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Abstract. We consider algebras determined by all normal identities of M V-algebras,
i.e. algebras of many-valued logics. For such algebras, we present a representation based on
a normalization of a sectionally involutioned lattice, i.e. a g-lattice, and another one based
on a normalization of a lattice-ordered group.
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1. PRELIMINARIES, NORMALIZATION, ¢-LATTICES

1.1. Normal identities, normally presentable variety. Let 7 be a similarity
type and X = {x1,x2,...} aset of variables. Denote by T, the set of all terms of type
7. Let p, ¢ be n-ary terms of the given type 7. If either none of them is a variable or
both p, ¢ are the same variable, we say that the identity p(x1,...,2,) = q(z1,...,2p)
is normal.

Let V be a variety of type 7. Let Id(V) and Id (V) denote the sets of all identities
and of all normal identities, respectively, valid in V. The variety V is called normally
presentable if the equality Id(V) = Idx (V) holds, cf. [7], [8], [9].

If 1d(V) # Idny(V) then V is called here non-normally presentable. If this is
the case then there is a unary term v such that the identity v(z) = z belongs to
Id(V) \ Idn(V), and ¥V = Mod(Idn (V) U {v(z) = x}). As usual, for any set ¥ of
identities of type 7, Mod(X) stands for the class of all algebras of type 7 that satisfy
all identities from X..
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Lemma 1.1. If a non-normally presentable variety V is given by a system Y. of
identities, V = Mod(X), and v(xz) = x belongs to ¥, then there exists a system of
normal identities valid in V, ¥y C Idn(V), such that ¥y U{v(z) = =} is equivalent
to X, V = Mod(Ex U{v(z) = z}).

Proof. Under our assumptions, if a non-normal identity ¢(z1,...,2,) = 4,
v # t € T, is satisfied in V then it can be replaced by the normal identity
t(v(x1),...,v(x,)) = v(z;) which, together with v(z) = z, gives back the original
one ([11], Proof of Prop. 1, p. 704). Then ¥ consisting of all normal identities from

Y and of those identities t(v(z1),...,v(x,)) = v(z;) that replace the non-normal
identities t(z1,...,zy) = z; from ¥, different from v(z) = z, has the required prop-
erty. O

Consequently, w(x) = z is satisfied in V for another unary term w iff the identity
v(x) = w(x) belongs to Idx (V). So v is determined uniquely up to a normal identity
valid in V, and will be called the assigned term of V, [7].

1.2. Normalization. A normalization of V (called a nilpotent shift of a variety
in [7], 9], [11]) is a variety N(V) introduced by N (V) = Mod(Idy(V)). That is,
N (V) consists of all T-algebras which satisfy all normal identities of V. In general V
is a subvariety of N(V), and V = N (V) holds if and only if the variety is normally
presentable.

Corollary 1.2. Let V be a non-normally presentable variety with an assigned
term v. Let N' = Mod(2y) be a normally presentable variety with the system of
defining identities En C Idn (V). Then N = N (V) iff all defining identities of V can
be proved from the system =y U {v(z) = z}.

Given a normally presentable variety A/ and a non-normal identity v(z) = x then

V = Mod(Id(NV) U {v(z) = z}) is the unique variety for which N(V) = V.

Proposition 1.3 ([11], Theorem 2, p.705). If V = Mod(Zny U {v(z) = z}) is a
variety of type T with the set of operation symbols F' where X C Idyx (V) then the
normalization is characterized by identities as follows: N(V) = Mod(X yUX,) where
the set of additional identities is

Yo ={f(z1,...,xn) = v(f(21,...,20)),
flre, .o x4, mn) = fla,..,0(xy), ... 2); fEF,j=1,...,n}.

For the proof, see [11], Theorem 1, p. 704 and Lemma, p. 705.
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1.3. Skeleton. Given a non-normally presentable variety V (of type 7) with an
assigned term v, let A € N(V). Let us introduce a skeleton of A as a set Sk A = {a €
A; vA(a) = a}, and call its elements skeletal. Skeletal elements are exactly the results
of term operations, i.e. Sk A = {t4(a1,...,a,); a; € A,t € T,}. The algebra A is
decomposed into classes Cy = {d € A; v(d) = v(a)}, a € Sk A, called cells of A in
[7]. The decomposition is formed exactly by the congruence classes of the congruence
relation ® = {{a,b); t*(a,as,...,a,) = tA(b,as,...,a,),t € Tr,az,...,a, € A}.
Moreover, the map [a]s — v*(a) is an isomorphism A/® — Sk A.

Lemma 1.4 ([7], pp.37-38). If A € N(V) then Sk A is the maximal subalgebra
of A belonging to V.

A construction of a nilpotent shift based on choice algebras is described in [7], [8].

1.4. g-lattices as normalization of lattices. A quasiorder on a set A is a
reflexive and transitive binary relation < on A, and (A, <) is called a quasiordered
set.

As is well known, lattices have two faces, can be viewed as algebras and simultane-
ously as ordered sets. An analogous situation occurs also for algebras resulting from
the normalization of lattices, the so-called g-lattices. A ¢-lattice can be introduced
by identities, but can be characterized as well as a lattice-quasiordered set (with
suprema and infima for cells) endowed with a choice function, [6], pp. 7-8.

