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NORMALIZATION OF MV -ALGEBRAS
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Abstract. We consider algebras determined by all normal identities of MV -algebras,
i.e. algebras of many-valued logics. For such algebras, we present a representation based on
a normalization of a sectionally involutioned lattice, i.e. a q-lattice, and another one based
on a normalization of a lattice-ordered group.
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1. Preliminaries, normalization, q-lattices

1.1. Normal identities, normally presentable variety. Let τ be a similarity

type and X = {x1, x2, . . .} a set of variables. Denote by Tτ the set of all terms of type

τ . Let p, q be n-ary terms of the given type τ . If either none of them is a variable or

both p, q are the same variable, we say that the identity p(x1, . . . , xn) = q(x1, . . . , xn)

is normal.

Let V be a variety of type τ . Let Id(V) and IdN (V) denote the sets of all identities

and of all normal identities, respectively, valid in V . The variety V is called normally

presentable if the equality Id(V) = IdN (V) holds, cf. [7], [8], [9].

If Id(V) 6= IdN (V) then V is called here non-normally presentable. If this is

the case then there is a unary term v such that the identity v(x) = x belongs to

Id(V) \ IdN (V), and V = Mod(IdN (V) ∪ {v(x) = x}). As usual, for any set Σ of

identities of type τ , Mod(Σ) stands for the class of all algebras of type τ that satisfy

all identities from Σ.
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Lemma 1.1. If a non-normally presentable variety V is given by a system Σ of

identities, V = Mod(Σ), and v(x) = x belongs to Σ, then there exists a system of

normal identities valid in V , ΣN ⊂ IdN (V), such that ΣN ∪ {v(x) = x} is equivalent

to Σ, V = Mod(ΣN ∪ {v(x) = x}).

� ��!�!#"
. Under our assumptions, if a non-normal identity t(x1, . . . , xn) = xi,

v 6= t ∈ Tτ , is satisfied in V then it can be replaced by the normal identity

t(v(x1), . . . , v(xn)) = v(xi) which, together with v(x) = x, gives back the original

one ([11], Proof of Prop. 1, p. 704). Then ΣN consisting of all normal identities from

Σ and of those identities t(v(x1), . . . , v(xn)) = v(xi) that replace the non-normal

identities t(x1, . . . , xn) = xi from Σ, different from v(x) = x, has the required prop-

erty. �

Consequently, w(x) = x is satisfied in V for another unary term w iff the identity

v(x) = w(x) belongs to IdN (V). So v is determined uniquely up to a normal identity

valid in V , and will be called the assigned term of V , [7].

1.2. Normalization. A normalization of V (called a nilpotent shift of a variety

in [7], [9], [11]) is a variety N(V) introduced by N(V) = Mod(IdN (V)). That is,

N(V) consists of all τ -algebras which satisfy all normal identities of V . In general V

is a subvariety of N(V), and V = N(V) holds if and only if the variety is normally

presentable.

Corollary 1.2. Let V be a non-normally presentable variety with an assigned

term v. Let N = Mod(ΞN ) be a normally presentable variety with the system of

defining identities ΞN ⊂ IdN (V). Then N = N(V) iff all defining identities of V can

be proved from the system ΞN ∪ {v(x) = x}.

Given a normally presentable variety N and a non-normal identity v(x) = x then

V = Mod(Id(N ) ∪ {v(x) = x}) is the unique variety for which N(V) = N .

Proposition 1.3 ([11], Theorem 2, p. 705). If V = Mod(ΣN ∪ {v(x) = x}) is a

variety of type τ with the set of operation symbols F where ΣN ⊂ IdN (V) then the

normalization is characterized by identities as follows: N(V) = Mod(ΣN ∪Σv) where

the set of additional identities is

Σv = {f(x1, . . . , xn) = v(f(x1, . . . , xn)),

f(x1, . . . , xj , . . . , xn) = f(x1, . . . , v(xj), . . . , xn) ; f ∈ F, j = 1, . . . , n}.

For the proof, see [11], Theorem 1, p. 704 and Lemma, p. 705.
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1.3. Skeleton. Given a non-normally presentable variety V (of type τ) with an

assigned term v, let A ∈ N(V). Let us introduce a skeleton of A as a set SkA = {a ∈

A ; vA(a) = a}, and call its elements skeletal. Skeletal elements are exactly the results

of term operations, i.e. Sk A = {tA(a1, . . . , an) ; ai ∈ A, t ∈ Tτ}. The algebra A is

decomposed into classes Ca = {d ∈ A ; v(d) = v(a)}, a ∈ Sk A, called cells of A in

[7]. The decomposition is formed exactly by the congruence classes of the congruence

relation Φ = {〈a, b〉 ; tA(a, a2, . . . , an) = tA(b, a2, . . . , an), t ∈ Tτ , a2, . . . , an ∈ A}.

Moreover, the map [a]Φ 7→ vA(a) is an isomorphism A/Φ → SkA.

Lemma 1.4 ([7], pp. 37–38). If A ∈ N(V) then Sk A is the maximal subalgebra

of A belonging to V .

A construction of a nilpotent shift based on choice algebras is described in [7], [8].

1.4. q-lattices as normalization of lattices. A quasiorder on a set A is a

reflexive and transitive binary relation � on A, and (A,�) is called a quasiordered

set.

As is well known, lattices have two faces, can be viewed as algebras and simultane-

ously as ordered sets. An analogous situation occurs also for algebras resulting from

the normalization of lattices, the so-called q-lattices. A q-lattice can be introduced

by identities, but can be characterized as well as a lattice-quasiordered set (with

suprema and infima for cells) endowed with a choice function, [6], pp. 7–8.

For our purpose, a variety L of lattices can be defined (alternatively) as a variety

of type (2, 2) and signature (∨,∧) given by the following system of identities (note

that only (I)∨ is not normal):

commutativity:

(C)∨ : x ∨ y = y ∨ x, (C)∧ : x ∧ y = y ∧ x,

associativity:

(AS)∨ : (x ∨ y) ∨ z = x ∨ (y ∨ z), (AS)∧ : (x ∧ y) ∧ z = x ∧ (y ∧ z),

weak absorption:

(WAB)∨ : x ∨ (x ∧ y) = x ∨ x, (WAB)∧ : x ∧ (x ∨ y) = x ∧ x,

idempotency: equalization:

(I)∨ : x ∨ x = x, (EQ): x ∧ x = x ∨ x.

