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Abstract. The concept of a-ideals in posets is introduced. Several properties of a-ideals
in O-distributive posets are studied. Characterization of prime ideals to be a-ideals in 0-
distributive posets is obtained in terms of minimality of ideals. Further, it is proved that
if a prime ideal I of a O-distributive poset is non-dense, then [ is an a-ideal. Moreover, it
is shown that the set of all a-ideals aId(P) of a poset P with 0 forms a complete lattice.
A result analogous to separation theorem for finite 0-distributive posets is obtained with
respect to prime a-ideals. Some counterexamples are also given.
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1. INTRODUCTION

Grillet and Varlet [4] introduced 0-distributive lattices as a generalization of dis-
tributive lattices. The theory of O-distributive lattices was further studied by Bala-
subramani and Venkatanarasimhan [1] and Jayaram [7]. Cornish [2] introduced and
studied the properties of a-ideals in distributive lattices. Generalization of the con-
cept of a-ideals in O-distributive lattices is carried out by Jayaram [7]. In fact, he
proved the separation theorem for prime a-ideals in the case of 0-distributive lattices
as follows.

Theorem A (Jayaram [7]). Let I be an a-ideal of a 0-distributive lattice L and S

be a meet subsemilattice of L such that INS = (). Then there exists a prime a-ideal
G of L such that I C G and GNS = 0.

Additional properties of a-ideals in O-distributive lattices were obtained by Pawar
and Mane [12] and Pawar and Khopade [11].
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In Section 2 of this paper, we show several results concerning a-ideals, which are
extensions of the results concerning lattices and semilattices given in Pawar and
Mane [12] and Pawar and Khopade [11] to posets, especially to O-distributive posets.
In Section 3, we prove that the set of all a-ideals of a poset with 0 is a complete
lattice. Further, we generalize Theorem A for finite 0-distributive posets.

We begin with necessary concepts and terminology. For notation and terminology
not mentioned here the reader is referred to Grétzer [3].

Let P be a poset and A C P. The set A* = {x € P; x > a for every a € A}
is called the upper cone of A. Dually, we have the concept of the lower cone A'
of A. We shall write A* instead of { A*}! and dually. The upper cone {a}" is simply
denoted by a* and {a,b}" is denoted by (a,b)*. Similar notation is used for lower
cones. Further, for A, B C P,{A U B}" is denoted by {4, B}" and for « € P, the
set {AU{z}}" is denoted by {A, z}". Similar notation is used for lower cones. We
note that A C A% and A C A™. If A C B, then B! C A' and B* C A*. Moreover,
Alul = AL Aulv — A% and {a*} = {a}! = d'.

A poset P with 0 is called 0-distributive, see Joshi and Waphare [9], if (z,y)! =
{0} = (z,2)! imply {=, (y,2)"*}} = {0} for z,y,2 € P. Dually, we have the concept
of a 1-distributive poset.

A nonempty subset I of a poset P is called an ideal if a,b € I implies (a,b)* C I,
see Halas [5]. A proper ideal [ is called prime, if (a,b)! C I implies that either a € T
or b € I, see Halas and Rachunek [6]. Dually, we have the concepts of a filter and
a prime filter. Given a € P, the subset a! = {z € P; = < a} is an ideal of P
generated by a, denoted by (a]. We shall call (a] a principal ideal. Dually, a filter
[a) = a* = {x € P; = < a} generated by a is called a principal filter. It is known
that the set of all ideals of a poset P, denoted by Id(P), forms a complete lattice
under set inclusion, see Halas and Rachtnek [6]. A nonempty subset @ of P is called
an up directed set, if QN (x,y)* # () for any x,y € Q. Dually, we have the concept of
a down directed set. If an ideal I (filter F') is an up (down) directed set of P, then
it is called a u-ideal (I-filter).

For a nonempty subset A of a poset P with 0, define a subset A+ of P as follows:

At ={2€P; (a,2)! = {0} Va € A}.

If A = {z}, then we write a* instead of {a}*. We note that A C A*+ and x € z++.