For our purpose, a variety L of lattices can be defined (alternatively) as a variety
of type (2,2) and signature (V,A) given by the following system of identities (note
that only (I)y is not normal):

commutativity:

(C)v: xVy=yVua, (C)a: zANy=yAaz,
associativity:

(AS)y: (zVy)Vz=aV(yVz), (ASr: (xAy)Az=zA(yAz),

weak absorption:

(WAB)y: zV (xAy) =z Vuz, (WAB)A: zA (xVy) =z Az,
idempotency: equalization:
(Mv: zVa=ux, (EQ): zAx=2Va.
The variety L is not normally presentable, we can choose e.g. v(z) = z V z as

an assigned term (or equivalently, x A z, [8], p.328), and construct the normali-
zation. Since there is a single non-normal identity among the defining ones we
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can apply the general theory to obtain N(L) = Mod(Zy U X,) where Xy =
{(C)A, (C)v, (AS)A, (AS)v, (EQ), (WAB)A, (WAB)y} and X, consists of the identi-
ties

YoraxVvy=(xVe)Vy, zVy=aV(yVy), (zVyV@Vy =zVy,
xAy=(xVa)Ay, zAhy=zA(yVy), (Ay)V(Ay)=zAy.

In [6], the variety of ¢-lattices was introduced as
MOd({(C)Va (C)/\’ (AS)\/’ (AS)/\a (WAB)Va (WAB)/\’ (EQ)’ (WI)\/a (WI)/\})

where
(Wh)y: zVy=aV(yVy), (WDhr: zAy=xA(yAy) (weak idempotency)

(see also [7], [8] etc.). It can be easily seen that N (L) is exactly the variety of the g¢-
lattices. In fact, (WI), follows immediately from the identities of N (L) (and (WI)y
is among the defining ones). Vice versa, if (WI)y holds then by (C)v and (AS)y,
(xva)Vy=yV(xVa)=yVae=zVyand (zVy)V(@Vy =zV(xV(yVy)) =
xV (xVy) = aVy. If (WI), is satisfied then also x Ay = (x A z) A y holds,
(xVz)ANy = (x Ax) ANy = x Ay follows by (EQ), and by (EQ) and duality,
TA(YVy)=azAYAy) =z Ay, (Ay) V(@A y)=(@Ay) A (@A y)=2AY.

An algebra (A, V) satisfying the identities (C)v, (AS)y and (WI)y, is called a join-
q-semilattice. A g¢-lattice is called distributive if it satisfies the distributive identity
or its dual (which are both normal).

2. NORMALIZATION OF MV -ALGEBRAS

An MV -algebra is an algebra A = (A, ®,—,0) of type (2, 1,0) satisfying the iden-
tities

—x =z,
@ -0 = -0,
V6) ~(—zdy)dy=-(-ydz) B

Clearly, also the (normal) identities ~—2 = x @ 0 and =——2 = -z hold.

MYV -algebras were introduced as an algebraic tool for many valued logics, [2].
They were studied as an algebraic counterpart of the Lukasziewicz infinite val-
ued propositional logic, [3], [12]. Later on, a close connection to other structures
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was discovered, namely to lattice-ordered abelian groups, [4], bounded commuta-
tive BC K-algebras, [13], and bounded D Rl-semigroups, [14] etc. The MV -algebras
form a variety MV = Mod({(MV1)-(MV6)}) that is not normally presentable, with
v(z) = x @0 as an assigned term (or equivalently, v'(z) = ——z). According to
Proposition 1.3, the normalization N(MV) has a basis consisting of the following
normal identities: (MV1), (MV2), (MV5), (MV6), ~—2z =20, 20y = (zd0) Dy,
r@y=c®(y®0), 20y ®0=20y, ~(2®0)=—2, vH0 =z, 000 =0.
Denote

(z@y)®0=2dyY.

Then N(MV) = Mod(Idy(MV)) = Mod({(N1)-(N9)}). Further, denote
(N4') —=0=00,

(N10) ———z = —z.

Lemma 2.1. The following implications hold:
(i) (N4) (or (N4')) and (N3) imply =—0 =0,
(if) (N7) and (N8) imply -z &0 = ~(x & 0),
(i) (N2), (N3), (N4'), (N5)-(N9) imply (N4),
(iv) (N4) and (N7) imply (N10),

(v) (N10) and (N4) imply (N7), (N8).

Proof. The first two cases are obvious. Let us verify (iii). (N8) used for
-z yields -—z = ——2 @& 0. Using (ii), (N9), (N6), (N2), (N5) and (i) we obtain
2@ 0=-(-200)B0==(-00z)Pxr=-(-0)Gzr=0Pz =260, proving (iii).
Now (N4) and (N7) yield -~——z = =(z®0) = -z, and (iv) holds. Suppose (N10) and
(N4) are satisfied. Then —z = =(=—z) = ~(z @ 0), similarly -z = =~(-z) = ~z &0,
and (v) holds. O

~ o~~~

So N(MV) = Mod({(N1)—(N3), (N4'), (N5), (N6), (N9), (N10)}). The skeleton
of (M,®,—,0) from (MV) is Sk M ={a € M; a=a®0}, and (Sk M,®,—,0) is an
MV -algebra.