The variety L is not normally presentable, we can choose e.g. v(x) = x ∨ x as

an assigned term (or equivalently, x ∧ x, [8], p. 328), and construct the normali-

zation. Since there is a single non-normal identity among the defining ones we

285



can apply the general theory to obtain N(L) = Mod(ΣN ∪ Σv) where ΣN =

{(C)∧, (C)∨, (AS)∧, (AS)∨, (EQ), (WAB)∧, (WAB)∨} and Σv consists of the identi-

ties

Σv : x ∨ y = (x ∨ x) ∨ y, x ∨ y = x ∨ (y ∨ y), (x ∨ y) ∨ (x ∨ y) = x ∨ y,

x ∧ y = (x ∨ x) ∧ y, x ∧ y = x ∧ (y ∨ y), (x ∧ y) ∨ (x ∧ y) = x ∧ y.

In [6], the variety of q-lattices was introduced as

Mod({(C)∨, (C)∧, (AS)∨, (AS)∧, (WAB)∨, (WAB)∧, (EQ), (WI)∨, (WI)∧})

where

(WI)∨ : x ∨ y = x ∨ (y ∨ y), (WI)∧ : x ∧ y = x ∧ (y ∧ y) (weak idempotency)

(see also [7], [8] etc.). It can be easily seen that N(L) is exactly the variety of the q-

lattices. In fact, (WI)∧ follows immediately from the identities of N(L) (and (WI)∨

is among the defining ones). Vice versa, if (WI)∨ holds then by (C)∨ and (AS)∨,

(x ∨ x) ∨ y = y ∨ (x ∨ x) = y ∨ x = x ∨ y and (x ∨ y) ∨ (x ∨ y) = x ∨ (x ∨ (y ∨ y)) =

x ∨ (x ∨ y) = x ∨ y. If (WI)∧ is satisfied then also x ∧ y = (x ∧ x) ∧ y holds,

(x ∨ x) ∧ y = (x ∧ x) ∧ y = x ∧ y follows by (EQ), and by (EQ) and duality,

x ∧ (y ∨ y) = x ∧ (y ∧ y) = x ∧ y, (x ∧ y) ∨ (x ∧ y) = (x ∧ y) ∧ (x ∧ y) = x ∧ y.

An algebra (A,∨) satisfying the identities (C)∨, (AS)∨ and (WI)∨ is called a join-

q-semilattice. A q-lattice is called distributive if it satisfies the distributive identity

or its dual (which are both normal).

2. Normalization of MV -algebras

An MV -algebra is an algebra A = (A,⊕,¬, 0) of type (2, 1, 0) satisfying the iden-

tities

(MV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(MV2) x ⊕ y = y ⊕ x,

(MV3) x ⊕ 0 = x,

(MV4) ¬¬x = x,

(MV5) x ⊕ ¬0 = ¬0,

(MV6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

Clearly, also the (normal) identities ¬¬x = x ⊕ 0 and ¬¬¬x = ¬x hold.

MV -algebras were introduced as an algebraic tool for many valued logics, [2].

They were studied as an algebraic counterpart of the  Lukasziewicz infinite val-

ued propositional logic, [3], [12]. Later on, a close connection to other structures
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was discovered, namely to lattice-ordered abelian groups, [4], bounded commuta-

tive BCK-algebras, [13], and bounded DRl-semigroups, [14] etc. The MV -algebras

form a variety MV = Mod({(MV1)–(MV6)}) that is not normally presentable, with

v(x) = x ⊕ 0 as an assigned term (or equivalently, v′(x) = ¬¬x). According to

Proposition 1.3, the normalization N(MV ) has a basis consisting of the following

normal identities: (MV1), (MV2), (MV5), (MV6), ¬¬x = x⊕ 0, x⊕ y = (x⊕ 0)⊕ y,

x ⊕ y = x ⊕ (y ⊕ 0), (x ⊕ y) ⊕ 0 = x ⊕ y, ¬(x ⊕ 0) = ¬x, ¬x ⊕ 0 = ¬x, 0 ⊕ 0 = 0.

Denote

(N1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(N2) x ⊕ y = y ⊕ x,

(N3) 0 ⊕ 0 = 0,

(N4) ¬¬x = x ⊕ 0,

(N5) x ⊕ ¬0 = ¬0,

(N6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

(N7) ¬(x ⊕ 0) = ¬x,

(N8) ¬x ⊕ 0 = ¬x,

(N9) (x ⊕ y) ⊕ 0 = x ⊕ y.

Then N(MV ) = Mod(IdN (MV )) = Mod({(N1)–(N9)}). Further, denote

(N4′) ¬¬0 = 0 ⊕ 0,

(N10) ¬¬¬x = ¬x.

Lemma 2.1. The following implications hold:

(i) (N4) (or (N4′)) and (N3) imply ¬¬0 = 0,

(ii) (N7) and (N8) imply ¬x ⊕ 0 = ¬(x ⊕ 0),

(iii) (N2), (N3), (N4′), (N5)–(N9) imply (N4),

(iv) (N4) and (N7) imply (N10),

(v) (N10) and (N4) imply (N7), (N8).

� ��!�!#"
. The first two cases are obvious. Let us verify (iii). (N8) used for

¬x yields ¬¬x = ¬¬x ⊕ 0. Using (ii), (N9), (N6), (N2), (N5) and (i) we obtain

¬¬x⊕ 0 = ¬(¬x⊕ 0)⊕ 0 = ¬(¬0⊕x)⊕x = ¬(¬0)⊕x = 0⊕x = x⊕ 0, proving (iii).

Now (N4) and (N7) yield ¬¬¬x = ¬(x⊕0) = ¬x, and (iv) holds. Suppose (N10) and

(N4) are satisfied. Then ¬x = ¬(¬¬x) = ¬(x⊕ 0), similarly ¬x = ¬¬(¬x) = ¬x⊕ 0,

and (v) holds. �

So N(MV ) = Mod({(N1)–(N3), (N4′), (N5), (N6), (N9), (N10)}). The skeleton

of (M,⊕,¬, 0) from (MV ) is Sk M = {a ∈ M ; a = a⊕ 0}, and (Sk M,⊕,¬, 0) is an

MV -algebra.

It is well-known (see [5]) that MV -algebras with respect to a natural order defined

by x 6 y iff ¬x ⊕ y = ¬0 form a bounded distributive lattice where x ∨ y = ¬(¬x ⊕
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y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y). A similar statement can be formulated for their

normalizations:

Proposition 2.2. Let A = (A,⊕,¬, 0) ∈ N(MV ). Define x � y iff ¬x ⊕ y = ¬0.

