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1. Introduction

Kurzweil-Henstock integral with respect to different derivation bases was consid-

ered in numerous publications (see for example [2], [3], [5], [11]). At the same time

comparatively less attention was given to McShane type integrals with respect to

bases different from the usual full interval basis. In this connection the paper [7]

introducing approximate McShane integral is of interest. Being motivated by this

paper (and also by its review [6]), we investigate here McShane type integrals with

respect to more general bases. We obtain a condition put on McShane basis under

which the corresponding McShane integral is absolute and therefore coincides (in the

class of measurable functions) with the Lebesgue integral (Section 3). Considering

Perron and McShane bases associated with the so-called local systems, we discuss

in Section 4 the relation between Kurzweil-Henstock and McShane integrals defined

with respect to the related bases. Section 5 is devoted to Perron type integrals with

respect to McShane bases (strong Perron integrals, in terminology used in [7]) which

are equivalent to the corresponding McShane type integrals. We give a (surprisingly)
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simple construction of continuous major/minor functions for a McShane integrand

in � n . Then, this method is discussed in application to (one-dimensional) McShane

integrals associated with local systems.

2. Preliminaries

We use the following notation and definitions. By an interval in � n we mean the

Cartesian product of any n compact nondegenerate subintervals of the real line � .
By a tagged interval (a free tagged interval) we mean a pair (I, x) where I is an

interval in � n and x ∈ I (x ∈ � n , respectively). By a basis (a McShane basis) in

� n we understand any nonempty collection B = {β} of families β of tagged (free

tagged, respectively) intervals which has the filter base property : ∅ /∈ B, and for

every β1, β2 ∈ B there exists β ∈ B such that β ⊂ β1 ∩ β2. Obviously, each basis is

a McShane basis (note that what we call here a basis, is sometimes referred to as a

Perron basis, see [8]).

By a free tagged division we mean a finite collection of free tagged intervals (I, x)

in which intervals I are pairwise nonoverlapping. If x ∈ E for all (I, x), then we say

that a free tagged division is tagged in a set E ⊂ � n . A free tagged division is called

a free tagged partition of an interval J if the union of intervals I from this division

is J , and all the tags belong to J . Free tagged divisions will be denoted by P , while

free tagged partitions usually by π. For a function f : � n → � and a free tagged
division P we denote

σ(P , f) =
∑

(I,x)∈P

f(x)|I |.

We say that a free tagged division P is β-fine if P ⊂ β ∈ B.

Given a McShane basis B, by a B-interval we mean any interval I such that

(I, x) ∈ β ∈ B for some x and β. The collection of all B-intervals we denote with IB.

We say that B has the partitioning property if

(i) for each I ∈ IB and every β ∈ B there exists a free tagged partition of I that is

β-fine;

(ii) for any two I, J ∈ IB the closure of difference I \ J can be expressed as a union

of finitely many nonoverlapping B-intervals.

McShane bases only with the partitioning property are considered in the sequel.

Definition 2.1. Let B be a McShane basis and let I ∈ IB. We call a function
f : I → � , BM -integrable if there exists a real number I (its BM -integral) such that

for any ε > 0 there is a β ∈ B such that for every β-fine free tagged partition π of I ,

(1) |σ(π, f) − I| < ε.

If B is a basis then f is called BH-integrable, I being its BH-integral.
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Due to the filter base and the partitioning properties of B, the value of integral is

unique.

The family of all B-intervals J ⊂ I we denote as IB,I . With the aid of (ii) one

proves that if f : I → � is BM -integrable, then it is BM -integrable on each J ∈ IB,I .

So, the indefinite integral F of f is defined as a function F : IB,I → � by

F (J) =

∫

J

f.

2.1. McShane-B-Perron integrals.

Fix a McShane basis B and an interval I ∈ IB. By the upper McShane-B-derivative
of a function G : IB,I → � at x ∈ I we mean the value

DBG(x) = inf
β∈B

sup
(J,x)∈β

G(J)

|J |
.

In a similar way the lower McShane-B-derivative DBG(x) is defined. When B is

a basis, then DBG(x) and DBG(x) are called respectively the upper and the lower

B-derivative of G at x ∈ I .