It is well-known (see [5]) that MV -algebras with respect to a natural order defined
by z < y iff 2 &y = =0 form a bounded distributive lattice where z V y = —(—z ®
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y) @y and x Ay = =(—x V —y). A similar statement can be formulated for their

normalizations:

Proposition 2.2. Let A = (A4,®,—,0) € N(MV). Define x =< y iff ~x &y = —0.
Then (A, <) is a bounded distributive g-lattice with 0 as the least element and —0
as the greatest one, in which x Vy = —(-2 ®y) @y and z Ay = —~(—-x V —y).

Proof. The proof follows from the fact that the operations V and A satisfy
all normal identities of a lattice, hence (4, <) is a g-lattice. Moreover, a g-lattice is
distributive iff its skeleton is distributive. O

3. NORMALIZATION OF [-GROUPS

MYV -algebras can be represented as intervals in abelian lattice-ordered groups, see
[12]. We are going to prove an analogous statement for algebras from the normaliza-
tion N(MV) of the variety MV; up to isomorphism, any algebra M € N(MV) can
be realized on a suitable section (= interval) of some algebra from the normalization
of the variety of (abelian) I-groups.

An abelian lattice-ordered group, shortly an [-group, is an algebra G = (G, +, —,
0,V,A) of type (2,1,0,2,2) such that (G,+,—,0) is an abelian group, (G, V,A) is a
lattice (with induced order <) and + distributes with each of the operations V and
A. That is, G is an (abelian) [-group if and only if it fulfils the identities

(A1)
(A2) (az+y)+z—x+(y+z)
(A3) z+0=u,
(Ad) o+ (—2) =0,
(AS5) sVy=yVa,xANy=yAuw,
(A6) (zVy)Vz=zV(yVz), (@Ay)Az=xAYyAz),
(A7) zV (xAy) =z, 2 A (zVy) =z,
(A8)
(A9) (@Vy)+z=(x+2)V(y+z), (@Ay)+z=(x+2)A(y+2)
One readily sees that (A7) and (A8) can be equivalently replaced by normal iden-

tVr=x, zNx=u,

tities
(A7) zVv(zAy)=zxzVz, zA(xVy) =z Az,
(A8) eva=a2+0, zAxz=2+0.
Now the only non-normal identity is (A3). The variety of I-groups

LG = Mod({(A1)~(A6), (A7), (A8'), (A9)})
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is not normally presentable, we can take e.g. v(z) = x+0 as an assigned term of LG
(or equivalently, w(z) = x Az, or w'(z) = x V z), and construct the normalization.
Let X be the set consisting of (Al), (A2), (A4)—(A6), (A7), (A8'), (A9). Due to
Proposition 1.3, N(LG) = Mod(Xx U X,) where ¥, consists of the identities

(A10) 2 +y=2+y+0,

(A1l) —z = —(z +0),
(A12) —z = —z +0,
(A13) zVy=(z+0)Vy,
(A14) zAy=(z+0)Ay,
(A15) zVy=(xVy)+0,
(A16) zAy=(xAy)+0

(A17) 040 =0
(and of the identities x Vy = 2V (y+0), z Ay = x A (y+0) that can be omitted since
they easily follow from (A13), (A14) by interchanging z, y and using commutativity).
(A15) follows from (A9) and (A13), (zVy)+0 = (z+0)V(y+0) =2V (y+0) =z Vy.
Similarly, (A16) can be proved from (A9) and (A14). Moreover, by (A4) and (A10)
we get 0+ 0 =212+ (—z) +0 =212+ (—z) = 0. We have obtained

Proposition 3.1. The normalization N(LG) = Mod(Idx(LG)) of LG is

N(LG) = Mod({(A1), (A2), (A4)—(A6), (A7), (A8), (A9)—(A14)}).

To emphasize the expected fact that (G,V,A) is a g-lattice whenever G =
(G,+,—,0,V,A) belongs to N(LG) we can use

(A13) zVy=zVzVy
and

(Al4)y cAy=z Az Ay
instead of (A13) and (A14), respectively.

Remark 3.2. It is well known that the lattice of an [-group is distributive
(e.g.[1], p-3). Since distributivity is a normal identity, the g-lattice corresponding
to an algebra from N(LG) is distributive as well.

Given an algebra G € N(LG), the skeleton SkG = {a € G; a = a+0} = {a €
G; a=aAa} is the carrier set of an I-group (SkG,+,—,0,V, A).

Since (G, V, A) is a g-lattice, the binary relation < defined by x < y iff t Az = x Ay
(or equivalently, x < y iff  Vy =y Vy) is a quasiorder on G.

Let us verify that (right) translations R,: = — x + z are isotone with respect to
this quasiorder.
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Lemma 3.3. If t <y thenz + 2z Sy + 2.

