25. Kawaguchi R., Girke T., Bray E.A. et al.: Differential mRNA trans-lation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. - Plant J. 38: 823-839, 2004. Go to original source...
  26. Kreuzwieser J., Rennenberg H.: Molecular and physiological responses of trees to waterlogging stress. - Plant Cell Environ. 37: 2245-2259, 2014. Go to original source...
  27. Kulkarni M., Schneider B., Raveh E. et al.: Leaf anatomical characteristics and physiological responses to short term drought in Ziziphus mauritiana (Lamk.). - Sci. Hortic.-Amsterdam 124: 316-322, 2010.
  28. Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. - Plant Cell Environ. 25: 275-294, 2002. Go to original source...
  29. Le Floc'h E.: [Contribution to an ethnobotanical study of Tunisian flora]. Pp. 402. Publications Scientifiques Tunisiennes, Tunis 1983. [In French]
  30. Maraghni M., Gorai M., Neffati M.: Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. - S. Afr. J. Bot. 76: 453-459, 2010. Go to original source...
  31. Maraghni M., Gorai M., Neffati M.: The influence of waterdeficit stress on growth, water relations and solute accumulation in wild jujube (Ziziphus lotus). - J. Ornam. Hortic. Plant. 1: 63-72, 2011.
  32. Maraghni M., Gorai M., Neffati M. et al.: Differential responses to drought stress in leaves and roots of wild jujube, Ziziphus lotus. - Acta Physiol. Plant. 36: 945-953, 2014. Go to original source...
  33. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  34. McDowell N., Pockman W.T., Allen C. et al.: Mechanisms of plant sur-vival and mortality during drought: why do some plants survive while otherssuccumb to drought? - New Phytol. 178: 719-739, 2008. Go to original source...
  35. Morgan J.M.: Osmoregulation and water stress in higher plants. - Annu. Rev. Plant Physio. 35: 299-319, 1984. Go to original source...
  36. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. a response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  37. Nikinmaa E., Hölttä T., Hari P. et al.: Assimilate transport in phloem sets conditions for leaf gas exchange. - Plant Cell Environ. 36: 655-669, 2013. Go to original source...
  38. Ort D.R., Baker N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis? - Curr. Opin. Plant Biol. 5: 193-198, 2002. Go to original source...
  39. Perera I.Y., Hung C.Y., Moore C.D. et al.: Trans-genic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. - Plant Cell 20: 2876-2893, 2008. Go to original source...
  40. Raven J.A.: Selection pressures on stomatal evolution. - New Phytol. 153: 371-386.
  41. Reddy A.R., Chaitanya K.V., Vivekanandan M.: Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. - J. Plant Physiol. 161: 1189-1202, 2004. Go to original source...
  42. Rouhi V., Samson R., Lemeur R. et al.: Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. - Environ. Exp. Bot. 59: 117-129, 2007. Go to original source...
  43. Serraj R., Sinclair T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? - Plant Cell Environ. 25: 333-341, 2002. Go to original source...
  44. Sharkey T.D.: Water stress effects on photosynthesis. - Photosynthetica 24: 651-658, 1990.
  45. Song J., Shi G.W., Xing S. et al.: Ecophysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. - Aquat. Bot. 91: 311-317, 2009. Go to original source...
  46. Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. - Environ. Exp. Bot. 51: 45-56, 2004. Go to original source...
  47. Tardieu F., Simmonneau T.: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. - J. Exp. Bot. 49: 419-432, 1998. Go to original source...
  48. Torrecillas A., Galego R., Pérez-Pastor A. et al.: Gas exchange and water relations of young apricot plants under drought conditions. - J. Agri. Sci. 132: 445-452, 1999. Go to original source...
  49. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  50. Zhang S.R., Song J., Wang H. et al.: Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. - J. Plant Ecol. 3: 259-267, 2010. Go to original source...