We will say that a function G : IB,I → � is additive if G(J) =
l∑

i=1

G(Ji) whenever

the interval J ∈ IB,I is the union of nonoverlapping intervals J1, . . . , Jl ∈ IB,I .

Similarly for subadditivity and superadditivity.

Definition 2.2. We say that an additive function M : IB,I → � is a McShane-
B-major function for f : I → � if at each point x ∈ I we have

(2) DBM(x) > f(x).

We say that an additive function m : IB,I → � is a McShane-B-minor function for
f if at each point x ∈ I we have

DBm(x) 6 f(x).

Definition 2.3. We say that a function f : I → � is McShane-B-Perron inte-
grable if

inf
M

M(I) = sup
m

m(I),

whereM ranges over the set of all McShane-B-major andm ranges over all McShane-

B-minor functions for f . The common value is taken as the integral of f . When B
is a basis, then we say that f is just B-Perron integrable.
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Theorem 2.4. BM -integral and McShane-B-Perron integral are equivalent.

�������	�
. The proof is standard and follows like proofs of [7, Theorems 3.7&3.8].

�

Corollary 2.5. BH-integral and B-Perron integral are equivalent.

2.2. Examples of bases.

2.2.1. 
 � �
�������������
��� n . Any positive function δ defined on � n is called a

gauge. Having fixed a gauge δ we say that a free tagged (or tagged) interval (I, x) is

δ-fine, if I is contained in the δ(x)-neighbourhood of x (we use the sup metric in � n

throughout the paper). Denote respectively by αδ and βδ families of all free tagged

and tagged intervals in � n that are δ-fine.

Afull =
{
αδ : δ a gauge

}
, Bfull =

{
βδ : δ a gauge

}

form respectively a McShane basis and a basis in � n both with partitioning property.

2.2.2. �������! "�
#$�%����� � ���&�'�������(� � �%�)�(*+�� ,* � � �"- �&�.� / �!*��%#0� . By a
local system (see [10]) we mean a family ∆ = {∆(x)}x∈ 1 such that each ∆(x) is a

nonvoid collection of subsets of � with the properties:
(i) {x} /∈ ∆(x),

(ii) if S ∈ ∆(x) then x ∈ S,

(iii) if S ∈ ∆(x) and R ⊃ S then R ∈ ∆(x),

(iv) if S ∈ ∆(x) and δ > 0 then (x − δ, x + δ) ∩ S ∈ ∆(x).

We say that ∆ is filtering down if for each x and any R, S ∈ ∆(x), R ∩ S ∈ ∆(x).

Only such ∆’s will be considered here. Any S belonging to ∆(x) is called a path

leading to x. A function C on � such that C(x) ∈ ∆(x) for each x is called a choice.

Given a choice C, we write (I, x) ∈ βC ((I, x) ∈ β̃C) and say that a tagged interval

(a free tagged interval) (I, x) is βC-fine (β̃C-fine, respectively) or C-fine for short, if
both endpoints of I are in C(x). The basis and the McShane basis induced by a local

system ∆ are defined respectively as

B∆ =
{
βC : C a choice

}
, B̃∆ =

{
β̃C : C a choice

}
.

We say that a local system ∆ satisfies the intersection condition (abbr. IC) if for

every choice C, there exists a gauge δ on � such that if 0 < y−x < min {δ(x), δ(y)},
then C(x)∩C(y)∩ [x, y] 6= ∅. Thomson has proved in [10] that if ∆ is bilateral, i.e., if

each member of each ∆(x) has x as a bilateral accumulation point, and if it satisfies

IC, then each subinterval of the real line has a C-fine partition for any choice C.

In what follows, for any basis B∆ associated with a local system∆, the partitioning

property will be always meant in this stronger version.
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Examples of local systems are the full local system (consisting of families of neigh-

bourhoods), the density local system [12, Example 2], the I-density local system [4].