Then (A,�) is a bounded distributive q-lattice with 0 as the least element and ¬0

as the greatest one, in which x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

� ��!�!#"
. The proof follows from the fact that the operations ∨ and ∧ satisfy

all normal identities of a lattice, hence (A,�) is a q-lattice. Moreover, a q-lattice is

distributive iff its skeleton is distributive. �

3. Normalization of l-groups

MV -algebras can be represented as intervals in abelian lattice-ordered groups, see

[12]. We are going to prove an analogous statement for algebras from the normaliza-

tion N(MV ) of the variety MV ; up to isomorphism, any algebra M ∈ N(MV ) can

be realized on a suitable section (= interval) of some algebra from the normalization

of the variety of (abelian) l-groups.

An abelian lattice-ordered group, shortly an l-group, is an algebra G = (G, +,−,

0,∨,∧) of type (2, 1, 0, 2, 2) such that (G, +,−, 0) is an abelian group, (G,∨,∧) is a

lattice (with induced order 6) and + distributes with each of the operations ∨ and

∧. That is, G is an (abelian) l-group if and only if it fulfils the identities

(A1) x + y = y + x,

(A2) (x + y) + z = x + (y + z),

(A3) x + 0 = x,

(A4) x + (−x) = 0,

(A5) x ∨ y = y ∨ x, x ∧ y = y ∧ x,

(A6) (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z),

(A7) x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x,

(A8) x ∨ x = x, x ∧ x = x,

(A9) (x ∨ y) + z = (x + z) ∨ (y + z), (x ∧ y) + z = (x + z) ∧ (y + z).

One readily sees that (A7) and (A8) can be equivalently replaced by normal iden-

tities

(A7′) x ∨ (x ∧ y) = x ∨ x, x ∧ (x ∨ y) = x ∧ x,

(A8′) x ∨ x = x + 0, x ∧ x = x + 0.

Now the only non-normal identity is (A3). The variety of l-groups

LG = Mod({(A1)–(A6), (A7′), (A8′), (A9)})
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is not normally presentable, we can take e.g. v(x) = x+0 as an assigned term of LG

(or equivalently, w(x) = x ∧ x, or w′(x) = x ∨ x), and construct the normalization.

Let ΣN be the set consisting of (A1), (A2), (A4)–(A6), (A7′), (A8′), (A9). Due to

Proposition 1.3, N(LG) = Mod(ΣN ∪ Σv) where Σv consists of the identities

(A10) x + y = x + y + 0,

(A11) −x = −(x + 0),

(A12) −x = −x + 0,

(A13) x ∨ y = (x + 0) ∨ y,

(A14) x ∧ y = (x + 0) ∧ y,

(A15) x ∨ y = (x ∨ y) + 0,

(A16) x ∧ y = (x ∧ y) + 0,

(A17) 0 + 0 = 0

(and of the identities x∨y = x∨ (y +0), x∧y = x∧ (y +0) that can be omitted since

they easily follow from (A13), (A14) by interchanging x, y and using commutativity).

(A15) follows from (A9) and (A13), (x∨y)+0 = (x+0)∨(y+0) = x∨(y+0) = x∨y.

Similarly, (A16) can be proved from (A9) and (A14). Moreover, by (A4) and (A10)

we get 0 + 0 = x + (−x) + 0 = x + (−x) = 0. We have obtained

Proposition 3.1. The normalization N(LG) = Mod(IdN (LG)) of LG is

N(LG) = Mod({(A1), (A2), (A4)–(A6), (A7′), (A8′), (A9)–(A14)}).

To emphasize the expected fact that (G,∨,∧) is a q-lattice whenever G =

(G, +,−, 0,∨,∧) belongs to N(LG) we can use

(A13′) x ∨ y = x ∨ x ∨ y

and

(A14′) x ∧ y = x ∧ x ∧ y

instead of (A13) and (A14), respectively.

$&%('*)+��,
3.2. It is well known that the lattice of an l-group is distributive

(e.g. [1], p. 3). Since distributivity is a normal identity, the q-lattice corresponding

to an algebra from N(LG) is distributive as well.

Given an algebra G ∈ N(LG), the skeleton SkG = {a ∈ G ; a = a + 0} = {a ∈

G ; a = a ∧ a} is the carrier set of an l-group (SkG, +,−, 0,∨,∧).

Since (G,∨,∧) is a q-lattice, the binary relation � defined by x � y iff x∧x = x∧y

(or equivalently, x � y iff x ∨ y = y ∨ y) is a quasiorder on G.

Let us verify that (right) translations Rz : x 7→ x + z are isotone with respect to

this quasiorder.
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Lemma 3.3. If x � y then x + z � y + z.

� ��!�!#"
. Let x � y, i.e. x ∧ x = x ∧ y. Then

(x + z) ∧ (x + z) = (x ∧ x) + z = (x ∧ y) + z = (x + z) ∧ (y + z),

so that x + z � y + z. �

Similarly, the operations ∧ and ∨ are isotone.

Lemma 3.4. If x � y then x ∧ z � y ∧ z and x ∨ z � y ∨ z.

� ��!�!#"
. Let x � y, i.e. x∧x = x∧y. Then by (AS)∧ and (C)∧, (x∧z)∧(x∧z) =

(x∧x)∧(z∧z) = (x∧y)∧(z∧z) = (x∧z)∧(y∧z), i.e. x∧z � y∧z. By distributivity,

(x ∨ z) ∧ (x ∨ z) = (x ∧ x) ∨ z = (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z), so x ∨ z � y ∨ z. �

Let G ∈ N(LG). Given u ∈ G, u � 0 denote [0, u] = {x ∈ G ; 0 � x � u}. On

[0, u], a structure of an algebra from N(MV ) arises as follows.

Theorem 3.5. Let G ∈ N(LG) and let u ∈ SkG, 0 � u. Define

a ⊕ b := (a + b) ∧ u, ¬a := u + (−a)

for a, b ∈ [0, u]. Then the algebra Γ(G, u) := ([0, u],⊕,¬, 0) belongs to N(MV ).

From now on, let us write x − y for x + (−y).
� ��!�!#"

. Let a, b ∈ [0, u]. By Lemma 3.3 we have 0 = 0 + 0 � a + b, and hence

0 = 0 ∧ 0 = 0 ∧ u � (a + b) ∧ u = a ⊕ b, so a ⊕ b � u proving a ⊕ b ∈ [0, u].