Proof. Letx <y, ie.z Az =z Ay. Then
+2)AN(z+z)=(@Az)+2=(xAy)+2=(x+2)A(y+2),

so that x + 2 <y + 2. O

Similarly, the operations A and V are isotone.

Lemma 3.4. Ift Ky thenzAz=yAzandzVz=yV z.

Proof. Letx <y, ie.xAz =xAy. Then by (AS)s and (C)a, (xA2)A(zAZ) =
(xAX)N(zNZ) = (AY)N(zA2) = (A2)A(YAZ), L.e.x Az = yAz. By distributivity,
(xvz2)AN(zVz)=(xAz)Vz=(xAy)Vz=(zVz)A(yVz),soxVz3yVz O

Let G € N(LG). Given u € G, u = 0 denote [0,u] = {r € G; 0 <z < u}. On
[0, u], a structure of an algebra from N(MYV) arises as follows.

Theorem 3.5. Let G € N(LG) and let u € SkG, 0 < u. Define
a®b:=(a+b)Au, —a:=u+ (—a)

for a, b € [0,u]. Then the algebra T'(G,u) := ([0, u], ®, -, 0) belongs to N(MV).

From now on, let us write z — y for « + (—vy).

Proof. Leta, b€ [0,u]. By Lemma 3.3 we have 0 = 0+ 0 < a + b, and hence
0=0AN0=0Au=x(a+b)ANu=adb,s0ad®b=uproving ad®b e [0, u].

Further, (u—a)A0 = (u—a)A(a—a) = (uha)—a = (aAa)—a = (a—a)A(a—a) =
0A0=0,ie. 0= u—a,and similarly, (u—a)Vu = (u—a)V(u+0) =u+(—-aV0) =
u—(aN0) =u—(0A0) =u—0=u, ie.u —a <X u proving —a € [0,u]. We
have used =0 = —0+0 = (-04+0)4+ 0 = 04+ 0 = 0 and the normal identity
—(xVy)=(—x)A(—y). Now let us verify (N1)—(N9).

(N1): (z@y)®z= (((x+y)Au)+2)ANu=(x+y+2)A(ut+z)A\u= (z+y+2)Au
since v = u+ 0 =< u + z by Lemma 3.3. Analogously, we evaluate z ® (y ® z) =
4+ ((y+2)ANu)Au=(z+y+2)A(z+u)Au=(x+y+2z)Au.

(N2) follows by commutativity of +.

(N3): 0060=(04+0)Au=0Au=0.

(N4): ~—z=u—(u—z) =u—u+2=0+2 =2+ 0; we have used the normal
identity z — (y — 2) =2 —y + 2.

N5z 0=(r+u—0)Au=(z+u)Au=uand 0=u—-0=u+0=u.
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(N6):  ~(~zoy)®

—(u—z+y)Au)+y)Au
(u—u+tz—y+y)V(u—uty)Au
O0O+24+0)V(0+y)Au
(4+0)V(y+0)Au
zVy)ANu=xVy

and analogously, by replacing x and y and using commutativity, —(—y @ x) ® x =

(u
(
(
(
= (

yvVr=xzVy.
(N7): =(z®0) = u—((z+0)Au) = (u—(z+0))V(u—u) = (u—2x)V0 = u—z = ~x.
(N8): 2@ 0=(u—24+0)Au=(u—z) \u=u—2x =z
(N9) is evident. O

In the theorem, if G is an I-group then I'(G, u) is an M V-algebra. By D. Mundici’s
famous result on MV-algebras and I-groups, [12], every M V-algebra is isomorphic
to I'(G, u) for some (abelian) I-group G with a strong order unit® w, [5].

We are going to show that any algebra belonging to the normalization N(MV) of
the variety of MV-algebras can be obtained in the way described in Theorem 3.5 as
I'(G*,u) for a suitable G* from the normalization N(LG) of abelian [-groups and a
suitable u € Sk G* with 0 < u.

So let A = (A,®,—,0) be an algebra from N(MV). Then (Sk.A,®,-,0) is an
MV-algebra and we may assume that the skeleton Sk.A equals I'(G,u) for some
l-group G = (G, +¢,—¢,0,Va, A¢) and a strong unit v € G.

Let G* = GUA and let us define binary operations V, A, +, and a unary operation
— on G* as follows:

xVagy ifx,y € G,
(xVaz)Vey ifze G*\G,y € G,
zVy:=
aVa(yVay) ifx e Gye G*\G,
Vay ifz,y € G*\ G,
x Ay is defined dually,
T+agy if x,y € G,
(xVaz)+ay ifee G*\G,y €@,
T+yi= )
r+c(yVay) ifreG,yeG\G,
(xVax)+a(yVay) ifz,y € G\ G,
-Gz if x € G,
—r =
—a(avaz) ifzeG*\G.