A slightly different notion is a path system. In this case a set Ex 3 x is attached

to each x ∈ � so that x is an accumulation point of Ex. Clearly, the collection

E(x) =
{
(x − δ, x + δ) ∩ Ex : δ > 0

}
, x ∈ � , does not form a local system since

the condition (iii) is not satisfied. However, we remove this obstacle by defining

an auxiliary local system ∆ by ∆(x) = {S ⊂ � : S ⊃ R ∈ E(x)}, x ∈ � , which
we call the local system induced by the path system E = {Ex}x∈ 1 . Anyway, the
collection BE =

{
βE,δ : δ a gauge

}
where βE,δ = {([a, b], x) : x − δ(x) < a 6 x 6

b < x + δ(x), a, b ∈ Ex}, forms a basis and it is apparent that the BEH- and B∆H-

integrals are equivalent. The same with B̃EM - and B̃∆M -integrals. Thus, BEH- and

B̃EM -integrals can be considered as a case of B∆H- and B̃∆M -integrals respectively.

3. When BM-integral is absolute?

Let B be a McShane basis. If for each gauge δ there is a β ∈ B such that all mem-
bers of β are δ-fine, then clearly the BM -integral includes the ordinary McShane

integral, i.e., includes the Lebesgue integral. We consider now if this generalization

is strict. One checks easily that the BM -integral is equivalent (in the class of mea-

surable functions) to the McShane integral iff it is absolute, i.e., iff the integrability

of a function f yields the integrability of |f |.

Theorem 3.1. Assume that a McShane basis B satisfies the following condition:

for each β ∈ B and any two (I, x), (J, y) ∈ β, either I and J are nonoverlapping or

the intersection I ∩ J is expressible as the union of some nonoverlapping intervals

K1, . . . , Kk with (Ki, x), (Ki, y) ∈ β for i = 1, . . . , k.

Then, the BM -integral is absolute.

�������	�
. Let a function f on an n-dimensional interval I be BM -integrable to a

value I. For ε > 0 take a suitable β ∈ B such that for any β-fine free tagged partition

π of I the inequality (1) holds. Consider any two β-fine free tagged partitions of I :

{(Ii, xi)}i and {(Jj , yj)}j . Denote Kij = Ii ∩ Jj (only nondegenerate intervals Kij

are taken into account). According to the condition assumed, Kij =
sij⋃
k=1

Kijk , where

Kijk ’s are pairwise nonoverlapping and {(Kijk , xi)}i,j,k and {(Kijk, yj)}i,j,k are also

β-fine free tagged partitions of I . With Saks-Henstock lemma for the BM -integral,

for any collection R = {(i, j)} of pairs (i, j) for which Kij have been defined, we get

∣∣∣∣
∑

(i,j)∈R

sij∑

k=1

(
f(xi)|Kijk |−

∫

Kijk

f

)∣∣∣∣ < 2ε,

∣∣∣∣
∑

(i,j)∈R

sij∑

k=1

(
f(yj)|Kijk |−

∫

Kijk

f

)∣∣∣∣ < 2ε,
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whence

(3)

∣∣∣∣
∑

(i,j)∈R

sij∑

k=1

(f(xi) − f(yj))|Kijk |

∣∣∣∣ < 4ε.

Then

∣∣∣∣
∑

i

|f(xi)||Ii| −
∑

j

|f(yj)||Jj |

∣∣∣∣ =

∣∣∣∣
∑

i,j,k

|f(xi)||Kijk | −
∑

i,j,k

|f(yj)||Kijk |

∣∣∣∣

6
∑

i,j,k

|f(xi) − f(yj)||Kijk | =

2∑

l=1

∣∣∣∣
∑

(i,j)∈Rl

sij∑

k=1

(f(xi) − f(yj))|Kijk |

∣∣∣∣,

where

R1 = {(i, j) : Kij 6= ∅ and f(xi) > f(yj)},

R2 = {(i, j) : Kij 6= ∅ and f(xi) < f(yj)}.

Apply (3) separately to R1 and R2, and get

∣∣∣∣
∑

i

|f(xi)||Ii| −
∑

j

|f(yj)||Jj |

∣∣∣∣ < 8ε.