Further, A+ = (| a* and AN A+ = {0}. Moreover, if A C B, then B+ C A+,
a€A
An ideal I of a poset P is said to be an a-ideal, if 2+ C I for all z € I. We

denote the set of all a-ideals of P by aId(P).
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2. «a-IDEALS IN (0-DISTRIBUTIVE POSETS

In this section, we study a-ideals, prime and minimal prime ideals in a O-
distributive poset. We begin by proving a characterization of 0-distributive posets.

uld

Lemma 2.1. A poset P is 0-distributive if and only if (z,y) =zt Nyt for

all z,y € P.

Proof. Let P be a 0-distributive poset and let a € (z, y)“lL. Since x,y € (x,y)*,
we get (a,z)! = {0} = (a,y)', which implies a € z*-Ny*. Hence (z, y)“ll Cztnyt.

To show the converse inclusion, suppose that a € x+ Ny*-. We have (a,z)! =
{0} = (a,y)! and by O-distributivity, we get {a, (z,y)*}! = {0}. Let z € (z,y)".
Then clearly (a,z)! = {0}. Thus a € (x,y)“”‘, which gives z+ Nyt C (x,y)“lL
Therefore (z, y)“ll =zt nyt.

Conversely, suppose (Jt:,y)“lL =zt Nyt for all 2,y € P. To prove that P is
0-distributive, let us assume that (a,z)! = {0} = (a,y)! for a,z,y € P. Let z €
{a, (z,y)"}'. Then clearly (z,z)! = {0} = (z,y)! and 2 € (x,y)*. By assumption,
zextnyt = (x,y)“lL and z € (z,y)", which yield z € (z,y)* N (x,y)“ll = {0}.
Therefore z = 0 and the 0-distributivity of P follows. O

For an ideal I of a poset P define a subset I’ of P as follows:
I'={z € P; a* C " for some a € I}.

The following is a characterization of an ideal I to be an a-ideal in terms of I’ in
a 0-distributive poset.

Theorem 2.2. Let I be a u-ideal of a 0-distributive poset P. Then I’ is the
smallest a-ideal containing I. Moreover, an ideal I of P is an «-ideal if and only if
I=1r.

Proof. First we show that I’ is an ideal. For this, assume that z,y € I’ and
z € (z,y)"". We have to show that z € I'. Since z,y € I, there exist a,b € I such
that et C ot and b+ C y*, and hence a*Nb+ C z+ Ny*. Therefore by Lemma 2.1,
atNbt C (m,y)"ll. Since I is a u-ideal, there exists an element ¢ € (a,b)" and
c € I. Now, ¢ € (a,b)* implies ¢t C a* Nbt, which gives ¢+ C (:c,y)“ll. Since
z € (z,y)", we have (, y)“lL C z*. Hence ¢+ C 2+ and therefore z € I'.

Now, we show that I’ is an a-ideal. Let z € I’, i.e., there exists a € I such that
a’t C z+. We show that -+ C I’. Suppose on the contrary that *+ ¢ I’. Then
there exists an element y € P such that y € z-+ and y ¢ I’. Observe that a* Z y+,
since a* C y* and a € I imply that y € I, a contradiction to the fact that y ¢ I'.
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Thus at € y*. So, there exists b € a* and b ¢ y*. Since a* C 2, we have b € o+
and b ¢ y*, which is a contradiction to the fact that y € z++. Hence 2+ C I".

The inclusion I C I’ follows from the fact that a* C a' for any element a € I.
Now, suppose that there exists an a-ideal J with the property I C J. We have to
show that I’ C J. Let z € I’, i.e., at C x* for some a € I. Since I C J, we have
alt C 2zt and a € J. Using the fact that J is an a-ideal, we get 2+t Catt CJ.
Since x € 1+, we get x € J as required.

Further, let I be an a-ideal. To show that I = I’, it is enough to show that I’ C I.
For this, assume x € I'. Then at C zt for somea € I, which yields gt Catt C I
By using the fact that 2 € 2, we get « € I. Hence I = I'. O

Remark 2.3. The statement of Theorem 2.2 is not necessarily true if we drop
the condition of I being a wu-ideal. Consider the 0-distributive poset P depicted
in Figure 1 and the ideal I = {0,a,b}, which is not a u-ideal. Observe that I’ =
{0,a,b} U {x;}, where i = 1,2,... But I’ is not an ideal as (b,z1)% =P Z I'.
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Figure 1.