1 An element u € G is called a strong order unit if 0 < v and for any x € G there exists
k € N such that x < k - u.
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A tedious but straightforward verification yields that the structure G* = (G*, +,
—,0,V, A) satisfies all the identities (A1), (A2), (A4)—-(A6), (A7), (A8'), (A9)—(A14).
In addition, [0,u] = A, SkG* = G and u € SkG*, and in I'(G*,u) = (4, ®*,—*,0),
where 2®*y = (z + y) Au and ~*x = u — z, we have

(z+ey)\gy =Dy ifx,y €G,
((#Vaz)+ey)Acu = (zVaz) Dy

=(xdyValzdy) =zdy ifzeG" \GyeqG,
(z+a(yVay)Ahgu=x Dy ifeeGyeG\G,
((aVaz)+a(yVay))Aau

= (aVax)® (yVay) =zdy ifz,yecG"\G

@'y =(x+y)Au=

and
. U—GT = T if x € G,
“fr=u—x=
u—g(xVaz) = ~(aVax) = -z ifx € G*\G.
Therefore (A, ®, —,0) is isomorphic to I'(G*, u). We have proved

Theorem 3.6. For any algebra A € N(MYV) there exists an algebra G € N(LG)
and an element u € SkG, 0 < u such that A is isomorphic to I'(G, u).

4. @-LATTICES WITH SECTIONALLY ANTITONE INVOLUTIONS

As usual, under an involution on a set A we mean a map f: A — A such that
f(f(a)) =afor all a € A.

Given a quasiordered set (4, <), amap P: A — A is called antitone if the impli-
cation r < y = yP <X 2P holds.

Let £ = (L,V,A,1) be a ¢-lattice with the greatest idempotent 1, 1 =1V 1, and
let < denote the induced quasiorder on L. Note that the skeleton SkL = {z €
L; xVx = z} is a lattice. Under an interval in £ we understand here the set
[a,b] = {x € L; a = x < b}, and under an interval in the skeleton the intersection
Sk[a,b] = Sk L N [a,b] provided a, b € Sk L.

Remark 4.1. For any p € L, let an antitone involution ?: x — P, © € Sk L,
be given on the interval Sk[p V p,1]. The mapping ? with p € L can be extended
to a mapping of the whole interval (denoted by the same symbol) ?: [p, 1] — [p, 1],
x — 2P, in a natural way as follows. For = € [p, 1] define 2P := (z V x)PVP. Note
that in general, ? is not an involution on [p,1] but only on Sk[p V p,1]. Indeed,
PP = ((zVz)PYPV (z V x)PVP)PVP = ((z V x)PVP)PVP = gV x € SK L, i.e. aPP # x if

x ¢ Sk L. But nevertheless, we get 2PPP = (z V x)PVP = 2P as a consequence.
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Lemma 4.2. Let £L = (L,V,A,1) be a g-lattice, 1 = 1V 1. For any p € L, let an
antitone involution P: x +— xP, x € Sk L, be given on the interval Sk[p V p, 1]. For x,
y € L, let us introduce a binary operation z oy := (xz V y)¥"Y. Then the following
identities hold:

(1) zol=1l,z0x=1,
() lo(oy —voy,
(3) (zoy)oy=(youx)oux (quasi-commutativity).

Proof. Indeed, zo0z = (zV2)*™® =1, 201 = (z v 1)Vl = 1! = 1,
lo(zoy)=1lo(zVy¥¥=(1V(zV y)y\/y)(z\/y)yvy = 1@V = 2 o y. Further,
(xoy)oy = ((xVy)yV¥Vy)¥Y¥. Here (z Vy)VY¥Vy = (xVy)’ ¥ since (z Vy)¥'¥ =
yVy =y, therefore ((z V y)¥V¥ V y)¥V¥ =z V y, and (2) follows. O

Definition 4.3. Under a normal chain in a g-lattice we understand a sequence
ag, ... ,0y,...of elements from L such that ag = a1 > ... = an > ....

Proposition 4.4. Let L = {agp = 1,a1,...,an,...} be a normal chain. Then the
lattice Sk L = {ag V ag,a1 Vay,...,anVay,...} is a lattice with sectionally antitone
involutions in which for a; V a; € [a, V an,ag V ag), there is a (unique) involution

given by (a; V a;)*"V" = a,_; V an_;. If we introduce
a;oa; = (a;Va;)™'% for a;,a; €L

then the identity

(1) zolyos) =yo(zoz) (exchange)

holds in L.

Proof. Let a;, aj, ap € L. If a; < aj then a; o ap = (a; V ag)™Ve =
(agVag)® Ve = 1V1, that is a;o(ajoar) = (a;VIV1)IV1 = (1v1)1VE = 1V1. If a; < ay
we obtain the equality again in a similar way. So we can suppose a; = a; = ai. Then

a; o (ajoay) =a;o(a; Vag)™ ™

=a; 0 (a; Vaj)™ ™ =a; 0 (ap—; V ag—j) = (a; V ap_;) ™=V
1, 1>2k—j,
B { (a; Va;)"=iVo%=i = qp_; iV agp—j—;, i <k—J.
Taking into account symmetry, we obtain

15 .] 2 k - 7:7
ajo(a; oax) = aj o (ar—; V ap—;) = _ )
Ok—i—j V Qfp—j—j, J< k—i.