So, for |f | the Cauchy criterion for BM -integrability is fulfilled. �

Let βd
δ be the family of all δ-fine free tagged dyadic intervals, that is intervals of

the kind ([j/2n, (j + 1)/2n], x), j ∈ 2 , n ∈ 3 . The McShane basis
{
βd

δ : δ a gauge
}

has the partitioning property and satisfies the assumption of the foregoing theorem.

4. On McShane integral with respect to local systems

The B̃∆M -integral (related to a local system ∆) is in general not absolute.

Theorem 4.1. Let ∆ be a local system with the partitioning property. Assume

that for some x ∈ � there is a path S ∈ ∆(x) which is dense (metrically) in no

neighbourhood of x. Then there exists a function f nonintegrable in the ordinary

McShane sense, but B̃∆M -integrable.
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�������	�
. We may assume that S is dense in no left neighbourhood of x. Let

(an)∞n=1 be an increasing sequence of points that converges to x, such that S ∩
(a2n−1, a2n) = ∅, n = 1, 2, . . .. Define f on [a1, x] in the following way:

f =





1

(a2n − a2n−1)n
on (a2n−1,

1
2 (a2n−1 + a2n)), n = 1, 2, . . . ,

−
1

(a2n − a2n−1)n
on ( 1

2 (a2n−1 + a2n), a2n), n = 1, 2, . . . ,

0 elsewhere on [a1, x].

Since
∫ a2n

a2n−1
|f | = 1/n, f is not McShane integrable on [a1, x]. We are to justify that f

is B̃∆M-integrable. For each y ∈ (an, an+1), n = 1, 2, . . ., take a number δ(y) > 0 with

(y − δ(y), y + δ(y)) ⊂ (an, an+1). Put δ(an) = min {|an+1 − an|, |an − an−1|, 2−n},

assuming |a1 − a0| = 1. Let ε > 0. Since f is Riemann integrable to zero on

each interval [a2n−1, a2n], there exist numbers ηn such that |σ(π, f)| < ε2−n for

each ηn-fine free tagged partition π of [a2n−1, a2n]. We can assume that δ 6 ηn

on [a2n−1, a2n]. Define a choice C on [a1, x] by putting C(x) = S and C(y) =
(
y −

δ(y), y + δ(y)
)
for y ∈ [a1, x), and consider any C-fine free tagged partition π̃ of

[a1, x]. For each member (I, y) of π̃ there are four possibilities:

(∗) y = x; then (I, y) contributes nothing to σ(π̃, f).

(∗∗) y 6= x and I ⊂ [a2n, a2n+1]; then y ∈ [a2n, a2n+1] thanks to the definition of

δ(y), whence (I, y) contributes nothing to σ(π̃, f) too.

(∗∗∗) y 6= x and I ⊂ [a2n−1, a2n]; then, since C(x) misses (a2n−1, a2n), (I, y) is a

member of a free tagged partition πn ⊂ π̃ of the interval [a2n−1, a2n]. Since

πn is ηn-fine, |σ(πn, f)| < ε2−n.

(∗∗∗∗) y 6= x with I meeting two intervals: (an−1, an) and (an, an+1); then y = an

(by the definition of δ) and (I, an) can be split at an into two intervals (I
′, an)

and (I ′′, an) with the same contribution to σ(π̃, f) as (I, an), one of them

being of the type (∗∗), the other of the type (∗∗∗).

For these reasons |σ(π, f)| <
∞∑

n=1
ε2−n = ε. Thus, f is B̃∆M -integrable to zero. �

Now we turn to examples of Kurzweil-Henstock integrable but not B∆M -integrable

functions.

Lemma 4.2. Let∆ be a local system with the partitioning property. Assume that

a function f : [a, b] → � is B̃∆M -integrable with the indefinite integral F : [a, b] → � ,
F (x) =

∫ x

a
f . Then for each x there exists a path S ∈ ∆(x) such that F � S is a

VB-function.
�������	�

. Suppose it is not true. Then there is an x ∈ [a, b] such that F � S has

unbounded variation for all S ∈ ∆(x). Obviously, the function f̂ defined by f̂(x) = 0,

f̂(t) = f(t) if t ∈ [a, b]\{x}, is B̃∆M -integrable with the indefinite integral F . There
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exists a choice C such that for any C-fine free tagged partition π of [a, b] one has

|σ(π, f̂ ) − F (b)| < 1. There are points a1, a2, . . . , a2N ∈ C(x), a1 < a2 < . . . < a2N ,

with
N∑

i=1

|F (a2i) − F (a2i−1)| > 2.