Further, (u−a)∧0 = (u−a)∧(a−a) = (u∧a)−a = (a∧a)−a = (a−a)∧(a−a) =

0∧0 = 0, i.e. 0 � u−a, and similarly, (u−a)∨u = (u−a)∨ (u+0) = u+(−a∨0) =

u − (a ∧ 0) = u − (0 ∧ 0) = u − 0 = u, i.e. u − a � u proving ¬a ∈ [0, u]. We

have used −0 = −0 + 0 = (−0 + 0) + 0 = 0 + 0 = 0 and the normal identity

−(x ∨ y) = (−x) ∧ (−y). Now let us verify (N1)–(N9).

(N1): (x⊕y)⊕z = (((x+y)∧u)+z)∧u = (x+y+z)∧ (u+z)∧u = (x+y+z)∧u

since u = u + 0 � u + z by Lemma 3.3. Analogously, we evaluate x ⊕ (y ⊕ z) =

(x + ((y + z) ∧ u)) ∧ u = (x + y + z) ∧ (x + u) ∧ u = (x + y + z) ∧ u.

(N2) follows by commutativity of +.

(N3): 0 ⊕ 0 = (0 + 0) ∧ u = 0 ∧ u = 0.

(N4): ¬¬x = u − (u − x) = u − u + x = 0 + x = x + 0; we have used the normal

identity x − (y − z) = x − y + z.

(N5): x ⊕ ¬0 = (x + u − 0) ∧ u = (x + u) ∧ u = u and ¬0 = u − 0 = u + 0 = u.
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(N6): ¬(¬x ⊕ y) ⊕ y = (u − ((u − x + y) ∧ u) + y) ∧ u

= ((u − u + x − y + y) ∨ (u − u + y)) ∧ u

= ((0 + x + 0) ∨ (0 + y)) ∧ u

= ((x + 0) ∨ (y + 0)) ∧ u

= (x ∨ y) ∧ u = x ∨ y

and analogously, by replacing x and y and using commutativity, ¬(¬y ⊕ x) ⊕ x =

y ∨ x = x ∨ y.

(N7): ¬(x⊕0) = u−((x+0)∧u) = (u−(x+0))∨(u−u) = (u−x)∨0 = u−x = ¬x.

(N8): ¬x ⊕ 0 = (u − x + 0) ∧ u = (u − x) ∧ u = u − x = ¬x.

(N9) is evident. �

In the theorem, if G is an l-group then Γ(G, u) is an MV -algebra. By D. Mundici’s

famous result on MV -algebras and l-groups, [12], every MV -algebra is isomorphic

to Γ(G, u) for some (abelian) l-group G with a strong order unit1 u, [5].

We are going to show that any algebra belonging to the normalization N(MV ) of

the variety of MV -algebras can be obtained in the way described in Theorem 3.5 as

Γ(G∗, u) for a suitable G∗ from the normalization N(LG) of abelian l-groups and a

suitable u ∈ SkG∗ with 0 � u.

So let A = (A,⊕,¬, 0) be an algebra from N(MV ). Then (SkA,⊕,¬, 0) is an

MV -algebra and we may assume that the skeleton SkA equals Γ(G, u) for some

l-group G = (G, +G,−G, 0,∨G,∧G) and a strong unit u ∈ G.

Let G∗ = G∪A and let us define binary operations ∨, ∧, +, and a unary operation

− on G∗ as follows:

x ∨ y :=





x∨Gy if x, y ∈ G,

(x∨Ax)∨Gy if x ∈ G∗ \G, y ∈ G,

x∨G(y∨Ay) if x ∈ G, y ∈ G∗ \ G,

x∨Ay if x, y ∈ G∗ \ G,

x ∧ y is defined dually,

x + y :=





x+Gy if x, y ∈ G,

(x∨Ax)+Gy if x ∈ G∗ \ G, y ∈ G,

x+G(y∨Ay) if x ∈ G, y ∈ G∗ \ G,

(x∨Ax)+G(y∨Ay) if x, y ∈ G∗ \ G,

−x :=

{
−Gx if x ∈ G,

−G(x∨Ax) if x ∈ G∗ \ G.

1 An element u ∈ G is called a strong order unit if 0 6 u and for any x ∈ G there exists
k ∈ - such that x 6 k · u.
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A tedious but straightforward verification yields that the structure G∗ = (G∗, +,

−, 0,∨,∧) satisfies all the identities (A1), (A2), (A4)–(A6), (A7′), (A8′), (A9)–(A14).

In addition, [0, u] = A, SkG∗ = G and u ∈ SkG∗, and in Γ(G∗, u) = (A,⊕∗,¬∗, 0),

where x⊕∗y = (x + y) ∧ u and ¬∗x = u − x, we have

x⊕∗y = (x + y) ∧ u =





(x+Gy)∧Gy = x ⊕ y if x, y ∈ G,

((x∨Ax)+Gy)∧Gu = (x∨Ax) ⊕ y

= (x ⊕ y)∨A(x ⊕ y) = x ⊕ y if x ∈ G∗ \ G, y ∈ G,

(x+G(y∨Ay))∧Gu = x ⊕ y if x ∈ G, y ∈ G∗ \ G,

((x∨Ax)+G(y∨Ay))∧Gu

= (x∨Ax) ⊕ (y∨Ay) = x ⊕ y if x, y ∈ G∗ \ G

and

¬∗x = u − x =

{
u−Gx = ¬x if x ∈ G,

u−G(x∨Ax) = ¬(x∨Ax) = ¬x if x ∈ G∗ \ G.

Therefore (A,⊕,¬, 0) is isomorphic to Γ(G∗, u). We have proved

Theorem 3.6. For any algebra A ∈ N(MV ) there exists an algebra G ∈ N(LG)

and an element u ∈ SkG, 0 � u such that A is isomorphic to Γ(G, u).

4. q-lattices with sectionally antitone involutions

As usual, under an involution on a set A we mean a map f : A → A such that

f(f(a)) = a for all a ∈ A.

Given a quasiordered set (A,�), a map p : A → A is called antitone if the impli-

cation x � y =⇒ yp � xp holds.