For a nonempty subset A of a poset P with 0, consider the set 0(A) as follows:
0(A) = {x € P; (a,z)" = {0} for some a € A}.
We have the following result.

Theorem 2.4. Let A be a down directed set of a 0-distributive poset P. Then
0(A) is an a-ideal of P.

Proof. First we prove that 0(A) is an ideal. Let x,y € 0(A) and z € (x,y)".
We show that z € 0(A). Since x,y € 0(A), there exist a,b € A such that (a,z) =
{0} = (b,y)!. Now, since A is a down directed set, there exists an element c € A
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such that ¢ € (a,b)!, and consequently, (c,z)! = {0} = (c,y)!. By O-distributivity,
we get {c, (z,9)"} = {0}, which gives (c,z)! = {0}. Hence z € 0(A).

Now, we show that 0(A) is an a-ideal. Let x € 0(A), that is, (a,z)" = {0} for some
a € A. We claim that 2+ C 0(A). Suppose that z € zt+. We obtain (z,y)! = {0}
forally € z+. Since a € 2, we get (z,a)! = {0}, and this yields 2z € 0(A). Therefore
0(A) is an a-ideal. O

Remark 2.5. The statement of Theorem 2.4 is not true if we remove the condi-
tion that A is a down directed set. In the 0-distributive poset P depicted in Figure 2,
the set A = {1,a,b} is not a down directed set. Observe that 0(A4) = {0, a, b} is not
an ideal as a,b € 0(A), but (a,b)" = P Z 0(A).

1

0
Figure 2.

An immediate consequence of Theorem 2.4 is the following:

Corollary 2.6. For any [-filter F of a 0-distributive poset P, 0(F') is an a-ideal
of P.

However, in the case of meet semilattices we have a theorem of Pawar and
Mane [12] following as a corollary.

Corollary 2.7. For any filter F' of a 0-distributive meet semilattice P, 0(F') is an
a-ideal of P.

Let I be a proper ideal of a poset P. Then I is said to be a mazimal ideal of P, if
the only ideal properly containing I is P. A mazimal filter, more usually known as
an ultra filter, is defined dually. Also, we have the concepts of a minimal ideal and
a minimal filter.

It has to be noticed that Joshi and Mundlik [8], in their two lemmas listed below,
have assumed that every maximal [-filter (maximal among all [-filters) is a maximal
filter (maximal among all filters).

Lemma 2.8 (Joshi, Mundlik [8]). Let F' be an I-filter of a poset P with 0. Then
F is a maximal [-filter if and only if the following condition holds:

for any x ¢ F, there exists y € F such that (z,y)! = {0}.

323



Lemma 2.9 (Joshi, Mundlik [8]). Let P be a finite 0-distributive poset and let
I be an ideal of P. Then I is a minimal prime ideal of P if and only if P — I is
a maximal [-filter of P.

The following result is a characterization of prime ideals to be a-ideals in the case
of finite O-distributive posets.

Theorem 2.10. Every minimal prime ideal of a finite 0-distributive poset P is
an a-ideal.

Proof. Let z € I. To show that [ is an a-ideal, we have to show that zt+ C .
Since I is a minimal prime ideal of P, by Lemma 2.9, P — I is a maximal [-filter.
Now, as x ¢ P — I, by Lemma 2.8, there exists y € P — I such that (z,y)! = {0},
that is, y ¢ I and y € 2. Let z € -+, Since y € o1, we get, (z,y)! = {0}, which
gives (z,y)! C I. Since y ¢ I, by primeness of I, we have z € I. Hence z++ C I as
required. ([

Let I be an ideal of a poset P with 0. Then I is called dense if I = {0} and I
is said to be an annihilator if I = I+, It is easy to observe that every annihilator
ideal of a poset is an a-ideal.

Theorem 2.11. If a prime ideal I of a 0-distributive poset P is non-dense, then I
is an annihilator ideal.