The free tagged division {([a2i−1, a2i], x)}N
i=1 is C-fine. Saks-Henstock lemma for the

B̃∆M -integral implies that

N∑

i=1

|F (a2i) − F (a2i−1)| =

N∑

i=1

|f̂(x)(a2i − a2i−1) − (F (a2i) − F (a2i−1))| 6 2,

giving the desired contradiction. �

With the aid of the above lemma it is easy to give examples of local systems ∆

for which there are functions integrable in the Kurzweil-Henstock sense, while not

being B̃∆M -integrable.� �(*�45� / �6*+�%#0� . Let E = {Ex}x∈ 1 be a path system. Take a decreasing
sequence a1 = 1 > a2 > a3 > . . . converging to 0, an ∈ E0 for n > 2, and define a

function F on [0, 1] by putting

F (x) =





0 for x = 0 and x = a2i+1, i = 0, 1, 2, . . .,

1/i for x = a2i, i = 1, 2, . . .,

linear on intervals [ai+1, ai], i = 1, 2, . . ..

The so defined F is the indefinite Kurzweil-Henstock integral of F ′. For any neigh-

bourhood I of 0, the set I ∩E0 contains almost all points from the sequence (an)∞n=1

and so the restriction F � (I∩E0) has unbounded variation. According to Lemma 4.2,

F is not an indefinite B̃EM -integral. Since F ′ is Riemann integrable on every inter-

val [c, 1], 1 > c > 0, there is no other indefinite B̃EM -integral for F ′; hence F ′ is not

B̃EM -integrable.7 4��8 "�%�����9* / � �"- �(�:� / �!*��%# . Define a function F on [0, 1] by

F (x) =






0 for x = 0 and x = 2−2i, i = 0, 1, . . .,

1/i for x = 2−2i−1, i = 0, 1, . . .,

linear on intervals [2−i−1, 2−i], i = 0, 1, . . ..

It is the indefinite Kurzweil-Henstock integral of F ′. We are to check that F is

not an indefinite B̃∆M -integral, with ∆ being the density local system. Take any

(measurable) S ∈ ∆(0). According to the definition of ∆, the set S has density 1 at

0, hence there exists h > 0 such that |(0, t) ∩ S|/t > 7
8 for each t ∈ (0, h). Take i0
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with 2−2i0 < h. For each i > i0 we can choose points

si
1 ∈ S ∩

( 1

22i+1
,

1

22i+1
+

1

4

( 1

22i
−

1

22i+1

))
,

si
2 ∈ S ∩

( 1

22i
−

1

4

( 1

22i
−

1

22i+1

)
,

1

22i

)
.

This is possible since both the foregoing intervals have length 1
8 of the length of

(0, 2−2i). Intervals {[si
1, s

i
2]}

∞
i=i0
are pairwise nonoverlapping and have endpoints in

S. Moreover, thanks to the way the points si
1, s

i
2 were chosen, F (si

1) − F (si
2) >

1
2 (F (2−2i−1) − F (2−2i)) = 1

2 i−1. So
∞∑

i=i0

|F (si
1) − F (si

2)| = ∞ and F � S is not a

VB-function. According to Lemma 4.2, F is not an indefinite B̃∆M -integral and so

(like in the previous example) F ′ is not B̃∆M -integrable.
; �%#0� ��< 4.3. A similar ‘density’ argument can be used to give an analogous

example for I-density local system (we do not want to involve the reader into ex-
tensive technical details needed for this). It is not clear if for any local system with

the partitioning property one can go along arguments alike those used in the above

examples. But there is a more interesting problem: is the converse of Lemma 4.2

true? Precisely,
= � ���!*+� � � 4.4. Let ∆ be a local system with the partitioning property and

assume that a function f : [a, b] → � is B∆H-integrable with the indefinite integral

F : [a, b] → � . Suppose that F has the following property: there is a choice C such

that for each x ∈ [a, b], F � C(x) is a VB-function. Must f be B̃∆M -integrable?