Let L = (L,∨,∧, 1) be a q-lattice with the greatest idempotent 1, 1 = 1 ∨ 1, and

let � denote the induced quasiorder on L. Note that the skeleton SkL = {x ∈

L ; x ∨ x = x} is a lattice. Under an interval in L we understand here the set

[a, b] = {x ∈ L ; a � x � b}, and under an interval in the skeleton the intersection

Sk[a, b] = Sk L ∩ [a, b] provided a, b ∈ Sk L.
$&%('*)+��,

4.1. For any p ∈ L, let an antitone involution p : x 7→ xp, x ∈ Sk L,

be given on the interval Sk[p ∨ p, 1]. The mapping p with p ∈ L can be extended

to a mapping of the whole interval (denoted by the same symbol) p : [p, 1] → [p, 1],

x 7→ xp, in a natural way as follows. For x ∈ [p, 1] define xp := (x ∨ x)p∨p. Note

that in general, p is not an involution on [p, 1] but only on Sk[p ∨ p, 1]. Indeed,

xpp = ((x ∨ x)p∨p ∨ (x ∨ x)p∨p)p∨p = ((x ∨ x)p∨p)p∨p = x ∨ x ∈ Sk L, i.e. xpp 6= x if

x 6∈ Sk L. But nevertheless, we get xppp = (x ∨ x)p∨p = xp as a consequence.

292



Lemma 4.2. Let L = (L,∨,∧, 1) be a q-lattice, 1 = 1 ∨ 1. For any p ∈ L, let an

antitone involution p : x 7→ xp, x ∈ SkL, be given on the interval Sk[p∨ p, 1]. For x,

y ∈ L, let us introduce a binary operation x ◦ y := (x ∨ y)y∨y. Then the following

identities hold:

(1) x ◦ 1 = 1, x ◦ x = 1,

(2) 1 ◦ (x ◦ y) = x ◦ y,

(3) (x ◦ y) ◦ y = (y ◦ x) ◦ x (quasi-commutativity).
� ��!�!#"

. Indeed, x ◦ x = (x ∨ x)x∨x = 1, x ◦ 1 = (x ∨ 1)1∨1 = 11 = 1,

1 ◦ (x ◦ y) = 1 ◦ (x ∨ y)y∨y = (1 ∨ (x ∨ y)y∨y)(x∨y)y∨y

= 1(x∨y)y∨y

= x ◦ y. Further,

(x ◦ y) ◦ y = ((x ∨ y)y∨y ∨ y)y∨y. Here (x ∨ y)y∨y ∨ y = (x ∨ y)y∨y since (x ∨ y)y∨y �

y ∨ y � y, therefore ((x ∨ y)y∨y ∨ y)y∨y = x ∨ y, and (2) follows. �

Definition 4.3. Under a normal chain in a q-lattice we understand a sequence

a0, . . . , an, . . . of elements from L such that a0 � a1 � . . . � an � . . ..

Proposition 4.4. Let L = {a0 = 1, a1, . . . , an, . . .} be a normal chain. Then the

lattice Sk L = {a0 ∨ a0, a1 ∨ a1, . . . , an ∨ an, . . .} is a lattice with sectionally antitone

involutions in which for ai ∨ ai ∈ [an ∨ an, a0 ∨ a0], there is a (unique) involution

given by (ai ∨ ai)
an∨an = an−i ∨ an−i. If we introduce

ai ◦ aj = (ai ∨ aj)
aj∨aj for ai, aj ∈ L

then the identity

(4) x ◦ (y ◦ z) = y ◦ (x ◦ z) (exchange)

holds in L.
� ��!�!#"

. Let ai, aj , ak ∈ L. If aj � ak then aj ◦ ak = (aj ∨ ak)ak∨ak =

(ak∨ak)ak∨ak = 1∨1, that is ai◦(aj◦ak) = (ai∨1∨1)1∨1 = (1∨1)1∨1 = 1∨1. If ai � ak

we obtain the equality again in a similar way. So we can suppose ai � aj � ak. Then

ai ◦ (aj ◦ ak) = ai ◦ (aj ∨ ak)ak∨ak

= ai ◦ (aj ∨ aj)
ak∨ak = ai ◦ (ak−j ∨ ak−j) = (ai ∨ ak−j)

ak−j∨ak−j

=

{
1, i > k − j,

(ai ∨ ai)
ak−j∨ak−j = ak−j−i ∨ ak−j−i, i < k − j.

Taking into account symmetry, we obtain

aj ◦ (ai ◦ ak) = aj ◦ (ak−i ∨ ak−i) =

{
1, j > k − i,

ak−i−j ∨ ak−i−j , j < k − i.

Since i > k − j is equivalent to j > k − i, the equality ai ◦ (aj ◦ ak) = aj ◦ (ai ◦ ak)

holds. �
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Lemma 4.5. Let (A, ◦, 1) be an algebra of type (2, 0) satisfying the identities (1),

(2), (3) and (4). Then

(i) ((x ◦ y) ◦ y) ◦ y = x ◦ y;

(ii) the relation � introduced by

x � y ⇐⇒ x ◦ y = 1

is a quasiorder on A and for all x ∈ A, we have x � 1;

(iii) the right translations R◦

z : x 7→ x ◦ z, z ∈ A, are antitone with respect to the

quasiorder, while the left translations L◦

z : x 7→ x ◦ z are isotone, that is,

x � y =⇒ y ◦ z � x ◦ z, z ◦ x � z ◦ y, x, y, z ∈ A.

� ��!�!#"
. According to (1) and (4), y ◦ (x ◦ y) = x ◦ (y ◦ y) = x ◦ 1 = 1; further

((x◦y)◦y)◦y = (y◦(x◦y))◦(x◦y) by (4). Hence by (2), ((x◦y)◦y)◦y = 1◦(x◦y) = x◦y,

and (i) holds.

By (1), � is reflexive. Let us prove transitivity. Let x � y, y � z, that is,

x ◦ y = y ◦ z = 1. Then by (2), (4) and (3), x ◦ z = 1 ◦ (x ◦ z) = x ◦ (1 ◦ z) =

x ◦ ((y ◦ z) ◦ z) = x ◦ ((z ◦ y) ◦ y) = (z ◦ y) ◦ (x ◦ y) = (z ◦ y) ◦ 1 = 1, so that x � z,

and (iii) holds. Now if x � y then x ◦ y = 1 and due to (4), (3) and (1) we have

(y ◦ z) ◦ (x ◦ z) = x ◦ ((y ◦ z) ◦ z) = x ◦ ((z ◦ y) ◦ y) = (z ◦ y) ◦ (x ◦ y) = (z ◦ y) ◦ 1 = 1.