Since i > k — j is equivalent to j > k — i, the equality a; o (aj o ax) = a; o (a; 0 ax)
holds. O
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Lemma 4.5. Let (A, o0, 1) be an algebra of type (2,0) satisfying the identities (1),
(2), (3) and (4). Then

(i) ((woy)oy)oy=1xoy;
(ii) the relation < introduced by

ry<==zoy=1

is a quasiorder on A and for all x € A, we have x < 1;
(iii) the right translations RS: x +— x oz, z € A, are antitone with respect to the
quasiorder, while the left translations L}: x — x o z are isotone, that is,

wjy:}?JOZj.’I}OZ, ZO.”L'jZOy; .’I,"y,ZEA-

Proof. According to (1) and (4), yo (zroy) =z o (yoy) =x ol = 1; further
((zoy)oy)oy = (yo(woy))o(woy) by (4). Hence by (2), ((zoy)oy)oy = lo(xoy) = zoy,
and (i) holds.

By (1), =< is reflexive. Let us prove transitivity. Let z < y, y = z, that is,
xoy =yoz =1. Then by (2), (4) and (3), xzoz=10o(xoz) =xzo0(loz) =
zo((yoz)oz)=xzo((zoy)oy)=(z0y)o(zoy)=(z0y)ol=1,so that z < z,
and (iii) holds. Now if x < y then z oy = 1 and due to (4), (3) and (1) we have
(yoz)o(zoz) = zo((yos)o2) = zo((z0y)oy) = (soy)o(zoy) = (zoy)ol = 1.
Therefore y o z < x o z. Moreover, by (2), (4), (3) we have zoy = 1o (z0y) =
(zoy)o(zoy)=zo0((xoy)oy)=z20((yox)ox) = (yox)o (zo0x), consequently
(by (4), (1)) (zox)o(z0y) =(z0z)o[(yox)o(z0x)] = (yox)ol =1, hence
zox = z oy, which completes the proof of (iii). O

The quasiorder < given by x X y <= xoy = 1 will be called the induced quasiorder
on (4,0,1).

Proposition 4.6. Let A = (A, o,1) be an algebra satisfying the identities (1)—(4).
IfxVy:= (xoy)oy then (A4,=) is a join-g-semilattice with the greatest element
1. For any p € A, the interval [p V p, 1] is a distributive g-lattice with an antitone
involution

ar—aP =aop, a€pVp1], aeSkpVpl].

Proof. Forz,yec A, yo((woy)oy)=(zroy)o(yoy)=(roy)ol =1 holds
by (4) and (1), similarly z o ((zoy)oy) = (zoy)o(xoy) =1, hence (xoy)oy is an
upper bound of z, y. The element (2 0y)oy is an idempotent with respect to V since
[(zoy)oy]VI(zoy)oy] = ([(xoy)oylo[(zoy)oy])e[(zoy)oy] = lo((zoy)oy) = (zoy)oy (by
(1)). Let z be an idempotent such that z < z,y < z. Then zVz = z = (z02)oz = loz,
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so that z = loz = (yoz)oz = (zoy)oy. Further, [(zoy)oyloz = [(xoy)oy|o[(zoy)oy] =
(zoy)l((xoy)oy)oy] =(z0y)o(zoy) =xzo0((z0y)oy) =x 0z =1, that is,
(xoy)oy < z, and (x oy) oy is the least idempotent above the elements = and y.
For any element a € Sk[p V p, 1], the map a — a? = a o p is an involution since

a?? =(aop)op=aVp=aVpVp=aVa=a,

and is antitone by (iii). For a, b € [p V p, 1], define a A b = (a? V bP)P. Obviously,
([pVp, 1], V, A) is a g-lattice. Let us prove that this ¢g-lattice is distributive. According
to [6], Theorem 2, p.11, a g-lattice is distributive iff its skeleton, i.e.the lattice
(Sk[p V p, 1], V, A), is distributive. Assume on the contrary that (Sk[pV p,1],V,A) is
not distributive. Then it contains a sublattice isomorphic to M3 or to Ns.

Case 1. Let a lattice from Fig.1 be a sublattice of (Sk[p V p,1],V,A). Then it
is also a sublattice of Sk[z,1]. Since a — a® is a dual automorphism on Sk|z, 1],
(Sk[z, 1], V, A) contains a sublattice given in Fig. 2.

1
a b c a? b* c®
ym
Fig. 1 Fig. 2
Then a® o (coxz) = a®oc® = (a®*V ®) =19 = ¢* co(a®ox) = co((ao

x)ox)=co(aVz)=coa=(cVa)® =y Since A satisfies (4), ¢® = y* holds.
Analogously, interchanging b and ¢ we obtain b* = y*, therefore ¢* = b*, hence ¢ = b,
a contradiction.

Case 2. Let us consider a sublattice of (Sk[p V p,1],V,A) from Fig.3. Then
bo(aox)=0b"0a® = (b*Va*)* =19 =a®, a0 (b*ox) =ao((box)ox) =
ao(bVz)=aob=(aVb)’ =1y’ hence a® = y*. Interchanging a, ¢ we obtain
c® =y, therefore a® = ¢® and a = ¢, a contradiction. O

In the sequel we will investigate the variety W = Mod ({(1),(2),(3),(4)}) of alge-
bras satisfying the identities (1)—(4).