5. A simple construction of major/minor functions for the

McShane-Perron integral

In this section we shall deal with some modifications of Definition 2.3. The first to

be considered is the one with a continuity assumption put on major/minor functions.

Given a McShane basis B, a B-interval I , and a function G : IB,I → � , we say that
G is B-continuous at x ∈ I if for each ε > 0 there exists β ∈ B such that |G(J)| < ε

for every (J, x) ∈ β. The function G is said to be B-continuous if it is B-continuous

at each x ∈ I .

Definition 5.1. We say that a function f : I → � is McShane-Bc-Perron inte-

grable if

inf
M

M(I) = sup
m

m(I),

whereM ranges over the set of all B-continuous McShane-B-major andm ranges over

all B-continuous McShane-B-minor functions for f . This common value is taken as

the integral of f . If B is a basis, then f is called simply Bc-Perron integrable.
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Clearly, if f is McShane-Bc-Perron integrable then it is McShane-B-Perron inte-

grable with the same integral. A question with an old background is whether the

converse is true. For some results on Bc-Perron integrals see [1, 9]. Our concern here

is the McShane-Bc-Perron integral.

With a standard argument one shows that the McShane-Afull-Perron integral

(McShane-Perron integral for short) is equivalent to the ordinary McShane integral

(AfullM -integral) (Theorem 2.4). Modifying slightly this argument we will show that

for �(� - 4 McShane integrable function f and each ε > 0 there exists a
-�� ��*+�
�>�

� � � � McShane-Afull-major function (McShane-major function for short) M such

that |M(I) −
∫

I
f | < ε.

Let I be an n-dimensional interval, I the family of all its subintervals. Suppose

we have a McShane integrable function f : I → � . Fix ε and let δ be a gauge such

that the inequality |σ(π, f) −
∫

I
f | < ε holds for any δ-fine free tagged partition of

I . Take J ∈ I and define

(4) Φf
δ (J) = sup

P

∑

(K,t)∈P

f(t)|K|,

where sup is taken over all δ-fine free tagged divisions P in I such that the intervals

from P form a partition of J ; i.e., K ⊂ J , but not necesserily t ∈ J . By Saks-

Henstock lemma we have |Φf
δ (J) −

∫
J

f | 6 2ε. This implies that Φf
δ is bounded as

an interval function. So there exists B such that |Φf
δ (J)| 6 B for all J ∈ I.

We are to check three properties of Φf
δ : I → � : being taken as M , it satisfies (2)

(B = Afull, IB,I is I here), it is additive (and so it is a McShane-major function for f),

and it is continuous (which is the same as being Afull-continuous). For any interval

J from the δ(x)-neighbourhood of x ∈ I , the one-element division P = {(J, x)} is in

the domain of sup in (4) and so Φf
δ (J) > f(x)|J |. Hence DAfull

(Φf
δ )(x) > f(x) and

(2) is satisfied. Obviously Φf
δ is superadditive, i.e., Φ

f
δ (J) >

l∑
i=1

Φf
δ (Ji) whenever the

interval J ∈ I is the union of some nonoverlapping intervals J1, . . . , Jl ∈ I. To prove
the converse inequality, take any division P in I which is in the domain of sup in (4)

for Φf
δ (J). Then, the divisions Pi = {(K ∩ Ji, t) : (K, t) ∈ P}, i = 1, . . . , l, are in

domains of sup for Φf
δ (Ji) respectively. Moreover, σ(P , f) =

l∑
i=1

σ(Pi, f) 6
l∑

i=1

Φf
δ (Ji)

and since P is arbitrary we get Φf
δ (J) 6

l∑
i=1

Φf
δ (Ji).

Finally, assume that Φf
δ is discontinuous at some x ∈ I . That means, there exists

ε > 0 such that for an arbitrarily small η > 0 there is an interval J1 ∈ I with

x ∈ int J1, diamJ1 < η, and Φf
δ (J1) > ε or Φf

δ (J1) < −ε. With no restriction of

generality assume the former case holds for all η. Pick any such J1 with diam J1 <

δ(x). There exists a free tagged division P in I which is in the domain of sup

in (4) for Φf
δ (J1), such that σ(P , f) > ε. Denote R = {(K, t) ∈ P : K 3 x}.