Therefore y ◦ z � x ◦ z. Moreover, by (2), (4), (3) we have z ◦ y = 1 ◦ (z ◦ y) =

(x ◦ y) ◦ (z ◦ y) = z ◦ ((x ◦ y) ◦ y) = z ◦ ((y ◦ x) ◦ x) = (y ◦ x) ◦ (z ◦ x), consequently

(by (4), (1)) (z ◦ x) ◦ (z ◦ y) = (z ◦ x) ◦ [(y ◦ x) ◦ (z ◦ x)] = (y ◦ x) ◦ 1 = 1, hence

z ◦ x � z ◦ y, which completes the proof of (iii). �

The quasiorder � given by x � y ⇐⇒ x◦y = 1 will be called the induced quasiorder

on (A, ◦, 1).

Proposition 4.6. Let A = (A, ◦, 1) be an algebra satisfying the identities (1)–(4).

If x ∨ y := (x ◦ y) ◦ y then (A,�) is a join-q-semilattice with the greatest element

1. For any p ∈ A, the interval [p ∨ p, 1] is a distributive q-lattice with an antitone

involution

a 7→ ap = a ◦ p, a ∈ [p ∨ p, 1], a ∈ Sk[p ∨ p, 1].

� ��!�!#"
. For x, y ∈ A, y ◦ ((x ◦ y) ◦ y) = (x ◦ y) ◦ (y ◦ y) = (x ◦ y) ◦ 1 = 1 holds

by (4) and (1), similarly x ◦ ((x ◦ y) ◦ y) = (x ◦ y) ◦ (x ◦ y) = 1, hence (x ◦ y) ◦ y is an

upper bound of x, y. The element (x◦y)◦y is an idempotent with respect to ∨ since

[(x◦y)◦y]∨[(x◦y)◦y] = ([(x◦y)◦y]◦[(x◦y)◦y])◦[(x◦y)◦y] = 1◦((x◦y)◦y) = (x◦y)◦y (by

(1)). Let z be an idempotent such that x � z, y � z. Then z∨z = z = (z◦z)◦z = 1◦z,
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so that z = 1◦z = (y◦z)◦z = (z◦y)◦y. Further, [(x◦y)◦y]◦z = [(x◦y)◦y]◦[(z◦y)◦y] =

(z ◦ y)[((x ◦ y) ◦ y) ◦ y] = (z ◦ y) ◦ (x ◦ y) = x ◦ ((z ◦ y) ◦ y) = x ◦ z = 1, that is,

(x ◦ y) ◦ y � z, and (x ◦ y) ◦ y is the least idempotent above the elements x and y.

For any element a ∈ Sk[p ∨ p, 1], the map a 7→ ap = a ◦ p is an involution since

app = (a ◦ p) ◦ p = a ∨ p = a ∨ p ∨ p = a ∨ a = a,

and is antitone by (iii). For a, b ∈ [p ∨ p, 1], define a ∧ b = (ap ∨ bp)p. Obviously,

([p∨p, 1],∨,∧) is a q-lattice. Let us prove that this q-lattice is distributive. According

to [6], Theorem 2, p. 11, a q-lattice is distributive iff its skeleton, i.e. the lattice

(Sk[p ∨ p, 1],∨,∧), is distributive. Assume on the contrary that (Sk[p ∨ p, 1],∨,∧) is

not distributive. Then it contains a sublattice isomorphic to M3 or to N5.. )0/
%
1. Let a lattice from Fig. 1 be a sublattice of (Sk[p ∨ p, 1],∨,∧). Then it

is also a sublattice of Sk[x, 1]. Since a 7→ ax is a dual automorphism on Sk[x, 1],

(Sk[x, 1],∨,∧) contains a sublattice given in Fig. 2.

a b c

x

y

ax bx cx

yx

1

Fig. 1 Fig. 2

Then ax ◦ (c ◦ x) = ax ◦ cx = (ax ∨ cx)cx

= 1cx

= cx, c ◦ (ax ◦ x) = c ◦ ((a ◦

x) ◦ x) = c ◦ (a ∨ x) = c ◦ a = (c ∨ a)a = ya. Since A satisfies (4), cx = ya holds.

Analogously, interchanging b and c we obtain bx = ya, therefore cx = bx, hence c = b,

a contradiction.. )0/
%
2. Let us consider a sublattice of (Sk[p ∨ p, 1],∨,∧) from Fig. 3. Then

bx ◦ (a ◦ x) = bx ◦ ax = (bx ∨ ax)ax

= 1ax

= ax, a ◦ (bx ◦ x) = a ◦ ((b ◦ x) ◦ x) =

a ◦ (b ∨ x) = a ◦ b = (a ∨ b)b = yb, hence ax = yb. Interchanging a, c we obtain

cx = yb, therefore ax = cx and a = c, a contradiction. �

In the sequel we will investigate the variety W̃ = Mod ({(1), (2), (3), (4)}) of alge-

bras satisfying the identities (1)–(4).

$&%('*)+��,
4.7. In [10], the variety W of type (2, 0) given by the identities 1◦x = x,

x ◦ 1 = 1, (3) and (4) was investigated and it was proved that W is 1-regular and

3-permutable. It can be verified that W̃ and N(W) coincide. In fact, 1 ◦ x = x

295



is the only non-normal identity among the defining identities of W , and 1 ◦ x is

the assigned term. Hence the normalization N(W) is defined by normal identities

x◦1 = 1, (3), (4) together with additional identities (1◦x)◦y = x◦y, x◦(1◦y) = x◦y,

1 ◦ (x ◦ y) = x ◦ y. The third identity is our (2), the second identity also holds in W̃

since x ◦ (1 ◦ y) = 1 ◦ (x ◦ y) = x ◦ y by (3) and (2), and the first identity can be

proved as follows. Let us calculate ((1 ◦ x) ◦ y) ◦ (x ◦ y) = x ◦ (((1 ◦ x) ◦ y) ◦ y) =

x ◦ ((y ◦ (1 ◦ x)) ◦ (1 ◦ x)) = (y ◦ (1 ◦ x)) ◦ (x ◦ (1 ◦ x)) = (y ◦ (1 ◦ x)) ◦ 1 = 1 and

(x◦y)◦((1◦x)◦y) = (1◦x)◦((x◦y)◦y) = (1◦x)◦((y◦x)◦x) = (y◦x)◦((1◦x)◦x) =

(y ◦ x) ◦ ((x ◦ 1) ◦ 1) = (y ◦ x) ◦ 1 = 1. It means (1 ◦ x) ◦ y � x ◦ y and at the same

time (1 ◦ x) ◦ y � x ◦ y. Since both (1 ◦ x) ◦ y and x ◦ y are skeletal elements they

must be equal. So we have verified that Id(N(W)) ⊂ Id(W̃). The converse inclusion

is also true since in N(W), x ◦ x = (1 ◦ x) ◦ x = (x ◦ 1) ◦ 1 = 1 ◦ 1 = 1 holds.

a

c

b

x

y

Fig. 3

The following example illustrates that the variety W̃ is not 1-regular.