Remark 4.7. In [10], the variety W of type (2, 0) given by the identities 1oz = x,
xol =1, (3) and (4) was investigated and it was proved that W is 1-regular and
3-permutable. It can be verified that YW and N(W) coincide. In fact, 1oz = =
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is the only non-normal identity among the defining identities of W, and 1o x is
the assigned term. Hence the normalization N (W) is defined by normal identities
xol =1, (3), (4) together with additional identities (lox)oy = zoy, xo(loy) = zoy,
lo(zoy) =z oy. The third identity is our (2), the second identity also holds in w
since zo (loy) =1lo(zoy) =xzoy by (3) and (2), and the first identity can be
proved as follows. Let us calculate ((loxz)oy)o(zoy) =zo(((lox)oy)oy) =
zo((yo(lox))o(lox))=(yo(lox))o(zxo(lox)) =(yo(lox))ol =1 and
(zoy)o((lox)oy) = (lox)o((xoy)oy) = (lox)o((yox)ox) = (yox)o((lox)ox) =
(yox)o((xol)ol)=(yox)ol=1. It means (lox)oy =< x oy and at the same
time (lox)oy = x oy. Since both (10 x) oy and x oy are skeletal elements they
must be equal. So we have verified that Id(N(W)) C Id(W). The converse inclusion
is also true since in NOW), zox = (loz)ox =(xol)ol=101=1 holds.

(1
&
b
a
X
Fig. 3

The following example illustrates that the variety W is not 1-regular.

Example 4.8. For A € 17\7, there may exist different congruences 6 # w (see
Fig.4) such that their congruence kernels coincide, [1]p = [1]..

Fig. 4
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Theorem 4.9. Let A € )7\//, M C A. Then M is a kernel of a congruence
0 € Con(A) iff
(K1) 1€ M,
(K2) ifx € M andxoy € M then 1oy € M.

Proof. It can be easily seen that for § € Con(A), [1]g satifies (K1) and (K2).
On the other hand, for M satisfying (K1) and (K2), let us introduce

O ={(z,y); xoye M andyox € M}.

0 is obviously reflexive and symmetric. Let (z,y), (y, 2) € Opr. Theny < (zoy)oy =
(yox)ox, zoy <X zo((yox)ox) = (yox)o(zox), therefore (zoy)o[(yox)o(zox)] =1 € M.
But zoy € M, so according to (K2) and (1), 1o[(yox)o(zo0x)] = (yox)o(zox) € M.
Further, y o x € M, so again by (K2) and (1), 1o (2 0x) = zox € M. Similarly,
x oz € M can be proved, hence 6, is an equivalence relation.

Now let (x,y) € Opr. Then x < (xoy)oy gives zox =X zo((zoy)oy) = (zoy)o(zoy),
which yields 1 = (zoz)o[(xoy)o(z0y)] = (xoy)o[(z0x) o (z0y)] and by
(K2),1o[(zoxz)o(z0y)] = (z0x) 0 (20y) € M. Interchanging z, y we obtain
(zoy)o(zox) € M, therefore (zox,zo0y) € 0p. Further, yoxr < (zox)o (yox) =
yo((zox)ox) =yo((xoz)oz)=(roz)o(yoz), (yox)o[(rxoz)o(yoz)=1€ M,
yox € M. Using (K2) we obtain 1o ((zoz2)o(yoz)) = (zoz)o(yoz) € M.
Similarly (yoz)o(xoz) € M, therefore (xoz,yoz) € 0. Transitivity of 6, implies
the compatibility of 8y;. Obviously, [1]g,, = {y; 1oy € M}. Let us introduce a
binary relation 6%, = 0y \ {(z,v), (y,x); © € M,y ¢ M}. Let us verify that 6%,
is a congruence relation on A. Clearly, 6}, is both reflexive and symmetric. To
show transitivity, let (z,y) € 0%, (y,2) € 0%, and let x € M. Then y € M since
(z,y) € 0%, and similarly z € M since (y,z) € 6%,;. Analogously, it follows that
x € M from z € M, therefore (x, z) € 03,. To prove compatibility of 63, it is sufficient
(due to transitivity of 6%,) to verify the implications (z,y) € 05, = (xoz,yoz) € 0},
(x,y) € 03y = (zox,zoy) € 03,. Obviously, (xoz,yoz) € Oy and (zoy,zox) € Oy
hold. Let zoz € M. Then (zoz)o(yoz) € M, and since M satisfies (K2) we obtain
lo(yoz)=yoz€ M. Analogously x o z € M follows from yo z € M.