Proof. By assumption, I+ # {0}. Hence there exists x € I+ such that = # 0.
But then I*++ C xt. Since I C I is always true, we get I C x*. Further, if
t € o1, then (z,t)! = {0} C I. From the fact that I N I+ = {0}, it is clear that
x ¢ I. Indeed, if z € I, then x € IN T+ = {0}, hence z = 0 a contradiction to = # 0.
Since (x,t)! C I and z ¢ I, by primeness of I, we get t € I. Therefore x- C I. By
combining both inclusions, we get 2+ = I. Consequently I = I+, and therefore I
is an annihilator. O

As a consequence, we have the following statement, which is another characteri-
zation of prime ideals to be a-ideals.

Corollary 2.12. If a prime ideal I of a 0-distributive poset P is non-dense, then I
is an a-ideal.

3. PRIME a-IDEAL SEPARATION THEOREM IN (0-DISTRIBUTIVE POSETS

We begin by proving that the set of all a-ideals aId(P) of a poset P with 0 is
closed under the set-theoretical intersection, in fact, it is a complete lattice.
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Lemma 3.1. Let P be a poset with 0 and X be a family of members of o Id(P).
Then () [ is also in «1d(P).

Iex
Proof. Letz € () I. Wehavex € I forall I € X. Since I is an a-ideal, we have
Iex
1+ C I for all I € X, which implies that x*+ C (| I. Therefore () I € ald(P).

Iex Iex
(|

Theorem 3.2 follows immediately from Lemma 3.1.

Theorem 3.2. Let P be a poset with 0. Then (ald(P),C) forms a complete
lattice in which infima and suprema of a family X of aId(P) are defined as follows:

ANI=(Tand \V I= () Y,where |JICY.
Iex Iex Iex Yeald(P) 1€X

Let P be a given poset. Define the extension of an ideal I of P, denoted by ¢, as
I°={Jeld(P); JCI}

and for an ideal A of the lattice (Id(P), C), define the contraction of A, denoted by
A, as

X=|J{J; J e}

It is obvious that I¢ is a principal ideal of Id(P) for every ideal I of a poset P.
More details about these concepts can be found in Kharat and Mokbel [10].

In the following theorem we establish the relation between annihilator ideals of
a 0-distributive poset P and the a-ideals of the lattice Id(P).

Theorem 3.3. Let P be a poset with 0. If I is an annihilator ideal, then I€¢ is
an a-ideal of Id(P).

Proof. Suppose J € I¢. Then we have J C I, which yields J++ C I+, Since I
is an annihilator, we get J++ C I. Observe that J++ C I¢. Indeed, if J*+ ¢ I¢,
then there exists J; € Id(P) such that J; € J*+ and J; ¢ I¢, ie., J; € J*+ and
J1 € I. Hence there exists an element 2z € P such that x € J; and « ¢ I, which
implies (z] € J*+ C I and z ¢ I, a contradiction. Consequently J++ C I°. Hence
I¢ is an a-ideal. 0

Remark 3.4. The statement of Theorem 3.3 is not necessarily true if we drop
the condition that I is an annihilator. Consider the poset P depicted in Figure 3
and its Id(P) depicted in Figure 4. Consider the a-ideal T = {0, a, b}, which is not
an annihilator in P. Observe that I¢ = {(0], (a], (b],{0,a,b}} is not an a-ideal in
Id(P), as {0,a,b} € I¢, but {0,a,b}++ =1d(P) ¢ I°.
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Theorem 3.5. Let P be a poset and let A\ be an a-ideal of the lattice Id(P).
Then X¢ is an a-ideal of P.

Proof. First we prove that A° is an ideal. Consider elements x,y € A°. If z and y
belong to some J € A, then the result is obvious. Suppose there exist Ji, Jo € A such
that = € J; and y € Ja, J; # Jo, then we have (z,y)" C J; V.Jo € A, as ) is an
ideal. Thus ¢ is an ideal of P.