1 23)+'54768%
4.8. For A ∈ W̃ , there may exist different congruences θ 6= ω (see

Fig. 4) such that their congruence kernels coincide, [1]θ = [1]ω.

0 x

1

θ

0 x

1

ω

Fig. 4
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Theorem 4.9. Let A ∈ W̃ , M ⊆ A. Then M is a kernel of a congruence

θ ∈ Con(A) iff

(K1) 1 ∈ M ,

(K2) if x ∈ M and x ◦ y ∈ M then 1 ◦ y ∈ M .

� ��!�!#"
. It can be easily seen that for θ ∈ Con(A), [1]θ satifies (K1) and (K2).

On the other hand, for M satisfying (K1) and (K2), let us introduce

θM = {〈x, y〉 ; x ◦ y ∈ M and y ◦ x ∈ M}.

θM is obviously reflexive and symmetric. Let 〈x, y〉, 〈y, z〉 ∈ θM . Then y � (x◦y)◦y =

(y◦x)◦x, z◦y � z◦((y◦x)◦x) = (y◦x)◦(z◦x), therefore (z◦y)◦[(y◦x)◦(z◦x)] = 1 ∈ M .

But z◦y ∈ M , so according to (K2) and (1), 1◦ [(y◦x)◦(z◦x)] = (y◦x)◦(z◦x) ∈ M .

Further, y ◦ x ∈ M , so again by (K2) and (1), 1 ◦ (z ◦ x) = z ◦ x ∈ M . Similarly,

x ◦ z ∈ M can be proved, hence θM is an equivalence relation.

Now let 〈x, y〉 ∈ θM . Then x � (x◦y)◦y gives z◦x � z◦((x◦y)◦y) = (x◦y)◦(z◦y),

which yields 1 = (z ◦ x) ◦ [(x ◦ y) ◦ (z ◦ y)] = (x ◦ y) ◦ [(z ◦ x) ◦ (z ◦ y)] and by

(K2), 1 ◦ [(z ◦ x) ◦ (z ◦ y)] = (z ◦ x) ◦ (z ◦ y) ∈ M . Interchanging x, y we obtain

(z ◦ y) ◦ (z ◦ x) ∈ M , therefore 〈z ◦ x, z ◦ y〉 ∈ θM . Further, y ◦ x � (z ◦ x) ◦ (y ◦ x) =

y ◦ ((z ◦x) ◦x) = y ◦ ((x ◦ z) ◦ z) = (x ◦ z) ◦ (y ◦ z), (y ◦x) ◦ [(x ◦ z) ◦ (y ◦ z)] = 1 ∈ M ,

y ◦ x ∈ M . Using (K2) we obtain 1 ◦ ((x ◦ z) ◦ (y ◦ z)) = (x ◦ z) ◦ (y ◦ z) ∈ M .

Similarly (y ◦z)◦ (x◦z) ∈ M , therefore 〈x◦z, y ◦z〉 ∈ θM . Transitivity of θM implies

the compatibility of θM . Obviously, [1]θM
= {y ; 1 ◦ y ∈ M}. Let us introduce a

binary relation θ∗M = θM \ {〈x, y〉, 〈y, x〉 ; x ∈ M, y 6∈ M}. Let us verify that θ∗M
is a congruence relation on A. Clearly, θ∗M is both reflexive and symmetric. To

show transitivity, let 〈x, y〉 ∈ θ∗M , 〈y, z〉 ∈ θ∗M , and let x ∈ M . Then y ∈ M since

〈x, y〉 ∈ θ∗M , and similarly z ∈ M since 〈y, z〉 ∈ θ∗M . Analogously, it follows that

x ∈ M from z ∈ M , therefore 〈x, z〉 ∈ θ∗M . To prove compatibility of θ∗M it is sufficient

(due to transitivity of θ∗M ) to verify the implications 〈x, y〉 ∈ θ∗M =⇒ 〈x◦z, y◦z〉 ∈ θ∗M ,

〈x, y〉 ∈ θ∗M =⇒ 〈z◦x, z◦y〉 ∈ θ∗M . Obviously, 〈x◦z, y◦z〉 ∈ θM and 〈z◦y, z◦x〉 ∈ θM

hold. Let x◦ z ∈ M . Then (x◦ z)◦ (y ◦ z) ∈ M , and since M satisfies (K2) we obtain

1 ◦ (y ◦ z) = y ◦ z ∈ M . Analogously x ◦ z ∈ M follows from y ◦ z ∈ M .

Similarly, z ◦ y ∈ M yields (z ◦ y) ◦ (z ◦ x) ∈ M , and again 1 ◦ (z ◦ x) = z ◦ x ∈ M .

Together, θ∗M is a congruence relation with the congruence kernel [1]θ∗

M
= M . �

Definition 4.10. A subset M ⊆ A, A ∈ W̃ satisfying (K1) and (K2) will be

called a deductive system.

297



Theorem 4.11. Let A ∈ W̃ , a ∈ A. Then the deductive system generated by a

is

D(a) = {a} ∪ {x ; 1 ◦ x = x and a ◦ (a ◦ . . . ◦ (a ◦ x)) = 1}.

� ��!�!#"
. Let M = {a} ∪ {x ; 1 ◦ x = x and a ◦ (a ◦ . . . ◦ (a ◦ x)) = 1}. If x ∈ M

then either x = a ∈ D(a), or 1 ◦ x = x, a ◦ (a ◦ . . . ◦ (a ◦ x)) = 1 ∈ D(a). Since

D(a) is a deductive system, a ∈ D(a), we obtain from (K2) 1 ◦ x = x ∈ D(a), hence

M ⊆ D(a). On the other hand, obviously 1 and a belong to M . Let us prove that

M is a deductive system. Let x ∈ M , x ◦ y ∈ M . There are two possibilities:

(a) x = a, x◦y = a◦y ∈ M , a◦(a◦. . .◦(a◦y)) = 1, therefore a◦(a◦. . .◦(a◦(1◦y))) =

a ◦ (a ◦ . . . ◦ (a ◦ y)) = 1, which yields 1 ◦ y ∈ M .