Similarly, zoy € M yields (zoy)o(z0x) € M, and again 1o (zox) =zox € M.
Together, 07, is a congruence relation with the congruence kernel [1]p: = M. O

Definition 4.10. A subset M C A, A € W satisfying (K1) and (K2) will be
called a deductive system.
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Theorem 4.11. Let A € VNV, a € A. Then the deductive system generated by a
is
D(a) ={a}U{z; lox=zand ao(ao...o(aox)) =1}

Proof. Let M ={a}U{z; lox =2 andao(ao...0o(aox)) =1} Ifz e M
then either + = a € D(a), or lox = x, a0 (ao...o(aox)) =1 € D(a). Since
D(a) is a deductive system, a € D(a), we obtain from (K2) 102 = 2 € D(a), hence
M C D(a). On the other hand, obviously 1 and a belong to M. Let us prove that
M is a deductive system. Let x € M, x oy € M. There are two possibilities:

(a) z = a, zoy = aoy € M, ao(ao...o(aoy)) = 1, therefore ao(ao...o(ac(loy))) =
ao(ao...o(aoy)) =1, which yields 1oy € M.

(b) ao(ao...0(aox)) =1,a0(ao...o(ao(xoy))) =1. Then applying (4) to the
second equality gives zo(ao(ao...o(aoy))) = 1,i.e.z < ao(ao...o(aoy)). Multiplying
by an element a from the left we obtain 1 = ao(ao...o(aox)) < ac(aoc...o(aoy)), so
ao(ao...o(aoy)) =1 holds. But then ao(ao...o(ao(loy))) =ao(...o(acy)) =1,
hence 1 oy € M. Obviously, M is the least deductive system containing M. (Il

Remark 4.12. Let A € W. An element a € A is skeletal iff 1 0 @ = a. The set
of all skeletal elements forms the skeleton Sk.A € W. (Sk.A,o0,1) is a subalgebra in
A, and any interval [z, 1] in Sk .4 is a lattice with an antitone involution.

Theorem 4.13. Let A = (A, o,1) be a finite algebra in W. Then A is subdirectly
irreducible if and only if (A, <) is a chain and |A \ Sk A| < 1.

Proof. 1If A = Sk.A then the proof follows by [10]. If A\ Sk.A is an at
least two-element set with z, y € A\ SkA then 61 = w U {(1 0 z,z),(z,1 0 z)},
0 = wU{(loy,y), (y, 1oy)} are congruence relations, 61, f2 # w, 61 Ny = w, hence
(4, 0,1) is subdirectly reducible. |

Theorem 4.14. Let A = (A, ®,-,0) € N(MV). Define x oy := ~x &y and
1 = =0. Then L(A) = (A,V,A,0,1,0) is a bounded distributive g-lattice with
sectionally antitone involutions satisfying the identity (4).

Proof. Let us prove that the mapping ?: Sk[pV p, 1] — Sk[p V p, 1] where = —
2P = -x@p, p € A, is an antitone involution. Indeed, we have 2P? = —(—x®p)dp =
xVp=uxVax=ax Further, if z < y then -z > -y (since z, y are skeletal), hence
aP = ~x®p = —ydp = yP for all x, y € Sk[pVvp, 1]. Ifx, y € [p, 1] and yVy = aVe =z
then —x®p = =(yVy)®p = —~y®p since N (MV) satisfies all normal identities of MV
By the same argument we have zo(yoz) = ~z® (-yPz) = ~yd(-axdz) = yo(xoz).

([l
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Theorem 4.15. Let £ = (L,V,A,0,1,0) be a bounded ¢-lattice with sectionally
antitone involutions that satisfies the identity (4). Define —x := z 00, x @y :=
(xo0)oy. Then A(L) = (L,®,—,0) € N(MV).

Proof. We shall verify the axioms (N1)-(N3), (N5), (N6), (N4'), (N9) and
(N10). First, let us prove that z oy = z o ((y00)o00) for all z, y € L. Indeed,
(yo0)o0 = (yV0)°00=((yV0)°Vv0)°=(yv0)”™ =yV0, hence zo ((y00)o0) =
ro(yVv0)=(zVyVv0)¥° = (zVy)¥¥=2zoy. Using this identity we compute

(N1): (@@y) @z = ((xo0)oy)o0)oz = (((zro0)oy)o0)o((200)00) =
(z00)o ((((z00)oy)00)o0) = (z00)o((xc0)oy) = (zo0)o((z00)o((y00)0)) =
(zo0)o((yo0)o((200)00)=(zo0)o((yol)oz) =z (y®2),

(N2): 2y = (00)0y = (z00)o((yo0)o0) = (yo0)o((z00)oD) = (yo0)or = y,
(N3): 000=(000)00=(0V0)°00=00=100=(1VvV0)°=1°=0,

(N5): 2 -0=(200)o(000)=(x00)ol=1=000= -0,

(N6): ~(rz@y)®y=(zoy)oy=(yox)ox=(ydz)dz,

(N4'): ==0=(000)0c0=100=0,

(N9): 2@y @0 =((z®y)o0)c0=(((zo0)oy)o0)ol=(zxo0)oy=zdy,
(N10): ===z = ((z00)00)o0 =200 = —z. O

Corollary 4.16. Let A = (A,o,1) be an algebra satistfying (1)—(4). Let p € A
with 1 0 p = p and define ~px := x o p, @B,y := (xop)oy. Then the algebra
(Ip, 1], ®p, =p, p) belongs to N (MV).
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