Take an open interval L 3 x so small that it meets only intervals from R and
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2n|f(t)||K ∩ L| < σ(P , f) − ε for each (K, t) ∈ R. Divide each difference K \ L,

(K, t) ∈ R, into finitely many nonoverlapping intervals KK
1 , . . . , KK

mK
and define a

new free tagged division:

P1 = (P \ R) ∪
⋃

(K,t)∈R

mK⋃

i=1

{(KK
i , t)}.

Estimate (there are at most 2n members of R)

|σ(P , f) − σ(P1, f)| =

∣∣∣∣σ(R, f) −
∑

(K,t)∈R

mK∑

i=1

f(t)|KK
i |

∣∣∣∣

=

∣∣∣∣σ(R, f) −
∑

(K,t)∈R

f(t)|K \ L|

∣∣∣∣

6
∑

(K,t)∈R

|f(t)||K ∩ L| <
∑

(K,t)∈R

σ(P , f) − ε

2n
6 σ(P , f) − ε.

So,

ε < |σ(P , f)| − |σ(P1, f) − σ(P , f)| 6 σ(P1, f).

Next, take an interval J2 ⊂ L with x ∈ int J2 and Φf
δ (J2) > ε. Like for J1, find

a free tagged division P2 with intervals contained in J2 but missing x such that

ε < σ(P2, f). Then find a J3 with P3 and so on. There is an integer M with

Mε > B. Consider the free tagged division S =
M⋃
i=1

Pi. We can complete it to a

δ-fine free tagged division π from the domain of sup in (4) for Φf
δ (J1), attaching to

every complementary interval the tag x. Since all the complementary intervals are

subsets of J1, |J1| < η, and η could have been chosen arbitrarily small at the start of

the construction of Pi’s, we may assume that |σ(S, f) − σ(π, f)| < Mε−B. We get

σ(π, f) > σ(S, f) − |σ(S, f) − σ(π, f)| > Mε − Mε + B = B,

which contradicts the definition of B. By this, continuity of Φf
δ is established.

In a similar way one proves that the function ϕf
δ : I → � defined by

ϕf
δ (J) = inf

P

∑

(K,t)∈P

f(t)|K|,

where inf is taken over all δ-fine free tagged divisions P in I such that the intervals

from P form a partition of J , is a continuous McShane-minor function for f .

For any two δ-fine free tagged partitions π1, π2 of I we have |σ(π1, f)−σ(π2, f)| <

2ε, whence Φf
δ (I) − ϕf

δ (I) 6 2ε. This obviously implies the McShane-Ac
full-Perron

integrability of f . So we have proved
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Theorem 5.2. The McShane integral and the McShane-Ac
full-Perron integral in

� n are equivalent.

From Theorems 2.4 and 5.2 we also get

Corollary 5.3. The McShane-Perron and the McShane-Ac
full-Perron integral in

� n are equivalent.

; �%#0� ��< 5.4. Notice that for a (one-dimensional) Kurzweil-Henstock integra-
tion, i.e., with t ∈ K for any tagged interval (K, t), the definition of a major function

(McShane-Bfull-major function in notation of the present paper) analogous to (4),

namely

Φ̃f
δ (J) = sup

π

∑

(K,t)∈π

f(t)|K|,

where sup is taken over all δ-fine tagged partitions π of I , does not suit the purpose.

Since we are not allowed to pick t’s outside of J (even not outside ofK), the so defined

Φ̃f
δ can fail to be additive. Actually, put f on [0, 1] by f = 0 on [0, 1

2 ), f = 1 on [ 12 , 1].