(b) a◦ (a◦ . . .◦ (a◦x)) = 1, a◦ (a◦ . . .◦ (a◦ (x◦y))) = 1. Then applying (4) to the

second equality gives x◦(a◦(a◦. . .◦(a◦y))) = 1, i.e. x � a◦(a◦. . .◦(a◦y)). Multiplying

by an element a from the left we obtain 1 = a◦(a◦. . .◦(a◦x)) � a◦(a◦. . .◦(a◦y)), so

a◦(a◦ . . .◦(a◦y)) = 1 holds. But then a◦(a◦ . . .◦(a◦(1◦y))) = a◦(. . .◦(a◦y)) = 1,

hence 1 ◦ y ∈ M . Obviously, M is the least deductive system containing M . �

$&%('*)+��,
4.12. Let A ∈ W̃ . An element a ∈ A is skeletal iff 1 ◦ a = a. The set

of all skeletal elements forms the skeleton SkA ∈ W . (SkA, ◦, 1) is a subalgebra in

A, and any interval [x, 1] in SkA is a lattice with an antitone involution.

Theorem 4.13. Let A = (A, ◦, 1) be a finite algebra in W̃ . Then A is subdirectly

irreducible if and only if (A,�) is a chain and |A \ SkA| 6 1.

� ��!�!#"
. If A = SkA then the proof follows by [10]. If A \ SkA is an at

least two-element set with x, y ∈ A \ SkA then θ1 = ω ∪ {〈1 ◦ x, x〉, 〈x, 1 ◦ x〉},

θ2 = ω∪{〈1◦y, y〉, 〈y, 1◦y〉} are congruence relations, θ1, θ2 6= ω, θ1 ∩ θ2 = ω, hence

(A, ◦, 1) is subdirectly reducible. �

Theorem 4.14. Let A = (A,⊕,¬, 0) ∈ N(MV ). Define x ◦ y := ¬x ⊕ y and

1 = ¬0. Then L(A) = (A,∨,∧, ◦, 1, 0) is a bounded distributive q-lattice with

sectionally antitone involutions satisfying the identity (4).

� ��!�!#"
. Let us prove that the mapping p : Sk[p∨ p, 1] → Sk[p∨ p, 1] where x 7→

xp = ¬x⊕p, p ∈ A, is an antitone involution. Indeed, we have xpp = ¬(¬x⊕p)⊕p =

x ∨ p = x ∨ x = x. Further, if x � y then ¬x � ¬y (since x, y are skeletal), hence

xp = ¬x⊕p � ¬y⊕p = yp for all x, y ∈ Sk[p∨p, 1]. If x, y ∈ [p, 1] and y∨y = x∨x = x

then ¬x⊕p = ¬(y∨y)⊕p = ¬y⊕p since N(MV ) satisfies all normal identities of MV .

By the same argument we have x◦(y◦z) = ¬x⊕(¬y⊕z) = ¬y⊕(¬x⊕z) = y◦(x◦z).

�
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Theorem 4.15. Let L = (L,∨,∧, ◦, 1, 0) be a bounded q-lattice with sectionally

antitone involutions that satisfies the identity (4). Define ¬x := x ◦ 0, x ⊕ y :=

(x ◦ 0) ◦ y. Then A(L) = (L,⊕,¬, 0) ∈ N(MV ).

� ��!�!#"
. We shall verify the axioms (N1)–(N3), (N5), (N6), (N4′), (N9) and

(N10). First, let us prove that x ◦ y = x ◦ ((y ◦ 0) ◦ 0) for all x, y ∈ L. Indeed,

(y ◦ 0) ◦ 0 = (y ∨ 0)0 ◦ 0 = ((y ∨ 0)0 ∨ 0)0 = (y ∨ 0)
00

= y ∨ 0, hence x ◦ ((y ◦ 0) ◦ 0) =

x ◦ (y ∨ 0) = (x ∨ y ∨ 0)y∨0 = (x ∨ y)y∨y = x ◦ y. Using this identity we compute

(N1): (x ⊕ y) ⊕ z = (((x ◦ 0) ◦ y) ◦ 0) ◦ z = (((x ◦ 0) ◦ y) ◦ 0) ◦ ((z ◦ 0) ◦ 0) =

(z ◦ 0) ◦ ((((x ◦ 0) ◦ y) ◦ 0) ◦ 0) = (z ◦ 0) ◦ ((x ◦ 0) ◦ y) = (x ◦ 0) ◦ ((z ◦ 0) ◦ ((y ◦ 0) ◦ 0)) =

(x ◦ 0) ◦ ((y ◦ 0) ◦ ((z ◦ 0) ◦ 0) = (x ◦ 0) ◦ ((y ◦ 0) ◦ z) = x ⊕ (y ⊕ z),

(N2): x⊕y = (x◦0)◦y = (x◦0)◦((y◦0)◦0) = (y◦0)◦((x◦0)◦0) = (y◦0)◦x = y⊕x,

(N3): 0 ⊕ 0 = (0 ◦ 0) ◦ 0 = (0 ∨ 0)0 ◦ 0 = 00 ◦ 0 = 1 ◦ 0 = (1 ∨ 0)0 = 10 = 0,

(N5): x ⊕ ¬0 = (x ◦ 0) ◦ (0 ◦ 0) = (x ◦ 0) ◦ 1 = 1 = 0 ◦ 0 = ¬0,

(N6): ¬(¬x ⊕ y) ⊕ y = (x ◦ y) ◦ y = (y ◦ x) ◦ x = ¬(¬y ⊕ x) ⊕ x,

(N4′): ¬¬0 = (0 ◦ 0) ◦ 0 = 1 ◦ 0 = 0,

(N9): x ⊕ y ⊕ 0 = ((x ⊕ y) ◦ 0) ◦ 0 = (((x ◦ 0) ◦ y) ◦ 0) ◦ 0 = (x ◦ 0) ◦ y = x ⊕ y,

(N10): ¬¬¬x = ((x ◦ 0) ◦ 0) ◦ 0 = x ◦ 0 = ¬x. �

Corollary 4.16. Let A = (A, ◦, 1) be an algebra satisfying (1)–(4). Let p ∈ A

with 1 ◦ p = p and define ¬px := x ◦ p, x⊕py := (x ◦ p) ◦ y. Then the algebra

([p, 1],⊕p,¬p, p) belongs to N(MV ).
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