Now, we show that \° is an a-ideal of Id(P). Let x € A°. We claim that z-+ C \°.
Observe that © € A° implies (] € A. Since A is an a-ideal of Id(P), we have
(x]++ C A\. Therefore z++ C \¢ as required. O

Now, let K be an [-filter of a poset P. Define a subset v of Id(P) as follows:
(%) vy={Jeld(P); JNK #{}.

We use the following results to prove Theorem 3.9, which is a generalization of
Theorem A for finite posets.

Lemma 3.6 (Kharat, Mokbel [10]). Let P be a poset, K be an l-filter of P and
let v be a subset of 1d(P) as defined in (x). Then + is a filter of 1d(P).

Lemma 3.7 (Kharat, Mokbel [10]). Let P be a finite poset and A be a prime
ideal of Id(P). Then A¢ is a prime ideal of P.

Lemma 3.8 (Joshi, Waphare [9]). A poset P is 0-distributive if and only if Id(P)
is a O-distributive lattice.

Theorem 3.9. Let I be an annihilator ideal and ' be an l-filter of a finite 0-

distributive poset P for which I N F' = (). Then there exists a prime a-ideal G of P
such that I C G and INF = ().
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Proof. Suppose [ is an annihilator ideal and F' is an [-filter of a finite
O-distributive poset P for which I N F = (). By Theorem 3.3, I¢ is an a-ideal
of Id(P) and also v = {J € Id(P); JNF # 0} is a filter of Id(P) by Lemma 3.6.
Observe that I N~y = (. Were this false, then there exists J; € Id(P) such that
JieI°nN~y. Thus J; C T and Jy N F # (. In other words, I N F # (), which con-
tradicts the hypothesis. By Lemma 3.8, Id(P) is a 0-distributive lattice. Hence, by
Theorem A, there exists a prime a-ideal A of Id(P) such that 7¢ C XA and AN~y = 0.
Since A is a prime a-ideal of Id(P), by Lemma 3.7 and Theorem 3.5, A€ is a prime
a-ideal of P. Further, I C A, since x € I implies (z] € I¢ C A. Thus (z] € A,
and by definition of \°, we have z € \°. Also, we have A* N F' = (). Otherwise, if
AN F # ), then there exists x € P such that x € A* N F. Hence (z] C J, where
J € A and (z] € 4. In other words, (z] € AN+, a contradiction. O

Remark 3.10. (i) The statement of Theorem 3.9 is not necessarily true if we
drop the condition that P is finite. Let N be the set of natural numbers. Consider
the set P = {0} U{X C N; X is an infinite subset of N} U{X C N; |X| = 1}.
It is easy to observe that P is an infinite 0-distributive poset under set inclusion
and F' = {X C N; X is an infinite subset of N} is an I-filter of P, see Joshi and
Mundlik [8]. Let I = {{1},0}. Observe that I is an annihilator ideal for which
INF = (. But there does not exist a prime a-ideal G of P for which I C G and
GNF=0.

(ii) The condition of F' being an I-filter cannot be dropped in the statement of The-
orem 3.9. Consider the finite 0-distributive poset P depicted in Figure 5. Consider
the annihilator ideal I = {0, a, b}, which is not prime, and a filter F' = {a’, V', ¢/, d’, 1},
which is not an [-filter. Observe that INF = (), but there is no prime a-ideal G of P
such that I C G and GNF = (.

d'q

N

L
3%

Figure 5.

(iii) Theorem 3.9 is not necessarily true if we drop the condition that I is an
annihilator ideal. Consider the finite 0-distributive poset P depicted in Figure 5.
Let I = {0,a,b,c,d} and F = {a’,1}. Observe that I is an a-ideal but not prime
and F is an [-filter of P for which I N F = @), but there is no prime a-ideal G of P
such that I C G and GNF = (.
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Lemma 3.11 (Kharat, Mokbel [10]). Let P be a meet semilattice and A be
a prime ideal of Id(P). Then A€ is a prime ideal of P.

However, if the poset is a meet semilattice, then by Theorem 3.9 and Lemma 3.11
we have the following:

Corollary 3.12. Let I be an annihilator ideal and F' be a filter of a 0-distributive
meet semilattice P for which I N F = (). Then there exists a prime «-ideal G of P
such that I C G and INF = 0.
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