For any gauge δ, for a z ∈ ( 1
2 − δ( 1

2 ), 1
2 ), one has Φ̃f

δ ([0, z]) = 0, Φ̃f
δ ([z, 1]) = 1 − z,

while Φ̃f
δ ([0, 1]) = 1

2 + δ( 1
2 ) > 1 − z. On the other hand, it is a standard matter to

check that the function Ψ: [a, b] → � defined by Ψ([c, d]) = Φ̃f
δ ([a, d]) − Φ̃f

δ ([a, c]) is

a major function for f (it is additive); however (in the foregoing situation), it is not

continuous at 1
2 . The known constructions of continuous major/minor functions for

a Kurzweil-Henstock integrand use differentiability and variational arguments; see

for example [9].

5.1. Local systems’ case. Consider a local system ∆ with the partitioning prop-

erty. As a particular case of Theorem 2.4 we have

Theorem 5.5. The B̃∆M -integral is equivalent to the McShane-B̃∆-Perron inte-

gral.

This statement has been proved in [7] in case of the density local system. A

question is if the definition with the use of B∆-continuous McShane-B̃∆-major/minor

functions gives us a notion equivalent to the McShane-B̃∆-Perron integral. Having

left this question open we just point out that the technique of defining major/minor

functions employed before, does not work here anymore.

Consider a B̃∆M -integrable function f : I → � . Let C be a choice such that the
inequality |σ(π, f) −

∫
I
f | < ε is fulfilled for any C-fine free tagged partition of I .

Take J ⊂ I and define

(5) Φf
C
(J) = sup

P

∑

(K,t)∈P

f(t)|K|,
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where sup is taken over all C-fine free tagged divisions P in I , such that the intervals

from P form a partition of J . The value Φf
C
(J) is finite up to the choice of C. As

above, one checks that M = Φf
C
: I → � satisfes the condition (2) (with B = B̃∆).

The question is if it is additive. Unlike in the full local system case, usually the

answer is not. Suppose that a local system ∆ with the partitioning property has

an S ∈ ∆(x) for some x, such that (c, d) ∩ S = ∅ for some c, d ∈ S. Suppose that

x < c < d and define a function f on [x, d] by f(x) = 1 and f = 0 elsewhere. Take

the following choice C : C(x) = S, C(t) = [x, d] at t ∈ (x, d), C(d) = (x,∞). Observe

that Φf
C
([x, 1

2 (c + d)]) = c − x, Φf
C
([ 12 (c + d), d]) = 0, Φf

C
([x, d]) = d − x > c − x.

In both Definitions 2.3 and 5.1, one can change the meaning of a McShane-B-
major/minor function by replacing additivity with superadditivity (for McShane-

B-major) and subadditivity (for McShane-B-minor function). For many bases it is
known that this extension of the integral is not strict, but in general and even in

some particular cases the problem of strictness is open.

The concluding example is related to the so changed definitions in the case of

the McShane-B̃∆M -Perron integral. Even if we allow McShane-B̃∆M -major/minor

functions not to be additive, only super-/sup-additive, the interval function Φf
C
need

not be B∆-continuous. Let ∆ be the local system induced by the dyadic path system

{Ex : x ∈ � } [2]. Consider the function f : [0, 1] → � and the choice C defined

as follows. For an n ∈ 3 put an = 1
2 − 1

2n+1 and pick a point bn < an such that

2n+1(an−bn) < 1
2n . We may assume that 0 6 b1 < b2 < b3 < . . .. Put f(bn) = 2n+1,

f = 0 elsewhere, and C(bn) = Ebn
∩ [bn − (an − bn), 1

2 ], C equals anything elsewhere.
Take any neighbourhood I of 1

2 . Let al be the first element of the sequence that

belongs to I . We have that al,
1
2 ∈ C(bl), whence

∆Φf
C
(I) > f(bl)

(1

2
− al

)
= 1.

On the other hand, since for each n, C(bn) ∩ [an, 1
2 ] = {an, 1

2} and an − inf C(bn) 6

2(an − bn), for any C-fine free tagged partition π of [0, 1], the value σ(π, f) does not

exceed

sup
N>1

{ N∑

i=1

2f(bi)(ai − bi) + f(bN )
(1

2
− aN

)}
=

∞∑

i=1

2f(bi)(ai − bi) + 1 < 3.

So, Φf
C
: I → � is properly defined but B∆-discontinuous.
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